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Introduction

Computing a fill-reducing ordering of a sparse matrix is
a critical step for sparse direct solvers. In the early
days of the field, “bottom-up” or “greedy” methods
were popular. These include the Minimum Degree
algorithm [7] and its variants, and profile-reducing
methods such as the Cuthill-McKee algorithm [2]. More
recently, “top-down” or “divide-and-conquer” methods
such as Nested Dissection [3] have been favored, in
particular for problems arising from the discretization of
PDEs on 3D domains. The idea is, given the adjacency
graph G = (V, E) of the matrix, where V are vertices
and E are edges, to partition the vertices V = BtStW
where S separates B from W; S is called a vertex
separator. Then, recursively, B and W are partitioned
similarly. Most practical implementations, especially in
distributed memory environments, rely on the multilevel
framework, in which the graph is coarsened in order to
find separators. ParMETIS [6] and PT-Scotch [1] are
widely used graph partitioning packages that rely on
the multilevel framework.

The approach we propose here is a top-down algo-
rithm, but it is not multilevel. Instead, we perform all
the operations on the whole, uncoarsened, graph. We
refer to this as a “global” method. In the next sections
we describe briefly our algorithm and our distributed-
memory implementation.

Finding separators

Given a source vertex s, one can compute φ(u) =
dist(s, u), the distance from s to u, for any vertex u in
the graph, by performing a breadth-first search of the
graph starting from s. For any k ∈ [0,max(φ)], φ−1(k),
the set of vertices at distance k from u, is called a level
set. The Cuthill-McKee algorithm reorders the matrix
as {φ−1(0), φ−1(1), . . .}, i.e., it makes the matrix block
tridiagonal by ordering level sets one after another. But
level sets can also be used to find separators. Indeed, for
any k, S = φ−1(k) is a minimal separator of the graph.
This idea was used by George and Liu in their automatic
nested dissection [4]. Given a source, the best separator
induced by that source can be found by evaluating a
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cost function for all k, such as:

cost(B,S,W) =

{
+∞ if max(|B|,|W|)

min(|B|,|W|) > α

|S|
(

1 + β ||B|−|W||
|B|+|S|+|W|

)
otherwise

α is a bound on the imbalance we will tolerate, and β
is a penalty factor for imbalance. Figure 1a shows the
level sets and the best separator built from those level
sets for a triangulated circular grid.

In our algorithm, we use half-level sets, that are
built from two sources instead of one. Consider two
vertices s and t, and ψ(u) = dist(s, u) − dist(t, u).
For any k ∈ [0,max(ψ)[, S = ψ−1(k) t ψ−1(k + 1),
the union of two consecutive half − levelsets, is a
separator of the graph. This is because the permutation
{ψ−1(0), ψ−1(1), . . .} makes the matrix pentadiagonal.
Given two sources s and t, we can find the best separator
ψ−1(k) t ψ−1(k + 1) by evaluating a cost function
such as the one above. We found empirically that the
separators induced by half-level sets are more “straight”
or “planar” than the curved separators induced by level
sets, as shown in Figure 1b.

(a) Level sets. (b) Half-level sets.

Figure 1: Level set and half-level set partitionings.

The most computationally intensive operation in
this algorithm is to perform a breadth-first search from
the sources s and t. This is not a very scalable
operation. However, if we have nJ candidate sources,
we can perform the nJ BFS simultaneously, at a cost
not significantly higher than the cost of a single BFS,
because the number of messages to be sent depends only
on the diameter of the graph. Furthermore, once we
have nJ sources, the number of pairs of sources that we



can use to build separators is quadratic in nJ , (nJ−1)nJ

2 .
This allows us to evaluate many candidate separators
and is a key ingredient for the quality of our ordering.
We will show in the presentation how we find a good set
of sources.

Separators built using half-level sets are not mini-
mal. We thus need an extra step to smooth the sepa-
rator into a minimal separator. This can be done with
a simple “trimming” method, or by solving a max flow
problem to find minimum weight separators. We im-
prove separators by performing multiple cycles in which
the separators are first expanded before being trimmed.

Ordering algorithm and parallel implementation

At any step of the recursive bisection:

1. We detect quasi dense rows and we remove them
from the subgraph. The corresponding vertices are
numbered after the remainder of the subgraph in
the output permutation.

2. We check whether the subgraph has multiple con-
nected components. If it does, we redistribute them
to different sets of processes (proportionally to their
number of vertices). For components shared by
multiple processes, return to step 1.

3. We find a separator S as described above.
4. We split the subgraph into B,S,W, we redistribute
B andW to disjoint sets of processes and we recurse
(return to step 1) on B and W.

5. We stop when no subgraph is shared among two or
more processes.

We have a distributed-memory implementation,
that we call LS-GPart, of the above algorithm. All the
operations that we describe in the previous section are
fully parallelized, and the data structures are fully dis-
tributed, i.e., there are no global (order-n) vectors. The
input graph is distributed by vertices, as for most par-
allel codes, but we make no assumptions on the distri-
bution. As described above, the graph is dissected until
every processes is assigned a subdomain. Subdomains
are then ordered using the serial version of Metis.

Experiments

We compare our library against the popular packages
ParMETIS 4.0.3 and PT-Scotch 6.0.4. We measure
the quality of the ordering by looking at the number
of operations for the factorization of the matrix, and
the number of nonzeros in the factors. In Table 1, we
show results for bmw7st 1, a matrix arising from linear
static analysis of a car body (U. Florida collection). We
use 8 MPI processes; we perform 3 levels of recursive
bisection so that every process inherits a subdomain,
then subdomains are ordered serially.

Ordering nnz(LLT ) (×106) ops(LLT ) (×109)

LS-GPart 27.6 13.2
ParMETIS 27.9 13.2
PT-Scotch 29.6 16.3

Table 1: Matrix bmw7st 1, 8 domains.

In Table 2, we consider a regular cubic grid (with
128 points along each side), and this time we use 16
MPI processes. In both cases, one can observe that the
quality of our ordering is slightly better than that of
ParMETIS and PT-Scotch, in particular for the regular
grid. This is interesting because regular problems are
usually hard for partitioners; in our case, we perform as
well as geometric Nested Dissection.

Ordering nnz(LLT ) (×106) ops(LLT ) (×109)

LS-GPart 317.7 3082.1
ParMETIS 333.8 3888.9
PT-Scotch 395.7 5256.2
Geometric 312.8 3129.3

Table 2: 1283 regular grid, 16 domains.

More detailed results will be shown in the presen-
tation, using matrices from the University of Florida
sparse matrix collection, and matrices arising from
physical simulations performed by LS-Dyna [5].
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