
Balance-Enforced Multi-Level Algorithm for Multi-Criteria Mesh Partitioning

Rémi Barat∗
Cédric Chevalier∗

François Pellegrini†

2 September 2016

1 Context
Nowadays, numerical simulations model increasingly
complex phenomena. They require deeply coupled
multi-physics codes that are designed to run on large
distributed memory computers. On these kinds of
architecture, data decomposition is critical to achieve
good performance.

While distributing the data between the processes,
two challenges must be addressed: balancing the work-
load between all processes, while minimizing the com-
munications between processes.

In multi-physics simulations, one iteration gathers
the computations for several phases (see algorithm 1).
The computation costs depend on the physical phase,
so a partition well-balanced for one phase can be imbal-
anced for another. Computing one partition per phase
must update the data distribution after each phase,
leading to a great amount of communications, as well
as one partition computation per phase. Finding a par-
tition well-balanced for all phases garantees a correct
parallel efficiency.

Algorithm 1 Typical temporal loop of a numerical sim-
ulation with two computing phases, f and g, coupling
the variables X and Y from two different models.

for t ∈ [0, tend − 1] do {Temporal loop}
X(t+ 1)← f(t+ 1, X(t), Y (t))
Y (t+ 1)← g(t+ 1, X(t+ 1), Y (t))

end for

2 Model
Load balanced partitioning of a mesh with minimal com-
munications can be reduced as a graph or hypergraph
partitioning problem. As the computing task differs for
each cell and each phase, a weight vector is associated

∗CEA, DAM, DIF, F–91297 Arpajon, France,
{remi.barat.ocre|cedric.chevalier}@cea.fr
†Labri & Inria Bordeaux Sud-Ouest, Université de Bordeaux,

33400 Talence, France, francois.pellegrini@labri.fr

to the corresponding vertex. An edge cut by a partition
represents a communication between processes. The
edge can be valued to modelize communication costs.
Classicaly, the objective is to find a partition of the ver-
tices that balances the weights of each partition, while
minimizing the edge-cut.

Hypergraph partitioning model for mesh load bal-
ancing being more accurate than graph, we will focus on
hypergraph partitioning. However, all the algorithms
presented can be used also for graph partitioning.

A partition is not valid when its imbalance for a
criterion is greater than a given threshold, the tolerance.
Whereas balancing the weight of each part for each
criterion is a constraint, minimizing the cut of the
partition is the objective. Thus, we compare well-
balanced partitions using their cut.

Most of the current approaches do not strictly
enforce constraints, returning partitions that are not
always valid in respect to the constraints. We present
an algorithm which strictly enforces balance constraints
for all criteria.

3 Our algorithm
Our approach uses a multi-level framework where the
key algorithms have been designed to always enforce
balance constraints.

The coarsening phase is classical. We use a Heavy-
Edge-Matching scheme adapted for hypergraph. How-
ever, unlike a lot of partitioning tools, we do not take
into account the vertices weights during this phase.

The initial partitioning phase is a simple but new
initial partitioning method. It is based on a local
optimization of the equilibrium, and this phase does not
take into account the hyperedges; it is actually a number
partitioning algorithm (but with vectors of numbers).
The objective is only to find a balanced partition.

The refinement algorithm of the uncoarsening phase
is the Fiduccia-Mattheyses algorithm. Only moves that
do not unbalance the partition above the tolerance are
allowed. Some tools such as Metis allow such moves,
which make them return unbalance solutions. On the



Figure 1: 2D mesh of 22800 cells used for our multi-
criteria experiments. Three criteria have been defined
and are represented on the mesh using three colors. The
first two, green and red, are localized. The last one,
blue, is not visible since gives a unitary weight for every
cell.

contrary, if our initial partition is balanced, then the
final returned solution is garanteed to be balanced.

4 Results
We will present results on a mono-criterion and on two
multi-criteria meshes. We implemented our algorithm
in Python: although the complexity are the same, we
can only test it on small instances, of 3584 and 22800
cells respectively. The latter is presented in figure 1.

We will compare to Scotch (for the mono-criterion
instance) and Metis. Since the latter returns a non-
negligeable part of invalid solutions (that is, imbalanced
more than the given tolerance of 5% in our case), we also
used what we called fail-safe-Metis. In this version, we
call Metis normally, but whenever it returns an invalid
partition, Metis is re-run with half the tolerance. In
practice, fail-safe-Metis returns only valid solutions.

Each algorithm is launched a number of times on
each of the three instances. Figure 2 presents the
communication volume distributions of valid instances
returned by 64 runs of each algorithm, for the three
criteria instance of 22800 cells.

From this small example, we can already see that
there is a great discrepancy between the returned so-
lutions, for all algorithms. We do not know of papers
reporting this important phenomenon yet. We believe
that when comparing algorithms, one must also study

Figure 2: Distributions of the volume of communica-
tions of 64 bi-partitions of a mesh of 22800 cells with 3
criteria returned by our algorithm, Metis and fail-safe-
Metis. Solutions whose unbalance is greater than 5%
are discarded. The lower the bars, the better.

their variance and maybe worst solution found, and not
only the mean and best solution found.

In this case, Metis only returned 50% of valid solu-
tions, that is why we compare with fail-safe-Metis. Our
algorithm seems to achieve better solutions. However,
we see that we must improve the variance to avoid local
minima where Metis also seems to be attracted.

5 Key points
We present a multi-level hypergraph partitioning algo-
rithm adapted to multi-criteria. Contrary to most state-
of-the-art algorithms used for multi-criteria partition-
ing, it is focused on balancing load for each criteria. Its
results are thus valid with respect to the prescribed tol-
erances, which is already a significant improvement over
tools such as Metis.

We describe three experiments, and show the large
discrepancy between results in term of partition quality
for all algorithms, even for a mono-criterion partition-
ing. This discrepancy illustrates that hypergraph par-
titioning is still a hard problem, even on topologically
simple objects such as meshes.

Even if our algorithm complexity is equivalent to
state-of-the-art ones, we currently only have a Python
prototype which is not efficient enough in term of run
times to tackle the large meshes we are interested in.
We are thus currently implementing our multi-criteria
multi-level algorithm in Scotch. Meanwhile, we plan on
improving our algorithm to converge faster, exploiting
more efficiently hypergraph properties that came from
mesh topology (low degree vertices, etc.). We are hoping
that it will provide a credible alternative to Metis to
partition multi-physics meshes, by returning balanced
partitions of multi-criteria graphs.


