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OUTLINE

Linear system solvers
Graph Sparsifiers.
Regression and Image Denoising.

Simple formulatfion and connection with solving
linear systems.

Overview of SDD solvers.
A better L; formulation of denoising.
Maximum flow using solvers



SPECITRAL GRAPH THEORY
LAPLACIAN PARADIGM

Use graph algorithms to solve linear
algebra problems.

Use linear algebra to solve graph
problems.

Use both to solve optimization problems




ASYMPTOTIC ANALYSIS

The goal is to find algorithms with provable worst
case run times.

Randomized methods are assumed

A scalable algorithm is one whose run scales linearly
with problems size, ignoring log terms.

When possible we hope to find a scalable
algorithm.



SOLVING AX=B, A SPARSE

1) Direct Methods ( Gaussian elimination)+
1) + Ones gets the exact answer!
2) + Partial elimination reduces vertex count
3) - Filland work may be large!
4) - Good pivot orders may be expense to find!
5) - Elimination will not give scalable algorithms on it own.



SOLVING AX=B, A SPARSE

1) lterative Methods

1) Each step performs @

1) Sparse Matrix Vector product
2) Constant number of dot products and additions

2) + Each stepis linear time and parallel
- Finds at best closets point in the Krylov spaces
« <b,Ab,..., A"b>

2) Two work arounds
1) Find a good preconditioner
1) i.e. Change our Krylov space.
2) Include matrix-matrix produces and subsample to abtain
a approximate product.



GRAPH SPARSIFIERS

Sparse Equivalents of Dense Graphs
that preserve some property

Spanners: distance, diameter.

[Benczur-Karger '96] Cut sparsifier:
weight of all cuts.

Spectral sparsifiers: eigenstructure




GENERAL GRAPH SAMPLING
MECHANISM

For each edge, flip a coin with
probability of ‘keep’ being P(e).

If coin says ‘keep’, keep the edge, but
scale it up by factor of 1/P(e).

Expected value of an
edge: same as before

Sampling gives the graph in expectation;
we only need to bound concentration.




TWO APPROACHES: GRAPH SAMPLING

Sample in parallel: Pick k samples and refurn the
average graph.

Pick a few samples and based on the sample
update the probabilities. Repeat!



EXAMPLE: COMPLETE GRAPH

O(n logn) sampling edges
uniform sutficel




EFFECTIVE RESISTANCE

View the graph as a circuit: each edge is @
resistor with conductance W(e).

Effective resistance between u and v, R(u,V)
Is the resistance of the circuit when passing |
unit of current from u o v.




MATRIX CHERNOFF BOUNDS

Def: A<B if VX X'Ax < X'Bx
THM: Let X, ... X, be ind random matries

O<X|<RI, ZE(XJ <ulthen
Prob[ A.ox( 2 X ) > (1+ 6)D E(X) ] < exp small

This Thm and its extension is central to what follows!



SPECTRAL SPARSIFICATION BY
EFFECTIVE RESISTANCE

What probability P(e) should we sample an edge?

Answer: [Spielman-Srivastava 08]:
Set P(e) = R(u,v) effective resistance from u to v.
For each sampled edge set weight to 1/P(e)
Sample O(nlog n) fimes and return average.

spectral sparsifier with
O(nlogn) edges for any graph

Foster: > . R(e) = n-1




SPARSE CHOLESKY FOR GRAPHS

Kyng-Sachdeva 16:

1. Run Gaussian Elimination in random order

2. After each pivot sample the new fill by effective
resistance.

Running time bound: O(mlog3n), OPEN: improve this




REGRESSION




OVER CONSTRAINED SYSTEMS

Over Constrained System: A x = b.
Solve system ATA x = ATb
» Matrix ATA is Symmetric Positive
Semi-Definite (SPSD).
* Open Question:
Find sub-quadratic time solvers
for SPD systems?

We will need problems with an
underlying graph.



APPROXIMATION ALGORITHMS

Whole conferences NP-Approximation

Same ideas and goals can be applied problems in
Polytime.

Our goal is find good approximation but much
faster than known exact solutions.

Maybe even faster exact solutions!



CLASSIC REGRESSION PROBLEM

Image Denoising

Critical step in image
segmentation and detection

Good denoising makes the
segmentation almost obvious.



