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Abstract

Discovering dense subgraphs and understanding the re-
lations among them is a fundamental problem in graph
mining. We want to not only identify dense subgraphs,
but also build a hierarchy among them (e.g., larger but
sparser subgraphs formed by two smaller dense sub-
graphs). Peeling algorithms (k-core, k-truss, and nu-
cleus decomposition) have been effective to locate many
dense subgraphs. However, constructing a hierarchical
representation of density structure, even correctly com-
puting the connected k-cores and k-trusses, have been
mostly overlooked. Keeping track of connected com-
ponents during peeling requires an additional traversal
operation, which is as expensive as the peeling process.
We propose efficient and generic algorithms to construct
the hierarchy of dense subgraphs for k-core, k-truss, or
any nucleus decomposition. Our algorithms leverage
the disjoint-set forest data structure to efficiently con-
struct the hierarchy during traversal. Furthermore, we
introduce a new idea to avoid traversal. We construct
the subgraphs while visiting neighborhoods in the peel-
ing process, and build the relations to previously con-
structed subgraphs. We also consider an existing idea
to find the k-core hierarchy and adapt for our objec-
tives efficiently. Experiments on different types of large
scale real-world networks show significant speedups over
naive algorithms and existing alternatives.

1 Dense Subgraphs

Graphs are used to model relationships in many ap-
plications such as sociology, the WWW, cybersecurity,
bioinformatics, and infrastructure. Although the real-
world graphs are sparse (|E| << |V |2), vertex neigh-
borhoods are dense [9]. Clustering coefficients [21], and
transitivity [20] of real-world networks are also high and
suggest the micro-scale dense structures. Literature is
abundant with the benefits of dense subgraph discovery
for various applications [12, 8].

k-core [18, 14], k-truss [16, 4, 24, 19, 5, 25, 10],
and their generic variant for larger cliques, nucleus de-
composition [17], (peeling algorithms in general) are
deterministic algorithms which are effective and effi-
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cient solutions to find dense subgraphs and creating hi-
erarchical relations among them. Hierarchy has been
shown to be a central organizing principle of complex
networks, which is useful to relate communities of a
graph and can offer insight into many network phenom-
ena [3]. Peeling algorithms do not aim to find a single
optimum dense subgraph, but rather gives many dense
subgraphs with varying sizes and densities, and hier-
archy among them, if supported by a post-processing
traversal step [14, 17].

2 Problem, Misconception and Challenges

We focus on undirected, unattributed graphs. Hierarchy
of dense subgraphs is represented as the tree structure
where each node is a subgraph, each edge shows a
containment relation, and the root node is the entire
graph. The aim is to efficiently find the hierarchy by
using peeling algorithms.

Misconception in the literature : Recent stud-
ies on peeling algorithms has interestingly overlooked
the connectivity condition of k-cores and k-trusses. In
the original definition of k-core, Seidman states that k-
core is the maximal and connected subgraph where any
vertex has at least degree k [18]. However, almost all
the recent papers on k-core algorithms [2, 6, 7, 1, 15,
13, 11, 23, 22, 13] did not mention that k-core is a con-
nected subgraph although they cite Seidman’s seminal
work [18]. On the k-truss side, the idea is introduced in-
dependently by Saito et al. [16] (as k-dense), Cohen [4]
(as k-truss), Zhang and Parthasarathy [24] (as triangle
k-core), and Verma and Butenko [19] (as k-community).
They all define k-truss as a subgraph where any edge is
involved in at least k triangles. Regarding the connec-
tivity, Cohen [4], and Verma and Butenko [19] defined
the k-truss as a single component subgraph, while oth-
ers [16, 24] ignored the connectivity.

Finding k-cores requires traversal on the graph after
the peeling process, where maximum k-core values of
vertices are found. It is same for k-truss and nucleus
decompositions where the traversal is done on higher
order structures. Constructing the hierarchy is only
possible after that. However, it is not easy to track
nested structure of subgraphs during a single traversal
over entire graph. Traversing k-cores is cheap by a
simple breadth-first search (BFS) in O(|E|) time. When



k-core k-truss (3, 4) nucleus
Naive Hypo Naive TCP*[10] Hypo Naive*

Stanford3 25.50x 1.10x 12.58x 3.41x 1.48x 1321.89x
twitter-higgs 27.89x 1.33x 16.24x 3.27x 1.78x 38.96x
uk-2005 58.02x 1.68x 90.50x 11.07x 1.24x 1.98x

Table 1: Speedups with our best algorithms for each decomposition.
Starred columns (*) show lower bounds, when the other algorithm
did not finish in 2 days. Best k-truss and (3,4) algorithms are
significantly faster than alternatives, and also more efficient than the
hypothetically best possible algorithm (Hypo) that does traversal to
find the hierarchy.

it comes to k-truss and higher order peeling algorithms,
however, traversal becomes much costly due to the
larger clique connectivity constraints.

3 Contributions

• Hierarchy construction by disjoint-set forest:
We propose to use disjoint-set forest data structure
(DF) to track the disconnected substructures that ap-
pear in the same node of the hierarchy tree. Disjoint-
set forest is incorporated into the hierarchy tree by
selectively processing the subgraphs in a particular
order. We show that our algorithm is generic, i.e.,
works for any peeling algorithm.

• Avoiding traversal: We introduce a new idea
to build the hierarchy without traversal. In the
peeling process, we construct the subgraphs while
visiting neighborhoods and bookkeep the relations
to previously constructed subgraphs. Applying a
lightweight post-processing operation to those tracked
relations gives us all the hierarchy, and it works for
any peeling algorithm.

• Experimental evaluation: All the algorithms we
proposed are implemented for k-core, k-truss and
(3, 4)-nucleus decompositions, in which peeling is
done on triangles and the four-clique involvements.
Furthermore, we bring out an idea from Matula
and Beck’s work [14], and adapt and implement it
for our needs to solve the k-core hierarchy problem
more efficiently. Table 1 gives a summary of the
speedups we get for each decomposition. Our k-core
hierarchy algorithm adaptation outperforms naive
baseline by 58 times on uk-2005 graph. The best
k-truss and (3, 4) algorithms are significantly faster
than alternatives. They also beat the hypothetically
best possible algorithm (Hypo) that does traversal
to find hierarchy. It is a striking result to show the
benefit of our traversal avoiding idea.
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