
Highly Scalable Community Detection Using a GPU

Md. Naim∗, Fredrik Manne∗, Mahantesh Halappanavar†, and Antonio Tumeo†

Community detection typically consists of discovering
sets of nodes such that the number of edges between different
sets is relatively low compared to the number of edges within
sets. Although there is no standard mathematical definition
for what makes up a community, the modularity metric
proposed by Girvan and Newman is often used. This is a
measurement of the density of links within communities as
compared to the density of inter-community links.

We present a new highly scalable GPU implementation
of the Louvain method for community detection. The Lou-
vain methods iterates over two alternating stages, the mod-
ularity optimization phase and the community aggregation
phase. In the first phase vertices can move between commu-
nities if this increases the local modularity. When no further
modularity gain can be achieved in this way, the vertices in
each community are agglomerated into a new super vertex in
the aggregation phase. This condensed graph then become
the input to the next modularity optimization phase and so
on. The final output of the method will thus be a cluster hi-
erarchy. Note that at the start of the algorithm each vertex is
a community by itself.

There has been several previous efforts to parallelize the
Louvain method. Wickramaarachchi et al. gave an MPI im-
plementation with a speedup of up to 5 using 128 proces-
sors [5]. Ovelgönne presented a Hadoop implementation [3].
Cheong et al. gave a GPU implementation with a speedup
up to 5 on a single GPU and 17 on a multi-GPU computer
[1]. Lu et al. presented an OpenMP implementation, re-
porting speedups up to 16 using 32 threads [2]. Xinyu et
al. recently presented an implementation using a 8,192 nodes
Blue Gene/Q and a 1024 node P7-IH super computer [4].
They report processing rates of up to 1.89 giga TEPS on
graphs containing up to 138 billion edges, where TEPS is
the number of edges processed per second in the first modu-
larity phase.

Our algorithm is based on the one presented by Lu et
al. We therefore start by reviewing this. When processing
a node v in the modularity optimization phase one must de-
termine the accumulated weight of the edges that v has to
each of its neighboring communities. To do this one uses

∗Department of Informatics, University of Bergen, N-5020 Bergen,
Norway. Email: {fredrikm,md.naim}@ii.uib.no
†Pacific Northwest National Laboratory, 902 Battelle Boulevard,

P.O.Box 999, MSIN J4-30, Richland, WA 99352, USA. Email:
{Mahantesh.Halappanavar,Antonio.Tumeo}@pnnl.gov

a hash map where the weight of each incident edge is in-
serted using the current community ID of the corresponding
neighbor as key. Once this is done it is possible to deter-
mine which community will give the largest modularity gain
if v was to move to it. In the sequential algorithm one it-
erates over the vertices, and for each vertex v computes to
which (if any) community v should move to. If v is to move
then its community ID is updated accordingly. This strategy
might cause problems in a parallel implementation as sev-
eral vertices might be moving at the same time thus making
the computation of the modularity gains imprecise. Lu et
al. therefore suggested that vertices should compute and up-
date their community IDs in separate stages. Thus in the first
stage every vertex computes to which community it should
belong, but without changing its community ID. Only after
every vertex has performed this computation will all vertices
concurrently move to their new communities. In this way
the difference between the sequential and the parallel algo-
rithm is similar to that between the Gauss-Seidel and Jacobi
iterative methods for solving systems of linear equations.

In the parallel algorithm the vertices are divided be-
tween the threads who sequentially compute to which com-
munity each of its allocated vertices should move. Only after
a global barrier are the community IDs updated. This pro-
cess is repeated until the change in modularity is sufficiently
small. In the community aggregation phase the communities
are distributed between the threads who compute the struc-
ture of the new graph to be used as input in the next round of
modularity optimization.

It should be noted with that with this strategy there is
always only one thread that is responsible for each vertex
in the modularity optimization. Similarly, there is always
only one thread responsible for each community in the
aggregation phase. Thus if vertices have very different
degrees or if the number of vertices in each community differ
substantially this scheme can lead to problems with uneven
load balance.

We next outline how we have adapted the algorithm to
run on a GPU. On a GPU the threads are first grouped into
blocks and each block is further divided into warps, where
the threads in each warp operate in SIMD. On our GPU each
warp consists of 32 threads. The main problem we have to
consider is how to allocate tasks to threads so as to achieve
an even load balance.

We first consider the modularity optimization phase.