CAMOUFLAGE DETECTION

Given image + noise, recover image.




CAMOUFLAGE DETECTION
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Hui-Han Chin




IMAGE DENOISING: THE MODEL

INnput:

allln

Denoised Image:

S

X

sl

Noise

S-X

* Assume there exist a
‘original’ noiseless image.

- Noise generated from
some distribution.

 Input: original + noise.

- Goal: approx the original
Image.




CONDITIONS ON X

Noise is small: denoised ﬁ% ) ™
Image should still be close Function of (x=)

to image + noise. Fidelity(x, s)

Real images are ‘smooth’

except at boundaries. Function computed

on differences of

neighboring pixels of x

Smoothness(x)




ENERGY FUNCTION

Noisy image: s i i i i i i

Candidate solution: x
B E NN H H H H

Fidelity(x, s) + Smoothness(x)

(X-5i)%2 summed (%)% summed over all
over all pixels I. neighbor pixels i, |.

This is a toy example




MATRICES ARISING FROM IMAGE
PROBLEM HAVE NICE STRUCTURES

3 —1 —1 —1
-1 2 =10 A is Symmetric Diagonally
-l -1 3 -l Dominant (SDD)
(-1 0 -1 2 Symmetric.
-4 " |-Diagonal entry > sum of
\\ absolute values of all off
diagonals.




OPTIMIZATION PROBLEMS IN C5

Many algorithm problems in CS are optimization
problems with underlying graph.

Maximum flow in a graph.
Shortest path in a graph.
Maximum Matching.
Scheduling

Minimum cut.



LINEAR PROGRAMMING

Many optimization problems can be written as an LP

EG: Single source shortest path.
Is this useful?



FASTER OPTIMIZATION

Undirected Maximum flow in a graph.

« Peng O(m &2) fime

Shortest path in a graph (hegative weights)
« Cohen-Madry O(m'%7log (1/€)) time
Maximum Matching.

« Madry O(m'%7|og (1/€)) time

General Linear Programs.

. Lee-Sidford O( VRank(A) (1/€)) iterations

Total Variation image Denoising

« Madry-M-Peng O(m*#/3 £2) fime



THE BOUNDARY MAP B

Let G = (V,E) be n vertex m oriented edges graph.
Def. Bis a Vertex by Edge matrix
where B; = +1 if v;is head of g
-1 if vy is tail of g
O otherwise

Note: If fis a flow then Bf is residual vertex flow.



BOUNDARY MATRIX




B! AND POTENTIAL DROPS

Let v be a n-vector of potentials

B'v = vector of potential drops.

R-1BTv = vector of edge flows.

* R a diagonal matrix of resistive values

- Ohms law: Rule to go from potentials
to flows.

Today we seft resistors all fo one.
Thus B'v = vector of flows.



GRAPH LAPLACIAN SOLVERS

Def: L :=BB', Laplacian of G.

Two dual approaches to
approximately solving Lv =b

1) FiInd a potential that minimizes Lv-b

2) find a minimum energy flow f s.t.
Bf=b



THE SPACE OF FLOWS

circulation f

potential flow

flows of meeting demand d

potential flows



SOLVING LAPLACIANS

Given G and d,
find this point

flows of demand d

potential flows



DUAL APPROACH:
SOLVING A LINEAR SYSTEM

Start with a
potential flow By,
update v to get
closer to satisfying d

flows of demand d

— -1
Vopt = L d

potential flows



DUAL APPROACH:
SINGLE STEP (ST’04,KMP ‘10, “11)

Faster Gradient Descent

flows of demand d

potential flows



PRIMAL APPROACH:
SOLVING A FLOW PROBLEM

Start with a flow
meeting the
demands, project
off the circulation

flows of demand d

potential flows



PRIMAL APPROACH:
SINGLE STEP (KOSZ “13)

Pick a single cycle
and remove the
circulation along it

flows of demand d

potential flows



POTENTIAL BASED SOLVERS
[SPIELMAN-TENG 04]

[KOUTIS-M-PENG10, “11]

Input: n by n SDD matrix A with m non-zeros
vector b

Output: Approximate solution Ax =b

Runtime: O(mlogn)

