
Exploiting Matrix Reuse and Data Locality in Sparse Matrix-Vector and
Matrix-Transpose-Vector Multiplication on Many-Core Architectures

M. Ozan Karsavuran (1) Kadir Akbudak (2) Cevdet Aykanat (1)

(1) Bilkent University (2) KAUST
Abstract
We focus on the efficient thread-level parallelization of
sparse matrix-vector and matrix-transpose-vector mul-
tiplication (SpMMTV) operations of the form y=AATx,
which is performed as two successive SpMV operations
z ← ATx and y ← A z. There are several iterative
methods that involve repeated and consecutive SpMV

and SpMTV operations for the same sparse matrix A.
The SpMV operation is one of the latency bound

kernels [1, 2, 3] due to its irregular accesses and low
flop-to-byte ratios (amount of arithmetic operations per
word retrieved from RAM). Decreasing the amount of
accesses to RAM via exploiting locality is expected to
improve performance of the SpMMTV operation espe-
cially on cache-coherent processors involving large num-
ber of cores, such as Intel Xeon Phi.

Based on one-dimensional (1D) rowwise and colum-
nwise partitioning of A and AT matrices, four parallel
SpMMTV approaches are viable: column-column paral-
lel (CCp), row-row parallel (RRp), column-row parallel
(CRp), and row-column parallel (RCp). Here, CCp is
based on column-parallel SpMV in both y ← A z and
z ← ATx, where RRp is based on row-parallel SpMV in
both y ← A z and z ← ATx. CRp is based on column-
parallel SpMV in y ← A z and row-parallel SpMV in
z ← ATx, where RCp is based on row-parallel SpMV in
y ← A z and column-parallel SpMV in z ← ATx. Fig. 1
shows the execution of these four parallel SpMMTV algo-
rithms by a four-thread system. A gray scale tone shows
exclusive access by a single thread and black color shows
concurrent accesses by multiple threads.

We identify the following five quality criteria which
have impact on the performance of the above mentioned
thread-level parallelization schemes:
(a) Reusing z-vector entries, which are written in

z ← ATx and then loaded in y ← A z.
(b) Reusing matrix nonzeros (together with their in-

dex structures) among consecutive z ← ATx and
y ← A z operations.

(c) Exploiting temporal locality in loading input vector
entries in row-parallel SpMV operations.

(d) Exploiting temporal locality in updating output
vector entries in column-parallel SpMV operations.

(e) Minimizing number of concurrent writes by differ-
ent threads in column-parallel SpMV operations.

Table 1: Quality criteria coverage [4].

Quality Criteria RRp CRpRCp sbCRp sbRCp

(a)z-vector reuse × X × X X –1

(b)A-matrix nonzero reuse × X × X X –2

(c)temporal locality in row-parallel SpMV ×3 ×3 ×3 X X
(d)temporal locality in col-parallel SpMV − ×3 ×3 X X
(e)minimizing concurrent writes X × × X X

X: satisfied X –1: satisfied except zB border subvectors
−: not applicable X –2: satisfied except AkB border submatrices
×: not satisfied×3: may be satisfied through row/column reordering

The first four criteria consider data reuse. The crite-
rion (b) for achieving A-matrix nonzero reuse in 1D par-
allelization incurs concurrent writes. Hence, the last cri-
terion is introduced to refer to the trade-off between the
concurrent writes and A-matrix nonzero reuse. Here, we
only consider CRp and RCp since CCp and RRp are not
amenable to achieve criteria (a) and (b)

In order to satisfy all five quality criteria at the same
time for CRp and RCp, we propose permuting A and
AT matrices into dual singly-bordered block-diagonal
(SB) forms [4]. For CRp, we permute matrix A into a
rowwise SB form, which induces a columnwise SB form
of matrix AT . For RCp, we permute matrix A into a
columnwise SB form, which induces a rowwise SB form
of matrix AT . Fig. 2, shows the proposed SB-based
parallel SpMMTV algorithms which are referred to here
as sbCRp and sbRCp. We show that these two dual SB
forms enable to achieve the quality criteria (a) and (b)
in CRp and RCp. We also show that the objectives
of minimizing the size of the row border and column
border in the SB form of A correspond to achieve the
quality criteria (c), (d), and (e) in CRp and RCp,
respectively. Table 1 shows quality criteria coverage of
the algorithms.

The validity of the algorithms are evaluated on a
single Xeon Phi processor for 28 sparse matrices arising
from a wide range of applications. Fig. 3 shows the
performance profile that compares the proposed SB-
based algorithms against two baseline algorithms in
terms of running time. In spite of the advantages of
sbCRp over sbRCp as shown in Table 1, sbCRp may
perform worse than sbRCp for some matrices. So in
Fig 3, CRp/RCp-SB refers to considering the minimum
running time of sbCRp and sbRCp for each matrix.



Figure 1: Four baseline SpMMTV algorithms for computing y ← A z after z ← ATx by four threads [4].

Figure 2: Proposed SB-based SpMMTV algorithms for computing y ← A z after z ← ATx by four threads [4].

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

CRp/RCp-SB
RRp/MKL-org/RCM
CRp/RCp-org/RCM

1

Figure 3: Performance profile curves.

We adopt a similar ”best-of” approach for both baseline
algorithms. RRp/MKL-org/RCM refers to considering
the minimum running time of RRp and MKL for original
and RCM ordering. CRp/RCp-org/RCM refers to
considering the minimum running time of CRp and RCp

for original and RCM ordering. As seen in Fig 3, the
proposed SB-based algorithms performs significantly
better than the baseline algorithms. As also seen in
the figure, the proposed SB-based algorithms achieve
the best performance in 92% of the SpMMTV instances.
On the average, the proposed methods runs 28% faster
than the best baseline algorithm.

References
[1] S. Williams, A. Waterman, and D. Patterson,

“Roofline: An insightful visual performance model for
multicore architectures,” Com.ACM, pp. 65–76, 2009.

[2] E. Saule, K. Kaya, and U. V. Catalyürek, “Perfor-
mance evaluation of sparse matrix multiplication ker-
nels on Intel Xeon Phi,” in Parallel Processing and Ap-
plied Mathematics, LNCS, pp.559–570, 2014.

[3] K. Akbudak, E. Kayaaslan, and C. Aykanat, “Hyper-
graph partitioning based models and methods for ex-
ploiting cache locality in sparse matrix-vector multipli-
cation,” SIAM SISC, pp. C237–C262, 2013.

[4] M. O. Karsavuran, K. Akbudak, and C. Aykanat,
“Locality-aware parallel sparse matrix-vector and
matrix-transpose-vector multiplication on many-core
processors,” IEEE TPDS, 2016.


