
Augmenting Hypergraph Models with Message Nets to
Reduce Bandwidth and Latency Costs Simultaneously

Oguz Selvitopi1, Seher Acer1, and Cevdet Aykanat1

1 Department of Computer Engineering, Bilkent University, Turkey, 06800

Abstract

Efficient parallelization of the applications in scientific
computing domain on distributed systems requires re-
ducing the communication costs of the application in
both terms: bandwidth and latency costs. Although
there are many graph/hypergraph partitioning models
that reduce the bandwidth cost in the literature, there
exist only a few works that consider both of them. These
works generally rely on a two-phase methodology in
which different objectives of reducing bandwidth cost
and latency cost are addressed in separate phases. Such
approaches suffer from the fact that the addressed ob-
jective in a specific phase is oblivious to the objective
addressed in the other phase.

In this work, we propose a single-phase hypergraph
model for 1D partitioning that addresses both objec-
tives simultaneously [1]. The widely-used standard hy-
pergraph model in the literature [2] minimizes the band-
width cost by reducing the total communication (mes-
sage) volume as the nets of this model, which we refer to
as volume nets, encode the amount of data transferred in
case they become cut. We augment the standard hyper-
graph model by message nets that encode the messages
communicated.

The addition of the message nets relies on recur-
sive bipartitioning (RB). In the RB paradigm, the given
hypergraph is recursively bipartitioned into two hyper-
graphs until the desired number of parts is reached.
Let the RB process be currently at the `th level, prior
to bipartitioning the ith hypergraph H`

i = (V`
i ,N `

i) in
this level. Figure 1 displays the RB tree representing
the corresponding RB process. As seen in the figure,
the vertex sets of the hypergraphs in the current state
of the RB tree induce a (2` + i)-way vertex partition
Πcur. This vertex partition is also assumed to induce a
(2` + i)-way processor partition Pcur in which proces-
sor group P`

i is held responsible for the items/tasks
that are represented by the vertices in V`

i . After bi-
partitioning H`

i , the (2` + i+ 1)-way vertex partition
Πnew = (Πcur−V`

i)∪V`+1
2i ∪V

`+1
2i+1 is obtained. Biparti-

∏cur

RB tree

∏new

RB tree

H
L H

R

Hcur

Hcur

bipartition

Hcur

H 0

l +1

H 1

l +1

H 2i-2

l +1

H 2i-1

l +1

H i

l
H i

l
H 2 -2

l
H 2 -1

l
l l

+1

M cur
messages

M new
messages

H i

l P
i

l

H cur
P

cur

H RH L
P

L
P

R,,

processor groups

Figure 1: The state of the RB tree and the number of
messages from/to Pcur and {PL,PR} to/from the other
processor groups before and after bipartitioning Hcur.
The processor groups corresponding to the vertex sets
of the hypergraphs are shown in the box [1].

tioning H`
i is assumed to also bipartition the processor

group P`
i into two processor groups PL and PR, where

Pnew = Pcur−{P`
i }∪{PL,PR}. We respectively denote

the number of messages that processor group P`
i and

processor groups {PL,PR} sends/receives to/from the
other processor groups by Mcur and Mnew. To encode
the messages between processor group P`

i and the other
processor groups in Pcur, we add message nets to H`

i

by utilizing Πcur. A message net added to H`
i repre-

sents a group of tasks/data items that necessitate send-

ing/receiving a message from/to P`
i to/from another

processor group.
There are two types of message nets: send nets

and receive nets. A send net sk added to hypergraph
H`

i to be bipartitioned signifies a message to be sent
from processor group P`

i to processor group Pk. Net sk
connects the vertices corresponding to the data items to
be sent from P`

i to Pk. We add a send net toH`
i for each

such processor group that P`
i will send a message to. In

a dual manner, a receive net rk added to H`
i signifies a

message to be received by P`
i from Pk. Net rk connects

the vertices corresponding to the tasks that necessitate
P`
i to receive data items from Pk. We add a receive net

to H`
i for each such processor group that P`

i will receive
a message from.

These formed message nets are added to the stan-
dard hypergraph model, which already contains the vol-
ume nets. The costs of volume nets are set to tw, per
word transfer time, and the costs of message nets are
set to ts, message startup time. Bipartitioning this aug-
mented hypergraph with the objective of minimizing the
cutsize corresponds to reducing both the total volume
and the total message count as it contains both volume
and message nets. The number of cut message nets in
this bipartition amounts to the increase in the number
of messages between processor group Pcur and the other
processor groups, i.e., Mnew −Mcur.

