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One problem that occurs frequently in numerical linear algebra is the computa-
tion of the function of matrices that are too large to calculate directly. One such
function is the trace of the inverse of A, which occurs in Lattice Quantum Chromo-
dynamics,(LCQD), data mining, statistics, and uncertainty quantification. Several
approaches have been proposed for this problem before. In the case of small matrices,
a factorization approach can solve the problem exactly, but this becomes impractical
for many matrices of interest, due to size. For larger matrices, purely statistical ap-
proaches are popular, since they allow for a bounded estimate which can be iteratively
improved [1]. Another approach that can be taken is probing[2]. In many matrices,
the magnitude of the elements of f(A)i,j decrease inversely with the graph theoretical
distance between nodes i, j of A. Therefore, if we compute a k-distance coloring of
A or its equivalent, a distance-1 coloring of Ak, we can recover the most important
elements of diag(f(A)). The value of the nodes that share the same color can then
be recovered by creating a probing vector consisting of all ones for nodes sharing the
same color, and zeros everywhere else. Because of the block structure induced by
coloring, the diagonal can be recovered using only n vectors, where n is the number
of colors used to color Ak. Since the structure of Ak approximates the structure of
f(A), if an iterative solver is used, these probing vectors can also be used to recover
an approximation to the trace of f(A).

A major shortcoming of this approach is the memory and computational time re-
quired to compute and store Ak which can increase very quickly as k grows, depending
on the connectivity of the problem. Additionally, if the graph of the associated matrix
is highly connected, as is the case in examples arising in social network analysis, Ak

may quickly become completely dense. In this case the number of colors used will
go from an amount insufficient to produce a good estimate, to assigning a unique
color per node, which is equivalent to solving for every diagonal element individually.
Finally, if after computing a trace approximation with a given k the accuracy of the
trace computation is too low, a higher k must be selected, and the approximation
recomputed. With classical probing, this means that the results of all the previously
preformed solves must be discarded, since the intersection between sets of probing
vectors for the two levels of colors is likely to be empty.

To address this problem we first consider approaches from clustering algorithms.
Clustering turns out to be exactly the opposite problem to the one we are attempting
to solve. Clustering seeks to find groups of nodes which have a high degree of inter-
group communication. While there are several approaches to this, many of them are
expensive and cannot be applied to very large graphs. One of the solutions to this is
to merge nodes which are close together, as in the METIS algorithm[3], thus produc-
ing a smaller, coarser version of the graph. Once the graph is small enough, a more
expensive clustering algorithm can be applied. One popular choice for this is spectral
clustering, which works by taking the eigenvectors of the k smallest eigenvalues of
the Laplacian of the graph, and using these as points in k-dimensional space, which
are then clustered. This approach is popular since it provides bounds on how far the
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Fig. 0.1: Comparison of classical probing, multi-level probing, and stochastic methods
on a synthetic Covariance matrix(where classical probing preforms very well), and
on a p2p social network graph, where probing preforms poorly. Our algorithm is
competitive with probing, while outperforming statistical methods in most cases

clustering can be from optimal.
The problem of finding a coloring for Ak is opposite to the problem of clustering.

We want to find groups of nodes that have limited communication between themselves.
However, the approaches used in clustering can be adapted to solve this problem. Our
approach is similar to Walshaw’s[5] multilevel algorithm. We build up a hierarchy of
coarse graphs, and assign colors to each node at every level. The colors at each level
are used to build up a final coloring for every node. This is done by treating the color
at each level as a digit in a mixed radix representation of an integer, the integer being
the final color the node receives, based on its membership in a color at each level of the
hierarchy. We produce the coarse graph by merging nodes and their neighborhoods
based on color. At each level we preform a distance-1 coloring. Then two nodes which
are distance 2 away from each other and share a color are merged. This is done for
all nodes, producing the next level of the graph. Not only does this avoid forming
and storing the full Ak, it ensures that the colorings produced at each stage are
hierarchical, meaning that the work done at one stage will be a subset of the work at
the next, ensuring that no computation is wasted. The algorithm annihilates distance
2k at the k-th level, corresponding to preforming probing on A2k . In many of our
experiments the number of colors needed by multi-level coloring is close to the same
number needed by classical probing at the same level, while having the advantage of
producing more intermediate steps than probing. This is useful, because it allows the
user to terminate the algorithm early if the desired accuracy is achieved.

Finally, the algorithm can be improved in some cases by modifying the coloring
strategy. While greedy coloring at each level is sufficient for many matrices for which
probing works well, when probing works poorly other approaches can be applied. In
particular, we may want to assign fewer colors than produced by greedy coloring.
This can be achieved by grouping the nodes most weakly connected into the desired
number of colors, information which can be obtained though spectral methods. We
have observed that for some test cases arising from social networking graphs, this
approach can provide an improvement over greedy coloring.
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