Georgla School of Computational
Tech | Science and Engineering

An Adaptive Parallel Algorithm
for Computing Connectivity

Chirag Jain, Patrick Flick, Tony Pan, Oded Green, Srinivas Aluru

SIAM Workshop on Combinatorial Scientific Computing (CSC16)
October 10, 2016

1



Introduction Methods Experiments

Connected Components

* Finding connected
components is at the heart of
many graph applications.

e Sequentially, we have linear
time O(IEl) solutions.

 Union-find

« BFS/DFS



Introduction Methods Experiments

Scaling to Large Graphs

Sequencing machines
generate ~10° DNA
reads in 1 day

e Sizes of graph datasets continue
to grow in multiple scientific
domains

e Bioinformatics : Metagenomics
de-Bruijn graphs

* |lowa Prairie (3.3B reads) - JGI > 10° content uploads

in 1 day

e Social networks, WWW

e We need method that scales to
graphs with billions/trillion of edges

* irrespective of graph topology




Introduction Methods Experiments

Background

A. Parallel connectivity ® 8
algorithms 7 é\O
1. Parallel BFS o </ <. (ZD/\O
o9
2. Shiloach-Vishkin PRAM b
algorithm (SV)

B. Recent prior work

Bulu¢c and Madduri “Parallel breadth-first search ...” SC 11
4 Beamer et. al. "Distributed memory breadth-first search revisited ...” IPDPSW 13



Introduction Methods Experiments

Background

A. Parallel connectivity — 2 ‘\
algorithms v// \ //
1. Parallel BFS ®
2. Shiloach-Vishkin ¢

PRAM algorithm (SV)

B. Recent prior work s T\
~O N\ T

—
N

) Shiloach and Vishkin “An O(log n) parallel connectivity algorithm” 1982



Introduction Methods Experiments

Background

A. Parallel connectivity
algorithms

1. Parallel BFS

2. Shiloach-Vishkin
PRAM algorithm (SV)

B. Recent prior work

Label Propagation Shiloach-Vishkin
90909 _—000

A -
= -

N M N N

O(IVI) iterations
— O(IEI.IV]) work

Pointer jumping for
faster convergence

O(log IVI) iterations
— O(IEl log IVI) work

Shiloach and Vishkin “An O(log n) parallel connectivity algorithm” 1982



Introduction Methods

Experiments

Background

A. Parallel connectivity
algorithms

1. Parallel BFS

2. Shiloach-Vishkin PRAM
algorithm (SV)

B. Recent prior work

Part of popular graph analysis frameworks :
GraphX, PowerlLyra, PowerGraph

G(V.E) — | ParallelBFS | Egéa;:el
’ iteration |
Propagation
Multistep algorithm

Slota et. al. “A Case Study of Complex Graph Analysis ...” IPDPS 2016
Slota et al. “BFS and coloring-based parallel ... IPDPS 2014




Introduction Methods Experiments

Contributions

1. Novel edge-based adaptation of Shiloach-Vishkin
algorithm for distributed memory parallel systems.

2. Fast heuristic to guide algorithm selection at run-time.

Parallel BFS
O

(3{ G(V,E)
Parallel SV 6

8 Flick et. al. “A parallel connectivity algorithm ...” SC 15




Introduction Methods Experiments

Parallel SV algorithm

e |nitialization @

* We work with an Q
array of tuples (call it
A) to keep partition

id of each vertex.

e O(IVI]) partitions at

S Current partition id {‘} {‘} {‘}
beginning
Vertex ids ujlv,JLv,
e Size of A : e
O(IVI + IEl) {VJ{UJ{VJ{UJ

1 2



Introduction Methods Experiments

Parallel SV algorithm
()

e |nitialization @

10

We work with an Q

array of tuples (call it
A) to keep partition
id of each vertex.
—p

OVl partitions at < oartiion i m m m 'J m H

beginning
Vertex ids 1

u \" \'

et oo

2

\'

1 u

\'

5 u

1 2

<0 0

AR




Introduction Methods Experiments

Parallel SV algorithm

AN

Current partition id "‘ (‘\ (@)

Vertex ids \UJ \UJ \u)

e vertex ‘U’ is member of which all
partition ids?

e Sort A by ‘vertex id’ layer

11



Introduction Methods Experiments

Parallel SV a\gorlthm

Current partition id @ (‘\ (@) Current partitonid| | @ | (@ | | @
Vertex ids U \UJ \UJ \U) kVJ L)W
e vertex ‘U’ is member of which all e \Which all vertices are member
partition ids? of partition @ 7
e Sort A by ‘vertex id’ layer e Sort A by ‘partition id’ layer

