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OUTLINE

• Linear system solvers
• Graph Sparsifiers.
• Regression and Image Denoising.
• Simple formulation and connection with solving 

linear systems.
• Overview of SDD solvers.
• A better L1 formulation of denoising.
• Maximum flow using solvers
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SPECTRAL GRAPH THEORY
LAPLACIAN PARADIGM 

Use graph algorithms to solve linear 
algebra problems.

Use linear algebra to  solve graph 
problems.

Use both to solve optimization problems



ASYMPTOTIC ANALYSIS 

• The goal is to find algorithms with provable worst 
case run times.
• Randomized methods are assumed
• A scalable algorithm is one whose run scales linearly 

with problems size, ignoring log terms.
• When possible we hope to find a scalable 

algorithm.



SOLVING AX=B,  A SPARSE

1) Direct Methods ( Gaussian elimination)+
1) + Ones gets the exact answer!
2) + Partial elimination reduces vertex count
3) - Fill and work may be large!
4) - Good pivot orders may be expense to find!
5) - Elimination will not give scalable algorithms on it own.



SOLVING AX=B,  A SPARSE

1) Iterative Methods
1) Each step performs a 

1) Sparse Matrix Vector product
2) Constant number of dot products and additions

2) + Each step is linear time and parallel
• - Finds at best closets point in the Krylov spaces 
• < b, Ab, … , An-1 b >

2) Two work arounds
1) Find a good preconditioner 

1) i.e. Change our Krylov space.
2) Include matrix-matrix produces and  subsample to abtain 

a approximate product. 



GRAPH SPARSIFIERS

Sparse Equivalents of Dense Graphs
that preserve some property

• Spanners: distance, diameter.
• [Benczur-Karger ‘96] Cut sparsifier: 

weight of all cuts.
• Spectral sparsifiers: eigenstructure



GENERAL GRAPH SAMPLING 
MECHANISM

• For each edge, flip a coin with 
probability of ‘keep’ being P(e).
• If coin says ‘keep’, keep the edge, but 

scale it up by factor of 1/P(e).

Expected value of an 
edge: same as before

Sampling gives the graph in expectation; 
we only need to bound concentration.



TWO APPROACHES: GRAPH SAMPLING 

• Sample in parallel: Pick k samples and return the 
average graph.

• Pick a few samples and based on the sample 
update the probabilities. Repeat!

•



EXAMPLE: COMPLETE GRAPH
O(n logn) sampling edges 

uniform suffice!

SrivSriv



EFFECTIVE RESISTANCE

• View the graph as a circuit: each edge is a 
resistor with conductance W(e).
• Effective resistance between u and v, R(u,v) 
is the resistance of the circuit when passing 1 
unit of current from u to v. 

`



MATRIX CHERNOFF BOUNDS

• Def: A ≼ B  if ∀x   xTAx ≤  xTBx

• THM:  Let X1, … Xk be ind random matries 
• 0 ≼ Xi ≼ R 𝐈,  ∑ E(Xi) ≼ u 𝐈 then
• Prob[ 𝝀max( ∑Xi ) > (1+ δ)∑ E(Xi) ] ≤ exp small

Th



SPECTRAL SPARSIFICATION BY 
EFFECTIVE RESISTANCE

Answer: [Spielman-Srivastava `08]: 
• Set P(e) = R(u,v) effective resistance from u to v.
• For each sampled edge set weight to 1/P(e)
• Sample  O(n log n) times and return average.

Foster: ∑e R(e) = n-1

spectral sparsifier with 
O(nlogn) edges for any graph

What	probability	P(e)		should	we	sample	an	edge?	



SPARSE CHOLESKY FOR GRAPHS

Running time bound: O(mlog3n), OPEN: improve this

Kyng-Sachdeva `16:
1. Run Gaussian Elimination in random order
2. After each pivot sample the new fill by effective 

resistance.



REGRESSION



OVER CONSTRAINED  SYSTEMS

Over Constrained System:  A x = b.
Solve system AT A x = ATb
•Matrix ATA is Symmetric Positive 

Semi-Definite (SPSD).    
•Open Question: 

Find sub-quadratic time solvers 
for  SPD systems? 

We will need problems with an    
underlying graph.



APPROXIMATION ALGORITHMS

• Whole conferences NP-Approximation
• Same ideas and goals can be  applied problems in 

Polytime.
• Our goal is find  good approximation but much 

faster than known exact solutions.
• Maybe even faster exact solutions!