The cost addition of the message nets throughout
the entire RB process is O(p logK) and relatively cheap
compared to the partitioning overhead, where p is the
number of pins in the standard hypergraph model and
K is the number of parts/processors.

We evaluated the proposed model with 1D row-
parallel sparse matrix vector multiplication (SpMV),
and compared it against the standard hypergraph model
on 30 matrices [3]. Table 1 displays the results obtained
by the proposed model as normalized with respect to the
results of the standard model. The number of processors
in our experiments are 128, 256, 512, 1024 and 2048.
The ratio ts/tw varies in practice for different message
sizes and depends on the protocol used for transmitting
messages as well as the characteristics of the target
application. For this reason, we experimented with
different ts/tw values: 10, 50, 100 and 200.

As seen in the table, we achieved up to 46%, 52%,
51%, 48% and 43% reduction in the total number of
messages for 128, 256, 512, 1024 and 2048 processors, re-
spectively. Using a higher value for ts/tw magnifies both
the reduction in total message count and the increase
in total volume. Compared to the standard hypergraph
model, the proposed model results in a higher total vol-
ume since it considers both bandwidth and latency com-
ponents simultaneously while the standard model solely

Table 1: Communication statistics, partitioning times
and parallel SpMV runtimes of the proposed model
normalized with respect to those of the standard model
as the geometric average of 30 matrices [1].

ts/tw

part.
time

parallel
SpMV
time

volume #messages

K tot max tot max

128 1.08 1.11 0.82 0.87 1.07 0.956
256 1.10 1.16 0.78 0.83 1.13 0.904

10 512 1.12 1.22 0.75 0.83 1.13 0.838
1024 1.16 1.29 0.73 0.84 1.25 0.792
2048 1.20 1.37 0.71 0.88 1.28 0.774

128 1.17 1.25 0.65 0.76 1.08 0.924
256 1.25 1.44 0.59 0.70 1.14 0.846

50 512 1.33 1.57 0.56 0.69 1.21 0.760
1024 1.41 1.69 0.57 0.74 1.24 0.715
2048 1.48 1.85 0.59 0.80 1.33 0.708

128 1.24 1.43 0.59 0.73 1.09 0.954
256 1.35 1.66 0.53 0.68 1.17 0.858

100 512 1.45 1.86 0.51 0.68 1.19 0.768
1024 1.54 1.92 0.53 0.71 1.31 0.706
2048 1.61 2.06 0.57 0.80 1.41 0.707

128 1.33 1.60 0.54 0.72 1.15 1.031
256 1.46 1.87 0.48 0.67 1.19 0.872

200 512 1.57 2.02 0.49 0.67 1.25 0.778
1024 1.65 2.09 0.52 0.72 1.37 0.722
2048 1.70 2.17 0.57 0.79 1.48 0.712

optimizes the bandwidth component.
The more accurate representation of the communi-

cation costs together with the significant reductions in
total message count led up to improvements of 8%, 15%,
24%, 29% and 29% in parallel SpMV runtime for 128,
256, 512, 1024 and 2048 processors, respectively.

References

[1] O. Selvitopi, S. Acer, and C. Aykanat, “A recursive hy-
pergraph bipartitioning framework for reducing band-
width and latency costs simultaneously,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. PP,
no. 99, pp. 1–1, 2016, doi:10.1109/TPDS.2016.2577024.

[2] U. Catalyurek and C. Aykanat, “Hypergraph-
partitioning-based decomposition for parallel sparse-
matrix vector multiplication,” IEEE Transactions
on Parallel and Distributed Systems, vol. 10,
pp. 673–693, July 1999. [Online]. Available:
http://portal.acm.org/citation.cfm?id=311796.311798

[3] T. A. Davis and Y. Hu, “The University of
Florida sparse matrix collection,” ACM Transactions
on Mathematical Software, vol. 38, no. 1,
pp. 1:1–1:25, Dec. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2049662.2049663

http://portal.acm.org/citation.cfm?id=311796.311798
http://doi.acm.org/10.1145/2049662.2049663

