
Extended Abstract: Convex Partitioning of Large-Scale Directed Graphs

Julien Herrmann1 Bora Uçar2 Kamer Kaya3 Ümit V. Çatalyürek1,4

1 Introduction

Directed graphs play an important role in combinato-
rial scientific computing (CSC) due to their modelling
power for algorithms, workflow execution and commu-
nication patterns. However, when modelling a CSC
problem as a graph partitioning problem, the direction
information is generally ignored.

There are several problems where the directionality
is crucial: for instance, if out-of-core execution is
possible within a task-based runtime system, a schedule
needs also to minimize the data movement amount
from slow storage to faster memory. A similar but
finer grained problem arises when the data movement
between the memory and cache is considered [1].
This problem is getting more and more important,
since the emerging architectures’ peak processing rate
is increasing significantly faster than their memory
bandwidth. Many widely-used scientific kernels to-
day are memory-bound and the only solution for a
better performance is reducing the amount of data
movement between the memory and cache (hierarchy).
Furthermore, in the future, it may be more logical
to use the data movement complexity of an algorithm
instead of its time complexity. Yet, the data movement
complexity is not well characterized today: it depends
on various kernel transformations and the architectural
parameters such as the fast memory (registers/caches)
capacity. A thorough understanding is important to
reveal the possible performance improvements beyond
the current compiler optimizations. Recently, com-
putational directed acyclic graphs (CDAGs) are used
to characterize the data movement complexity and
dynamically analyze the data locality potential [1].

Definition 1.1. (CDAG) A CDAG is a directed
acyclic graph G = (V,E) with no isolated vertices. V is
called the operation set and the edges in E represent the
dependencies among the operations.

2 Preliminaries

A convex partitioning of a CDAG into components al-
lows us to schedule and atomically execute a component

1Dept. Biomedical Informatics, The Ohio State University.
2CNRS and LIP, ENS Lyon, France.
3Sabancı University, Turkey.
4Dept. Elec. & Comp. Engineering, The Ohio State University.

at once without any interleaving by the other compo-
nents. Let us first define the notion of convexity:

Definition 2.1. (Convex component) Given a di-
rected graph G, a vertex set S ⊆ G is defined as a convex
component iff for any pair of vertices u, v ∈ S, the ver-
tices in all the u ; v and v ; u paths also belong to S.

Definition 2.2. (Convex k-way partition) Given
a directed graph G = (V,E), a convex partition of G is
a set of convex components {V1, V2, ..., Vk} of G such

that
⋃k

i=1 Vi = V and Vi∩Vj = ∅ for any 1 ≤ i < j ≤ k.

The state-of-the-art tools designed for partitioning
undirected graphs cannot be used to generate convex
partitions since the orientations of the edges can dam-
age the convexity as Figure 1 shows. The generalized

Figure 1: A valid 2-way partitioning of an undirected graph
(left), an invalid/non-convex partitioning when edges are
oriented (middle), a convex partitioning (right).

CDAG partitioning problem can be defined as follows
with possible constraints and objectives in Table 1
where C is the fast memory capacity.

Definition 2.3. (CDAG partitioning problem)
Given a CDAG G, find a convex k-way partition
P = {V1, V2, · · · , Vk} such that Constraint(P) is
respected and Objective(P) is minimized.

The partitioning constraints make the components
fit to the fast memory. Hence, the operations’ values
within a component will stay in the fast memory until
the operations are completed. Thus, no (extra) data
movement is required for the edges inside the parts.
Therefore, for CDAGs, Objectives 1 and 2 tend to
minimize the total data flow to/from slow memory.

A good partition with a small data movement
amount can reveal potential performance improvements
for various kernels; for instance, Fauzia et al. used
CDAG-based dynamic analysis to improve the Floyd-
Warshall all-pairs shortest paths algorithm which was
believed to be not possible [1]. Since the analysis

needs to be dynamic, we need fast partitioning tools to
generate convex partitions with good objective values.

Cons. 1 the total vertex weight is lower than a given
C for all the components.

Cons. 2. the total vertex weight of Vi and the other
vertices with a successor in Vi is lower than a
given C for every Vi.

Cons. 3 the maximum number of simultaneously live
nodes for each component is less than C.

Obj. 1 minimize the edge cut between components.
Obj. 2 minimize the edge cut between components

by counting the edges coming from the same node
only once (data communication).

Obj. 3 increase the application performance.

Table 1: Practical constraints and objectives.