CLASSIC REGRESSION PROBLEM

• Image Denoising
•Critical step in image 

segmentation and detection
• Good denoising makes the 

segmentation almost obvious.



CAMOUFLAGE DETECTION 

Given image + noise, recover image.



CAMOUFLAGE DETECTION 

Hui-Han	Chin



IMAGE DENOISING: THE MODEL

• Assume there exist a 
‘original’ noiseless image.
• Noise generated from 

some distribution.
• Input:  original + noise.
• Goal:  approx the original 

image.

Denoised Image:

Noise
:

Input:

s-x

s

x



CONDITIONS ON X

• Noise is small: denoised 
image should still be close 
to image + noise.
• Real images are ‘smooth’ 

except at boundaries.

Function of (x-s)

Function computed
on differences of 
neighboring pixels of x

Fidelity(x, s)

Smoothness(x)



ENERGY FUNCTION

Noisy image: s

Candidate solution: x

Fidelity(x, s) + Smoothness(x)

(xi-si)2 summed 
over all pixels i.

(xi-xj)2 summed over all 
neighbor pixels i, j.

This is a toy example



⎡

⎢⎢⎢⎣

0 x12 x13 x14
−x12 0 x23 0
−x12 −x23 0 x34
−x14 0 −x34 0

⎤
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⎡
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E(S, S̄)

min{vol(S), vol(S̄)}
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x

xTAx

xTBx
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y

yTBy

yTAy
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MATRICES ARISING FROM IMAGE 
PROBLEM HAVE NICE STRUCTURES

A is Symmetric Diagonally 
Dominant (SDD)
•Symmetric.
•Diagonal entry ≥ sum of 
absolute values of all off 
diagonals.



OPTIMIZATION PROBLEMS IN CS

Many algorithm problems in CS are optimization 
problems with underlying graph.
• Maximum flow in a graph.
• Shortest path in a graph.
• Maximum Matching.
• Scheduling 
• Minimum cut.



LINEAR PROGRAMMING

Many		optimization	problems	can	be	written	as	an	LP
EG:		Single	source	shortest	path.

Is	this	useful?



FASTER  OPTIMIZATION 

• Undirected Maximum flow in a graph.
• Peng O(m ℇ-2) time 

• Shortest path in a graph (negative weights)
• Cohen-Madry O(m10/7 log (1/ℇ)) time

• Maximum Matching.
• Madry O(m10/7 log (1/ℇ)) time

• General Linear Programs.
• Lee-Sidford O( √Rank(A) (1/ℇ)) iterations

• Total Variation image Denoising
• Madry-M-Peng O(m4/3 ℇ-2) time 



THE BOUNDARY MAP B

Let G = (V,E) be n vertex m oriented edges graph.
• Def:  B is a Vertex  by Edge matrix

where  Bij = +1  if vi is head of ej
-1  if vi is tail of ej
0  otherwise

• Note: If f is a flow then  Bf is residual vertex flow.



BOUNDARY MATRIX
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BT AND POTENTIAL DROPS

• Let v be a n-vector of potentials
• BTv = vector of potential drops.
• R-1BTv = vector of edge flows.
• R a diagonal matrix of resistive values
•Ohms law:  Rule to go from potentials 

to flows.
• Today we set resistors all to one.
• Thus BTv = vector of flows.



GRAPH LAPLACIAN SOLVERS

•Def:  L := BBT,  Laplacian of G.
• Two dual approaches to 

approximately solving Lv =b
• 1) Find a potential that minimizes Lv-b
• 2) find a minimum energy flow f s.t.

Bf=b



THE SPACE OF FLOWS

potential	flows

flows	of	meeting	demand	d

fcirculation

potential	flow

fp

fc



SOLVING LAPLACIANS

potential	flows

flows	of	demand	d

Given	G and	d,	
find	this	point	



DUAL APPROACH:
SOLVING A LINEAR SYSTEM

potential	flows

flows	of	demand	d

Start	with	a	
potential	flow	Bv,	
update	v to	get	
closer	to	satisfying	d

vopt = LG-1d



DUAL APPROACH:
SINGLE STEP (ST’04,KMP ‘10, ‘11)

potential	flows

flows	of	demand	d

Faster	Gradient	Descent



PRIMAL APPROACH:
SOLVING A FLOW PROBLEM

potential	flows

flows	of	demand	d

Start	with	a	flow	
meeting	the	
demands,	project	
off	the	circulation



PRIMAL APPROACH:
SINGLE STEP (KOSZ ‘13)

potential	flows

flows	of	demand	d

Pick	a	single	cycle	
and	remove	the	
circulation	along	it



POTENTIAL BASED SOLVERS 
[SPIELMAN-TENG`04] 