[Blelloch-Gupta-Koutis-M-Peng-Tangwongsan. 11]:
Parallel solver, O(m'/3) depth and nearly-linear work




FLOW BASED SOLVER
|KELNER-ORECCHIA-SIDFORD-ZHU "13]

[LEE-SIDFORD “13]

Input: n by n SDD matrix A with m
non-zeros, demand b

Output: Approximate minimum
energy electrical flow

Runtime: O(m log'~> n )




POTENTIAL BASED SOLVER
AND ENERGY MINIMIZATION

» Suppose that A'is SPD:
Claim: minimizing 2 X" A x = xTb
gives solution to Ax = b.
Note: Gradient = Ax-b

Thus solving these systems are quadratic
minimization problems!



ITERATIVE METHOD
GRADIENT DESCENT

Goal: approx solution to Ax =b
Start with initial guess u® =0
Compute new guess

u*) =yl + (b = Aul)

This maybe slow to converge or
not converge at all!




STEEPEST DESCENT

A
Y

=

!




PRECONDITIONED ITERATIVE METHOD

- Goal: approx solution to B-TAx =B~'b
- Start with initial guess u° =0
- Compute new guess

ulitll =yl = B=1(b — Aull)

Recursive solve Bz=y where
y=(b-Aul)).




PRECONDITIONING WITH A GRAPH

[Vaidya 91]: Since A'is a graph, B
should be as well.
Apply graph theoretic techniques!

¥

And use Chebyshev acceleration




PRECONDITIONING WITH A GRAPH

Vaidya 91: Since A is a graph, B should be as well.
Apply graph theoretic techniques!

Vaidya used maximum weight spanning
trees

Plus some nontree edges

We will use low stretch trees
and sampled nontree edges




PROPERTIES B NEEDS

| 2 ways of being smaller:
Reduction in vertex count
Reduction in edge count

*Easier to solve
Spectrally close to A

Can use partial Gaussian
elimination to reduce vertex
count if edge count is small

A 4 ~

Will only focus on decreasing
edge count, but maintaining
spectral structure.




SPECTRAL SPARSIFICATION BY
EFFECTIVE RESISTANCE

What probability P(e) should we sample an edge?

Answer: [Spielman-Srivastava 08]:
Set P(e) = R(u,v) effective resistance from u to v.
For each sample set edge set weight to 1/P(e)
Sample O(nlog n) fimes.

spectral sparsifier with
O(nlogn) edges for any graph

Foster: > . R(e) = n-1




THE CHICKEN AND EGG PROBLEM

/: How To Calculate Sample Probablities?
| [Spielman-Srivastava 08]: Use Solver

[Spielman-Teng 04]: Need Sparsifier

Workaround: upper bound using
Low Stretch Spanning Trees




CHOICE OF TREES MATTER

n'/2-py-n1/2 ynit weighted mesh

‘haircomb’ tree is both shortest path
tree and max weight spanning free

©)
©)

stretch(e)= O(1)

stretch(e)=0(n'/?) =

total stretch = O(n%/?) =




AN O(N LOG N) STRETCH TREE

Recursive ‘C'’
Construction

stretch(e) still O(n!/2) 4

But only O(n!/2)
such edges

logn levels, 2
total = O(nlogn)

Able 1o obtain good trees for any graph
by leveraging this type of tfradeoffs




LOW STRETCH SPANNING TREES

[Abraham-Bartal-Neiman '08,
Koutis-M-Peng 11,
Abraham-Neiman 12]:

A spanning free with

total stretch O(m log n) In
O(m log n) time.




KEY TOOL IN DECOMPOSING GRAPHS

Low Diameter Decompositions

« Partition of V into clusters S, S,, ..., S s.1.
 The diameter of each §;is at most d.
 BPm edges between clusters.

Typically
parameters:

¢ B=log©lin,
« d=0O(logn/ p)




EXP START TIME CLUSTERING

Parallel variant of a clustering scheme in [Bartal "96]
« Each vertex u starts unit speed BFS at time -Exp(p)
- BFS stops at ‘owned’ v, owns any ‘sleeping’ v reached.




EXP START TIME CLUSTERING ON GRID

p
P L

5 0.002 B 0005

*,, mos.