12



Introduction Methods Experiments

Parallel SV algorithm

Current partition id @ (‘\ (@) Current partitonid| | @ | [ @ | [ @
Vertex ids U \UJ \UJ \U) kVJ L)W
e vertex ‘U’ is member of which all e \Which all vertices are member
partition ids? of partition @ 7
e Sort A by ‘vertex id’ layer e Sort A by ‘partition id’ layer

13



Introduction Methods Experiments

Parallel SV algorithm

* |n our implementation, we use parallel sample sort.

e Custom reduction operations to efficiently compute
miNnimMums.

e Additional detalls:

~. Check our preprint

e pointer jJumping

e detect convergence of small components early, load
balance

 Runtime: O(log|V|- Teor(|V|+ |E|, p))

14



Introduction Methods Experiments

Contributions

1. Novel edge-based adaptation of Shiloach-Vishkin
algorithm for distributed memory parallel systems.

2. Fast heuristic to guide algorithm selection at run-time.

Parallel BFS
O

:g G(V,E)

15 Flick et. al. “A parallel connectivity algorithm ...” SC 15

Parallel SV



Introduction Methods Experiments

Dynamic hybrid method

 Parallel BFS is close to work

efficient for a giant small world ®
graph component. 7
—0
* Efficiency is lost when : // O
oo &
« Large number of small é\o

components

* Large diameter of a graph d{?
component Cf/\o fi}
* How to decide which algorithm to A~ d b

choose at runtime”? Céé

16



Introduction Methods Experiments

Dynamic hybrid method

(Compute degreew
distribution of

. Inputgraph )

l

4 )

Curve fits power-

law distribution? Jes
_ ,

No ( 1 BFS iteration)

v
a )
Run Parallel-SV on

remaining graph

_ J

17



Introduction Methods Experiments

Experimental Setup

« Software : C++14, MPIl, CombBLAS library for parallel BFS

 Hardware : Cray XC30 (Edison) at Lawrence Berkeley National
Laboratory

5,576 nodes, each with 2 x 12-core Intel lvy processors and 64 GB
RAM

1 MPI process per physical core
 Timing :
e Exclude graph construction and I/O time

 Profiling starts after having block-distributed list of edges in memory

18 Bulu¢ and Gilbert “The Combinatorial BLAS: Design ...” IJHPCA 2011



Introduction

Methods

Datasets

Experiments

Id Dataset Type Vertices | Edges Components | Approx. Largest
diameter | component

M1 Lake Metagenomic | 1.1 B 1.1B 2.6 M 3,763 53%
Lanier

M2 | Human Metagenomic | 2.0 B 20B 1.0M 3,989 91.1%
Metagenome

M3 | Soil (Peru) | Metagenomic | 531.2M | 523.6 M | 7.6 M 2,463 0.3%

M4 | Soil (Iowa) | Metagenomic | 53.7 B 53.6 B 319.2 M - 44.2%

Gl Twitter Social 52.6 M 20B 29,533 16 99.99%

G2 sk-2005 Web Crawl 50.6 M 19B 45 27 99.99%

G3 eu-usa- Road 749 M 82.9 M 2 25,105 65.2%
osm Networks

K1 Kronecker Kronecker 63.7 M 2.1B 19,753 9 99.99%
(scale = 27)

K2 Kronecker Kronecker 2354 M | 8.6B 73,182 9 99.99%
(scale = 29)

19



Introduction

Methods

Datasets

Experiments

Id Dataset Type Vertices | Edges Components | Approx. Largest
diameter | component
M1 Lake Metagenomic | 1.1 B 1.1B 2.6 M 3,763 53%
Lanier
M2 | Human Metagenomic | 2.0 B 20B 1.0M 3,989 91.1%
Metagenome
M3 | Soil (Peru) | Metagenomic | 531.2M | 523.6 M | 7.6 M 2,463 0.3%
M4 | Soil (Iowa) | Metagenomic | 53.7 B 53.6 B 319.2 M o~ 44.2%
Gl | Twitter Social 526 M | 2.0B 29,533 /16 O\ | 99.99%
G2 | sk-2005 Web Crawl | 50.6M | 1.9B 45 [127  \ | 999%  <+—
V ‘
K1 Kronecker Kronecker 63.7 M 2.1B 19,753 9 99.99%
(scale = 27) \ / y
K2 Kronecker Kronecker 2354 M | 8.6B 73,182 \ 9 99.99%
(scale = 29) \\/