[KOUTIS-M-PENG`10, `11]

Input: n by n SDD matrix A with m non-zeros
vector b

Output: Approximate solution Ax = b
Runtime: O(m log n )

[Blelloch-Gupta-Koutis-M-Peng-Tangwongsan. `11]: 
Parallel solver, O(m1/3) depth and nearly-linear work



FLOW BASED SOLVER 
[KELNER-ORECCHIA-SIDFORD-ZHU `13] 

[LEE-SIDFORD `13]

Input: n by n SDD matrix A with m 
non-zeros, demand b
Output: Approximate minimum 
energy electrical flow
Runtime: O(m log1.5 n )



POTENTIAL BASED SOLVER
AND ENERGY MINIMIZATION

• Suppose that A is SPD: 
Claim:  minimizing  ½ xT A x – xTb

gives solution to Ax = b.
Note:  Gradient =  Ax-b

Thus solving these systems are quadratic  
minimization problems!  



ITERATIVE METHOD
GRADIENT DESCENT

• Goal:  approx solution to Ax = b 
• Start with initial guess u0 = 0 
• Compute new guess

u(i+1) = u(i) + (b − Au(i))

This	maybe	slow	to	converge	or	
not	converge	at	all!



STEEPEST DESCENT



PRECONDITIONED ITERATIVE METHOD

• Goal:  approx solution to B−1Ax = B−1b 
• Start with initial guess u0 = 0 
• Compute new guess

u(i+1) = u(i) − B−1(b − Au(i))

Recursive	solve	Bz=y	where	
y=(b-Au(i)).



PRECONDITIONING WITH A GRAPH

[Vaidya `91]: Since A is a graph, B 
should be as well.
Apply graph theoretic techniques!

And	use	Chebyshev acceleration			



PRECONDITIONING WITH A GRAPH

]:	Since	A	is	a	graph,	B	should	be	as	well.
Apply	graph	theoretic	techniques!

Apply	graph	theoretic	techniques!

[[[[Vaidya	`91:	Since	A	is	a	graph,	B	should	be	as	well.
Apply	graph	theoretic	techniques!

Vaidya used maximum weight spanning 
trees
Plus some nontree edges

We	will	use	low	stretch	trees	
and	sampled	nontree edges



PROPERTIES B NEEDS

•Easier to solve
•Spectrally close to A

Will only focus on decreasing 
edge count, but maintaining 
spectral structure.

2 ways of being smaller:
Reduction in vertex count
Reduction in edge count

Can use partial Gaussian 
elimination to reduce vertex 
count if edge count is small



SPECTRAL SPARSIFICATION BY 
EFFECTIVE RESISTANCE

Answer: [Spielman-Srivastava `08]: 
• Set P(e) = R(u,v) effective resistance from u to v.
• For each sample set edge set weight to 1/P(e)
• Sample  O(n log n) times.

Foster: ∑e R(e) = n-1

spectral sparsifier with 
O(nlogn) edges for any graph

What	probability	P(e)		should	we	sample	an	edge?	



THE CHICKEN AND EGG PROBLEM

How To Calculate Sample Probablities?

[Spielman-Srivastava `08]: Use Solver

[Spielman-Teng `04]: Need Sparsifier

Workaround: upper bound using 
Low Stretch Spanning Trees



CHOICE OF TREES MATTER

n1/2-by-n1/2 unit weighted mesh

stretch(e)= O(1)

total stretch = O(n3/2)

stretch(e)=O( n1/2)

‘haircomb’ tree is both shortest path 
tree and max weight spanning tree



AN O(N LOG N) STRETCH TREE

Recursive ‘C’ 
Construction

stretch(e) still O(n1/2)

But only O(n1/2) 
such edges

logn levels,
total = O(nlogn)

Able to obtain good trees for any graph 
by leveraging this type of tradeoffs



LOW STRETCH SPANNING TREES

[Abraham-Bartal-Neiman ’08, 
Koutis-M-Peng `11, 
Abraham-Neiman `12]: 
A  spanning tree with
total stretch O(m log n)  in
O(m log n) time.



Typically 
parameters:
• β = log-O(1)n,
• d = O(logn / β)

KEY TOOL IN DECOMPOSING GRAPHS

Low Diameter Decompositions
• Partition of V into clusters S1, S2, … , Sk s.t.
• The diameter of each Si is at most 𝑑.
• βm edges between clusters.