If we allocate vertices to different threads within the same
warp, then the thread that has to handle the most neighbors
will determine the time spent. Similarly, if we allocate
vertices to entire warps, then the most heavily loaded warp
will determine when a particular block finishes. To achieve
an even load balance we chose to distribute the vertices based
on their vertex degrees. Thus we first place all the vertices
in bins depending on their degrees. We then process the
vertices in each bin before proceeding with the next one. In
this way we can update the community ID of all vertices in
one bin before moving on to the vertices in the next bin. The
number of threads assigned to each vertex depends on the
bin it belongs to. For low to medium degree vertices the
number of threads assigned varies from a fraction of a warp
up to an entire warp, but remains consistent for all warps
in a thread block. The threads assigned to one vertex uses a
common area in the shared memory for hashing. The threads
participate in reading neighbor information for the current
vertex and putting this into the hash map. To avoid collisions
we use atomic operations to protect the actual updating of
the hash table. When all neighbors have been processed the
threads perform a reduction operation to determine which
community the current vertex should belong to. For vertices
of high degree we use an entire thread block for processing
each vertex. Depending on the degree of these vertices we
either use shared or global memory for storing the hash table.

In the community aggregation phase the vertices are
first grouped according to which community they belong to.
Then depending on the combined size of the neighborhood
of the vertices in each community, either a block or a warp
is assigned to perform the aggregation. This is done by
hashing the neighbors of each vertex in a community into a
common hash map. In this way we can compute the new
neighborhood of the vertex that is to replace the current
community. We note that this phase is not load balanced as
thoroughly as the modularity optimization, but on the other
hand the modularity optimization is run many times for each
time that the aggregation phase is run.

Our experiments are run on an NVidia Tesla K40m GPU
with 12 GB of memory, 2880 cores, running at a 745 MHz.
In Table 1 we present results from seven graphs that were
also used by Lu et al. For each graph we first list the number
of vertices, the number of edges, the sequential running time,
the running time of the OpenMP code using 8 threads, and
the final modularity as reported in [2]. Next, we give the
running time of our GPU code, achieved modularity, and the
number of edges traversed per second in the first modularity
optimization stage. Finally, we give the speedup of the GPU
code relative to the sequential code and to the OpenMP
code running on 8 threads, and also the ratio between the
modularities. We do not compare against more than 8 threads
for the OpenMP implementation as these were the numbers
presented in [2] and there were only marginal improvements

Graph #V #E Timeseq TimeOMP ModularityOMP TimeGPU ModularityGPU TEPS SpeedupSeq SpeedupOMP Ratio
CNR 325557 2738969 4.3 0.8 0.912608 0.37 0.912447 3.43E+007 11.62 2.16 1.000
coPapersDBLP 540486 15245729 7.7 3.7 0.858088 0.79 0.857094 2.72E+007 9.75 4.68 0.999
channel 4802000 42681372 30.9 21.2 0.933388 9.22 0.927304 1.38E+008 3.35 2.30 0.993
europe osm 50912018 54054660 N/A 63.4 0.994996 32.13 0.998677 9.20E+006 N/A 1.97 1.004
uk-2002 18520486 261787258 335.9 210.3 0.989569 8.27 0.989351 5.10E+007 40.62 25.43 1.000
rgg n 2 24 s0 16777216 132557200 111 34.2 0.992698 7.14 0.992521 3.28E+007 15.55 4.79 1.000
Soc-LiveJournal1 4847571 68475391 182.7 67.05 0.751404 9.15 0.753148 1.80E+007 19.97 7.33 1.002

Table 1: Comparison with OMP implementation

for higher number of threads.
As can be seen from the results the speedup of the GPU

implementation compared to the OpenMP one ranges from
approximately 2 up to more than 25. We also note that the
modularity is very similar for both implementations. We
note that our maximal TEPS rate is 7.3% of that achieved
by [4] on the 8,192 nodes Blue Gene/Q.

References

[1] Chun Yew Cheong, Huynh Phung Huynh, David Lo, and
Rick Siow Mong Goh. Hierarchical parallel algorithm for
modularity-based community detection using gpus. In Euro-
Par 2013 Parallel Processing, pages 775–787. Springer,
2013.

[2] Hao Lu, Mahantesh Halappanavar, and Ananth Kalyanara-
man. Parallel heuristics for scalable community detection.
Parallel Computing, 47:19–37, 2015.

[3] Michael Ovelgönne. Distributed community detection in
web-scale networks. In Proceedings of the 2013 IEEE/ACM
International Conference on Advances in Social Networks
Analysis and Mining, pages 66–73. ACM, 2013.

[4] Xinyu Que, Fabio Checconi, Fabrizio Petrini, and John A
Gunnels. Scalable community detection with the louvain
algorithm. In Parallel and Distributed Processing Symposium
(IPDPS), 2015 IEEE International, pages 28–37. IEEE, 2015.

[5] Charith Wickramaarachchi, Marc Frincu, Patrick Small, and
Viktor K Prasanna. Fast parallel algorithm for unfolding
of communities in large graphs. In High Performance Ex-
treme Computing Conference (HPEC), 2014 IEEE, pages 1–
6. IEEE, 2014.