3 Directed Multilevel Graph Partitioning

We are developing a new directed multilevel graph par-
titioning tool. Multilevel frameworks became de-facto
standard for solving graph and hypergraph partitioning
problems efficiently, hence used by almost all of the cur-
rent state-of-the-art partitioning tools. As all multilevel
graph frameworks, our algorithm has three phases:
Coarsening: We obtain smaller acyclic graphs by
combining the vertices until a minimum vertex count
is reached or reduction on number of vertices is lower
than a threshold. However, not all the vertices can be
combined: consider a CDAG with three operations a, b,
c and three edges (a, b), (b, c), (a, c). Here, the vertices
a and c cannot be combined since we form a cycle. To
protect convexity, we devised a novel and efficient mech-
anism to check if an edge is contractible or not based
on a precomputed topological ordering of the vertices.
Initial Partitioning: After the graph is coarsened,
we generate an initial convex partitioning. To do that,
we first topologically order the vertices of this final
graph. Then we used Kernighan’s algorithm [2] to
generate an optimal partition based on this topological
ordering. Kernighan’s algorithm has a linear execution
time in the number of edges (assuming a constant part
size). Since the number of edges in the coarsest graph
is relatively small, we ran the algorithm multiple times
with different topological orders.
Refinement/Uncoarsening: We project the initial
solution to the finer graphs and refine it iteratively
until a solution for the original graph is obtained. We
used an FM-like, move-based direct k-way refinement
algorithm, which does multiple passes. In each pass,
all vertex gains are computed and current best moves
are tentatively realized. Some negative gains moves
are allowed to avoid sticking in local optima. In our
refinement, to avoid creating cycles among partitions,
each vertex can only be moved to one of two “adjacent”
parts in the topological order.

4 Experimental Evaluation

We used three kernels for the experiments: multiplica-
tion of two 30×30 matrices; 100 iterations of 1D-Jacobi
on a vector of size 100; and 30 iterations of 2D-Jacobi
on a 30 × 30 grid. Some properties of the CDAGs for
these kernels are summarized in Table 2.

Graphs 2MM 1D-jacobi 2D-jacobi
vertices 139,500 58,902 236,208
edges 243,000 98,000 423,360
avg/min/max degree 3.48/1/32 3.33/1/100 3.59/1/30

Table 2: The kernels used in the experiments.

Table 3 shows the partitioning results for the graphs
in Table 2. We experimented with k = {2, 8, 32} parts,
3% imbalance ratio, and measured the total edge cut
(Obj. 1) and total communication volume (Obj. 2) that
we try to minimize. dMLGP is our directed multilevel
graph partitioner, Kernighan is the algorithm from [2]
and Metis is the well-known graph partitioner. dMLGP
and Kernighan produces convex k-way partitions
whereas Metis does not use the direction information.

k
Kernighan dMLGP Metis

EdgeCut TotVol EdgeCut TotVol EdgeCut TotVol

2MM
2 94,397 31,784 28,735 3,442 34,083 4,622

16 151,921 82,493 83,595 49,757 81,858 33,107
32 167,458 105,408 100,306 83,760 90,514 43,972

1D-Jacobi
2 1,128 572 1,131 566 797 375
8 5,132 2,847 5,286 2,895 3,874 2,317

32 18,423 10,549 18,252 10,288 8,616 5,476
2D-Jacobi

2 14,049 4,523 14,195 4,531 9,841 3,380
8 58,509 23,389 61,950 23,123 36,463 17,098

32 169,570 83,281 175,454 80,569 70,777 35,683

Table 3: The results for 2MM, 1D-Jacobi and 2D-Jacobi.
For the 2MM, theoretical lower bounds for the total volume
is 205, 578 and 818, respectively for k = 2, 8 and 32.

Table 3 shows that the multilevel approach can work
much better than Kernighan’s algorithm on the 2MM
kernel. As the Jacobi-2D results reveal, a better edge
cut does not always imply a better communication vol-
ume. We are currently working on recursive-bisection,
and improving k-way refinement, since we believe k-way
refinement is the bottleneck in achieving high quality
partitioning.

References

[1] N. Fauzia, V. Elango, M. Ravishankar, J. Ramanujam,
F. Rastello, A. Rountev, L.-N. Pouchet, and P. Sa-
dayappan. Beyond reuse distance analysis: Dynamic
analysis for characterization of data locality potential.
ACM Trans. Archit. Code Optim., 10(4):53:1–53:29,
Dec. 2013.

[2] B. W. Kernighan. Optimal sequential partitions of
graphs. J. ACM, 18(1):34–40, Jan. 1971.

