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1 Introduction

Most Jacobian matrices contain hidden structure and
can be represented as the sum and/or product of sparse
and/or low-rank matrices. Following Griewank [1],
the algorithimic differentiation community refers to
this sparse and low-rank structure as scarcity or scar-
sity [2, 3, 4]. Although it can be difficult to recover the
scarcity structure from a particular Jacobian matrix,
the structure is more apparent in the computational
graph used to compute the Jacobian. The computa-
tional graph is the directed acyclic graph represent-
ing the function being differentiated, augmented with
edge weights corresponding to partial derivative val-
ues. Then, the value of Jij = ∂yi

∂xj
is the sum over all

paths from xj to yi of the product of the edge weights
along the path. See [4] for more details. In this rep-
resentation, a small number of edges at a given depth
represents sparsity and a small number of vertices at
a given depth represents low rank structure. Paral-
lel subgraphs are added and sequential subgraphs are
multiplied.

2 Vertex elimination on the compu-
tational graph

The computationational graph can be transformed into
an equivalent graph via one of several different trans-
formations, including vertex elimination, edge elimina-
tion, face elimination, edge normalization, edge rerout-
ing [1, 4, 5]. In vertex elimination, a vertex vk is elim-
inated by multiplying all incoming edges by all out-
going edges. Then, for each predecessor vi ∈ P(vk)
and successor vj ∈ S(vk) we increment the edge weight
wij+ = wikwkj , adding a new edge Eij if necessary.
Typically, vertex elimination proceeds until all inter-
mediate vertices have been eliminated, yielding a bipar-
tite graph with only input (independent variable) and
output (dependent variable) vertices and edges repre-
senting nonzero Jacobian entries, with value equal to
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Figure 1: A computational graph, the equivalent bipar-
tite graph, and the equivalent graph with the minimal
number of edges.

the corresponding edge weight. However, in order to
exploit scarcity, we seek the sequence of vertex elimi-
nations that yields the equivalent computational graph
with the smallest possible number of edges. Figure 1
shows an initial graph, the equivalent bipartite graph,
and the equivalent graph with the minimal number of
edges, obtained by eliminating vertices v3 and v4 but
not v5. The initial and bipartite graphs have 9 edges
while the minimal representation has 6 edges, corre-
sponding to the outer product of two vectors of length
3, or a 3× 3 rank one matrix.

3 An integer programming formu-
lation of the minimal Jacobian
representation problem.

We have developed an integer programming model
whose solution provides the vertex elimination se-
quence that minimizes the number of edges in the re-
sultant computational graph. The model is consider-
ably simpler than previous models developed in order
to minimize the number of operations required to com-
pletely transform a computational graph to bipartite
form [6], since the number of multiplications does not
need to be tracked. Key to the model is permitting
steps where zero vertices are eliminated. This permits
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fa(i,j,k)$(given[i,j] and (ord(k) eq 1)).. x[i,j,k] =e= given(i,j);

fb(k)$(ord(k) gt 1).. sum(i, v[i,k]) =l= 1;

fg(i).. sum(k$(ord(k) gt 1), v[i,k]) =l= 1;

fc(k).. sum(i$independent[i], v[i,k]) =e= 0;

fd(k).. sum(i$dependent[i], v[i,k]) =e= 0;

fe(i,j,k)$(ord(k) gt 1).. x[i,j,k] =g= x[i,j,k-1] - v[i,k] - v[j,k];

ff(i,j,k,l)$(ord(k) gt 1).. x[i,j,k] =g= x[i,l,k-1] + x[l,j,k-1] + v[l,k] - 2;

variable obj; equation objdef; objdef.. obj =e= sum((i,j,k)$(ord(k) gt ninter), x[i,j,k]);

Figure 2: GAMS model for the minimal Jacobian representation problem.

incomplete transformations without a need to model
the number of transformation steps. The model is as
follows:

min
∑
i,j

Xijn subject to

Xij0 = Eij ∀i, j (1)∑
i

Vik ≤ 1 ∀k (2)∑
k

Vik ≤ 1 ∀i (3)

Xijk ≥ Xij(k−1) − Vik − Vjk ∀i, j, k (4)

Xijk ≥ Xil(k−1) + Xlj(k−1) + Vlk − 2 ∀i, j, k, l (5)

where Xijk indicates whether edge Eij is present after
k elimination steps, Eij is the edge set of the initial
graph, Vik indicates whether vertex vi is eliminated in
step k, and n is the number of intermediate vertices.
The model enforces the following constraints:

1. initial edge set corresponds to input graph

2. eliminate no more than one vertex at each step

3. do not eliminate a vertex more than once

4. an edge must be preserved unless its source or sink
is eliminated

5. an edge must be introduced between the predeces-
sors and successors of eliminated vertices

We have implemented this model in the GAMS mod-
eling language and verified its efficacy on several small
test problems. See Figure 2 for the portion of the model
representing the objective and constraints.
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H. Martin Bücker, Paul D. Hovland, Uwe Nau-
mann, and J. Utke, editors, Advances in Automatic
Differentiation, pages 103–114. Springer, 2008.

[3] Andrew Lyons, Ilya Safro, and Jean Utke. Random-
ized heuristics for exploiting jacobian scarcity. Op-
timization Methods and Software, 27(2):311–322,
2012.

[4] Andreas Griewank and Andrea Walther. Evaluating
Derivatives: Principles and Techniques of Algorith-
mic Differentiation. Number 105 in Other Titles
in Applied Mathematics. SIAM, Philadelphia, PA,
2nd edition, 2008.

[5] Uwe Naumann. Efficient Calculation of Jacobian
Matrices by Optimized Application of the Chain
Rule to Computational Graphs. PhD thesis, Tech-
nical University of Dresden, December 1999.

[6] Jieqiu Chen, Paul Hovland, Todd Munson, and
Jean Utke. An integer programming approach to
optimal derivative accumulation. In Shaun Forth,
Paul Hovland, Eric Phipps, Jean Utke, and Andrea
Walther, editors, Recent Advances in Algorithmic
Differentiation, volume 87 of Lecture Notes in Com-
putational Science and Engineering, pages 221–231.
Springer, Berlin, 2012.



The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science lab-
oratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains
for itself, and others acting on its behalf, a paid-
up nonexclusive, irrevocable worldwide license
in said article to reproduce, prepare derivative
works, distribute copies to the public, and per-
form publicly and display publicly, by or on be-
half of the Government.