20

Small world graphs




Introduction

Methods

Datasets

Experiments

Id Dataset Type Vertices | Edges Components | Approx. Largest
diameter | component
M1 Lake Metagenomic | 1.1 B 1.1B 2.6 M 3,763 53%
Lanier
M2 | Human Metagenomic | 2.0 B 20B 1.0M 3,989 91.1%
Metagenome
M3 | Soil (Peru) | Metagenomic | 531.2M | 523.6 M | 7.6 M 2,463 0.3%
M4 | Soil (Iowa) | Metagenomic | 53.7 B 53.6 B 319.2 M - 44.2%
Gl Twitter Social 526 M 20B 29,533 16 99.99%
G2 sk-2005 Web Crawl 50.6 M 19B 45 27 99.99% <4+
G3 | eu-usa- Road 749M | 829M | 2 @ 65.2%
—
osm Networks
K1 Kronecker Kronecker 63.7 M 2.1B 19,753 9 99.99%
(scale = 27) -
K2 Kronecker Kronecker 2354 M | 8.6B 73,182 9 99.99%
(scale = 29)

Large diameter graph

21

Small world graphs




Introduction

Methods

Datasets

Large number of components

Experiments

Id Dataset Type Vertices | Edges Components | Approx. Largest
7 N\ diameter | component
M1 Lake Metagenomic | 1.1 B 1.1B 2.6 M 3,763 53%
Lanier
M2 | Human Metagenomic | 2.0 B 20B 1.0M 3,989 91.1%
S Metagenome
M3 | Soil (Peru) | Metagenomic | 5312 M | 523.6 7.6 M / 2,463 0.3%
M4 | Soil (Iowa) | Metagenomic | 53.7 B 53.6 B \\319.2 l\y - 44.2%
Gl | Twitter Social 526 M | 2.0B 29,533 16 99.99%
G2 sk-2005 Web Crawl 50.6 M 19B 45 27 99.99%
G3 eu-usa- Road 74.9 M 82.9 M 2 25,105 65.2%
—
osm Networks
K1 Kronecker Kronecker 63.7 M 2.1B 19,753 9 99.99%
(scale = 27)
K2 Kronecker Kronecker 2354 M | 8.6B 73,182 9 99.99%
(scale = 29)

Large diameter graph

22

Small world graphs




Dynamic Approach

Timings against opposite choice, using 2K cores

Method 4.0x

. Dynamic
. Static (Opp. Choice)
Time (sec) *° ~
4.7X
1x 3 6X
1 .2X J
M3 G1 GZ 3

Graphs v Vv ‘/ ‘/ Run BFS?

23



Dynamic Approach

Proportion of time spent in prediction (using 2K cores)

Method

60 -
. Dynamic
. Static (Opp. Choice)
Time (sec) ¥~
Proportion
20 - ] J of time
a2 ]l
| | | | | | | |
M1 M2 M3 G1 G2 G3 K1 K2

Graphs v Vv v v Run BFS?

24



Introduction Methods Experiments

Strong Scalability

300 -

* Maximum speedup of ~8x 200 -
using 4096 cores (ldeal :16x) Time (sec)

(08s) swi |

100 -

e Sorting benchmark with 2B
integers achieves 8.06x
speedup as well.

tﬁé‘—a—*
0-

Dataset

—o— G1
7.5 -
—A— G2
Speedup o .
©
. . _ D
Timings for the largest graph M4 5.0 T 2
-5 M1
Cores 8281 16384 32761 ©
Time for M4 (sec) | 429.89 291.19 214.56 2.5 -
| | | | |
256 512 1024 2048 4096

25 Number of cores (log scale)



v/s Multistep method

Method 24x

2.1x 1.1Xx

Time (sec) ., _
2.7X
25 =
1.9X%
0.9x I
. I B
| | | |

| |
M1 M2 M3 G1 G2 G3 K1 K2 .
4K 4K oK 16 17 25K 9 9 <+— Diameter

Graphs

20



Introduction

v/s Best sequential method

Methods

Experiments

* Performance comparison against Rem’s algorithm (based on

union-find)

* Using small graphs that fit in single node (64 GB RAM)

27

Dataset Seq. Time Speedup

(sec) p = 64 256 1024
Kronecker | 228.8 10.1 34.3 100.6
(25)
M3 406.2 2.5 9.3 27.0
G3 45.9 0.9 3.5 7.6

E. W. Dijkstra, A discipline of programming. 1976



28

Conclusions

. Efficient distributed memory parallel connectivity

algorithm based on Shiloach-Vishkin approach.

Propose heuristic to guide algorithm selection at
runtime.

Efficient as well as generic, scales on a variety of large
graphs.

Significant performance gains against previous state-
of-the-art, particularly in case of large diameter graphs.



Thank you!

arxiv.org/abs/1607.06156

>< cjain @ gatech.edu

O GitHub github.com/ParBLiSS/
| parconnect

Reproducibility Initiative Award


https://arxiv.org/abs/1607.06156
mailto:cjain@gatech.edu?subject=
https://github.com/ParBLiSS/parconnect