Parallel variant of a clustering scheme in [Bartal `96]
• Each vertex u starts unit speed BFS at time -Exp(β)
• BFS stops at ‘owned’ v, owns any ‘sleeping’ v reached. 

6

EXP START TIME CLUSTERING



β=0.002 β=0.005 β=0.01

β=0.1β=0.05β=0.02

EXP START TIME CLUSTERING ON GRID



SOLVER IN ACTION

`

Find a low stretch spanning treeScale up the tree

Sample off tree edges where
P(e) = 1/(stretch of edge).



SOLVER IN ACTION

`

Eliminate degree 1 or 2 
nodes



SOLVER IN ACTION

`

Eliminate degree 1 or 2 
nodes



SOLVER IN ACTION

`

Eliminate degree 1 or 2 
nodes



SOLVER IN ACTION

`

Eliminate degree 1 or 2 
nodes



SOLVER IN ACTION

Eliminate degree 1 or 2 
nodes

Recurse



THEORETICAL APPLICATIONS OF SDD 
SOLVERS: MULTIPLE ITERATIONS

[Tutte `62] Planar graph embeddings.
[Boman-Hendrickson-Vavasis `04] Finite Element PDEs
[Zhu-Ghahramani-Lafferty, Zhou-Huang-Scholkopf `03,05] 
learning on graphical models.
[Kelner-Mądry `09 `15] Generating random spanning 
trees in O(mn4/3) time by speeding up random walks.



THEORETICAL APPLICATIONS OF SDD 
SOLVERS: MULTIPLE ITERATIONS

[Daitsch-Spielman `08] Directed maximum 
flow, Min-cost-max-flow, lossy flow all can 
be solved via LP interior point where pivots 
are SDD systems in O(m3/2) time.



BACK TO IMAGE DENOISING

PROBLEM WITH QUADRATIC 
OBJECTIVE

• Result too ‘smooth’, 
objects become blurred
•Quadratic functions favor 

the removal of boundaries 



FUNCTION ACCENTUATING  
BOUNDARIES

s: sharp 
boundary

L1 smoothness term

If a<b<c, |a-b|+|b-c| 
doesn’t depend on b

Same smoothness term Better fidelity



TOTAL VARIATION OBJECTIVE

• [Rudin-Osher-Fatemi, 92] Total Variation 
objective: L2

2 fidelity term, L1 smoothness.

Fidelity(x, s) + Smoothness(x)

(xi-si)2 summed 
over all pixels i.

|xi-xj| summed over all 
neighbor pixels i, j.



TOTAL VARIATION MINIMIZATION

Effect: sharpen 
boundaries

Overdoing makes 
image cartoon like

Higher weight on smoothness term



WHAT’S HARD ABOUT L1?

Short answer: cornersAbsolute value function on n 
variables has 2n points of 
discontinuity, L2

2 has none. 



Minimum cut: remove fewest edges 
to separate s from t.

MIN CUT PROBLEM AS L1
MINIMIZATION

Minimum cut: remove the fewest 
edges to separate vertices s and t

Minimum s-t cut: 
minimize Σ|xi-xj|
subject xs=0, xt=1

s t
0 10

0 0

1

1 1



MINCUT VIA. L2 MINIMIZATION

[Christiano-Kelner-Mądry-Spielman-
Teng `11]: undirected max flow and 
mincut can be approximated using 
Õ(m1/3) SDD solves.

• Multiplicative weights update method
• Repeatedly update the  edge weights 

of the linear systems being solved

Total: Õ(m4/3) 



SEQUENCE OF (ADPATIVELY) 
GENERATED LINEAR SYSTEMS

Optimization 
Problem

Linear System 
Solver

Kevin 
Deweese



EVEN  FASTER SOLVERS

•Cohen-Kyng-Pachocki-Peng-Rao `13
SDD linear systems Faster solver in 
•O(mlog1/2n) time given a LSST.

• The log appears in two places in KMP:
1. Matrix Chernoff Bounds
2. LSST tree construction



FASTER TREE GENERATION

• Koutis-M-Peng `11, Abraham-Neiman `12]: 
LSST with stretch O(m log n) in O(m log n) time.

We do not know how to beat these bounds!

We find a tree that is good enough!



FUTURE WORK

• Practical/parallel implementations?
• The win over sequential is parallel!

• Near linear time exact max flow?
• log(1/ε) dependency in runtime?
• Sub-quadratic SPD solver?
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