B=0.02 [3005



SOLVER IN ACTION

Sample off free edges where
P(e) = 1/(stretch of edge).




SOLVER IN ACTION

Eliminate degree 1 or 2

nodes




SOLVER IN ACTION

Eliminate degree 1 or 2

nodes




SOLVER IN ACTION

Eliminate degree 1 or 2

nodes




SOLVER IN ACTION

Eliminate degree 1 or 2

nodes




SOLVER IN ACTION

Eliminate degree 1 or 2

nodes

Recurse




THEORETICAL APPLICA]

[TONS OF 5DD

SOLVERS: MULTIPLE I

'ERATIONS

Tutte "62] Planar graph embedding

learning on graphical models.

S.

Boman-Hendrickson-Vavasis 04] Finite Element PDEs
Zhu-Ghahramani-Lafferty, Zhou-Huang-Scholkopf "03,05]

[Kelner-Mqdry 09 "15] Generating random spanning
trees in O(mn#/3) time by speeding up random walks.




THEORETICAL APPLICA]

[TONS OF 5DD

SOLVERS: MULTIPLE I

'ERATIONS

[Daitsch-Spielman 08] Dire

cted maximum

flow, Min-cost-max-flow, lossy flow all can
be solved via LP inferior point where pivots
are SDD systems in O(m?3?) time.




BACK TO IMAGE DENOISING

PROBLEM WITH QUADRATIC
OBJECTIVE

Result too ‘smooth’,
objects become blurred

Quadratic functions favor
the removal of boundaries




FUNCTION ACCENTUATING
BOUNDARIES

L, smoothness term

If a<b<c, |a-b|+|b-c|
doesn’'t depend on b

s: sharp

boundary

il
j_ijjjj_“ im

L

Same smoothness term

111

Better fidelity




TOTAL VARIATION OBJECTIVE

[Rudin-Osher-Fatemi, 92] Total Variation
objective: L2 fidelity term, L, smoothness.

Fidelity(x, s) + Smoothness(x)

| |

(X-5i)%2 summed | X% | summed over all
over all pixels i. neighbor pixels i, j.




TOTAL VARIATION MINIMIZATION

Higher weight on smoothness term

Effect: sharpen Overdoing makes
boundaries image cartoon like




WHAT'S HARD ABOUT L;?

Absolute value function on n
variables has 2" points of
disconfinuity, L,2 has none.




MIN CUT PROBLEM AS L
MINIMIZATION

Minimum s-t cut:
minimize 1 | X-X;
subject x.=0, x;=1

S |




MINCUT VIA. L, MINIMIZATION

[Christiano-Kelner-Mgdry-Spielman-
Teng 11]: undirected max flow and
Mincut can be approximated using
O(m'/3) SDD solves.

Multiplicative weights update method

Repeatedly update the edge weights
of the linear systems being solved

Total: O(m#/3)




SEQUENCE OF (ADPATIVELY)
GENERATED LINEAR SYSTEMS

V- plmlzcuon \

__ Problem >

Linear System
Solver

Kevin
Deweese

107

Solve Time(s)

10[)

Total Solve Time 50x50x50 Vix Grid

=
)

o<+ o
=<
° ..(_<+ +-('( _(_<-(-(-(.(_( _(_('( < _(-('(-(-( << _(.(-( ~=< <

++

+ +ht ++ +++ +.+
L I o

+ X >A e

Jacobi
SGS
ILU
MST
AMG

lIO 2|0 3|0 4b 5|0
Interior Point Method lteration Number




EVEN FASTER SOLVERS

Cohen-Kyng-Pachocki-Peng-Rao 13
SDD linear systems Faster solver in
« O(mlog'/?n) time given a LSST.

The log appears in two places in KMP:
Matrix Chernoff Bounds
LSST tree construction



FASTER TREE GENERATION

Koutis-M-Peng 11, Abraham-Neiman "12]:
LSST with stretch O(m log n) in O(m log n) time.

We do not know how to beat these bounds!

We find a tree that is good enough!



FUTURE WORK

Practical/parallel implementationse
* The win over sequential is parallel!
Near linear time exact max flow?

» log(1/¢) dependency in runtimee

Sub-quadratic SPD solvere
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