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1 Introduction

Computing connected components in undirected graphs
is a fundamental problem in graph analytics. The size
of graph data collections continues to grow in many
different scientific domains, which motivates the need
for high performance distributed memory parallel graph
algorithms, especially for large networks that cannot
fit into the memory of a single compute node. For a
graph G(V,E) with n vertices and m edges, two vertices
belong to the same connected component iff there is a
path between the two vertices in G. Sequentially, this
problem can be solved in linear O(m) time, e.g. by using
one of the following two approaches. One approach is to
use either Breadth First (BFS) or Depth First Search
(DFS) for each component. Another technique is to
use a union-find based algorithm, where each vertex
is initially assumed to be a different graph component
and components connected by an edge are iteratively
merged.

There are known work-optimal and practical par-
allel solutions for computing BFS traversals on dis-
tributed memory systems. While parallel BFS algo-
rithms have been optimized for traversing a short diam-
eter big graph component, they can still be utilized for
finding connectivity using multiple executions, one per
connected component. However, for graphs with large
number of small components, parallel BFS needs to be
executed one after another, because unless a component
is identified, a vertex not in the component cannot be
chosen to initiate search for the next connected com-
ponent. On the contrary, the classic Shiloach-Vishkin
(SV) algorithm [1], a widely known PRAM algorithm for
computing connectivity, simultaneously computes con-
nectivity of all vertices and promises convergence in log-
arithmic iterations making it suitable for components
with large diameter, as well as for graphs with a large
number of small sized components. Compared to the
simple label propagation techniques, the SV algorithm
bounds the number of iterations to O(log n) instead of
O(n), where each iteration is equivalent to O(m) work.
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2 Contribution

In this work, we propose a novel edge-based parallel
algorithm based on the SV approach for distributed
memory systems. We also suggest optimizations to
reduce the data volume and balance the load as the
iterations progress.

Small world scale-free networks, for instance social
networks or web crawls, have the property of contain-
ing a single large connected component. For this sin-
gle massive connected component, BFS is more efficient
than SV is for identifying all its members. To achieve
the best performance on different graph topologies, we
introduce a dynamic pre-processing stage to our algo-
rithm that guides the algorithm selection at runtime.

For evaluation, we cover a diverse set of graphs,
both small world and large world, to highlight that our
algorithm can serve as a general solution to compute
connected components for undirected graphs. For the
experiments, we include de Bruijn graphs from publicly
available metagenomic samples, road networks, scale
free networks (social networks and web links), as well as
Kronecker graphs from the Graph500 benchmark. Our
approach achieves a runtime of 215 seconds using 32K
cores on Cray XC30 for a large metagenomic graph with
54 billion edges. When compared against the previous
state of the art, we observe performance improvements
up to 24x. This work extends our previous algorithm,
which was specific to the metagenomic applications [2],
to a general connectivity solution for any undirected
graphs.

3 Algorithm

Parallel SV Algorithm Our algorithm is structured
similar to the Shiloach-Vishkin algorithm. While it is
implemented differently, our algorithm includes the two
short-cutting steps in the SV algorithm that ensure log-
arithmic convergence to the solution. Initially, every
vertex is in its own partition, and partitions are con-
nected via edges of the graph. Iteratively, we join each
partition to the minimum numbered partition in its
neighborhood, until the partitions coalesce into the re-
quired connected components of the graph (Figure 1a).
In order to resolve large diameter components quickly,
we utilize a pointer doubling technique.
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(a) Partitions at the beginning, are high-

lighted using different shades. Desired so-
lution, assuming v1 < u, v2, shown on the

right will be to have all three vertices in a

single component v1.
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(b) Strong scalability results of our algo-

rithm on different graphs using 4096 pro-
cesses. Speedups are computed relative

the runtime on 256 cores.

0

25

50

75

M1 M2 M3 G1 G2 G3 K1 K2
Datasets

T
im

e 
(s

ec
)

Method

Our method

Multistep

(c) Performance comparison of our algo-

rithm against the Multistep method [3] us-

ing multiple graphs with 2K processes

Figure 1: Description and experimental evaluation of our parallel connectivity algorithm

Internally, our algorithm works with a distributed
array of 3-tuples. During the execution, global sorting
of the tuples plays an essential role to establish data
locality. Each iteration of the algorithm involves four
global sorts of the tuple array. The first two sorts
allow each partition to compute and join its minimum
partition neighbor. The next two sorts facilitate the
pointer doubling mechanism. The algorithm terminates
when none of the partitions have any more neighboring
partitions.

The number of iterations required for convergence
of a component depends on its diameter, hence small
sized components tend to complete much before large
components. We improve the performance of our algo-
rithm by detecting the early convergence of completed
partitions, and removing the tuples associated with the
completed partitions from the local working set. How-
ever, removing completed partitions creates a growing
load imbalance of active tuples. We counteract this by
evenly redistributing all active tuples at the end of each
iteration.

Hybrid Approach using BFS Parallel BFS imple-
mentations can be adapted to achieve the same objec-
tive as our parallel SV algorithm, namely to compute
all the connected components in a graph. For a large
component of a small world graph, the large number of
vertices at each level of the traversal yields enough data
parallelism for parallel BFS methods. In this case, the
parallel BFS application is bandwidth bound and close
to work efficient. Small world scale-free networks have
the property of containing a single large connected com-
ponent. These graphs are characterized by a power-law
degree distribution. We classify a given graph as scale-
free by estimating the goodness of fit to a power-law
model. Only if the classification is positive, we choose

to execute a BFS iteration to identify the first compo-
nent before using our parallel SV algorithm.

4 Experiments

We use Edison, a Cray XC30 machine for the experi-
mental evaluation. Our data-sets include 9 graphs: four
metagenomic graphs (M1-M4), a twitter network (G1),
a web crawl graph (G2), a road network(G3) and two
kronecker graphs (K1-K2).

We conduct strong scaling experiments for our
algorithm on 256-4096 cores (Figure 1b). Ideal speedup
relative to 256 processes is 16. We achieve a maximum
speedup of more than 8x for the metagenomic graphs
M1 and M2 and about 6x speedup for small world
graphs G1, G2 and K1.

Further, we compare the performance of our algo-
rithm against the state of the art Multistep algorithm
[3] using 2000 cores (Figure 1c). Our algorithm outper-
forms the Multistep method for all graphs except G1.
The speedup we achieve over the Multistep algorithm
ranges from 1.1x for K2 up to 24.5x for G3, more than
an order magnitude faster.
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