The Revolution in Graph Theoretic Optimization Problems

Gary L Miller

CSC 2016 October 12, 2016

OUTLINE

- Linear system solvers
- Graph Sparsifiers.

er

- Regression and Image Denoising.
- Simple formulation and connection with solving linear systems.
- Overview of SDD solvers.
- A better L_1 formulation of denoising.
- Maximum flow using solvers

SPECTRAL GRAPH THEORY LAPLACIAN PARADIGM

Use graph algorithms to solve linear algebra problems.

Use linear algebra to solve graph problems.

Use both to solve optimization problems

ASYMPTOTIC ANALYSIS

- The goal is to find algorithms with provable worst case run times.
- Randomized methods are assumed
- A scalable algorithm is one whose run scales linearly with problems size, ignoring log terms.
- When possible we hope to find a scalable algorithm.

SOLVING AX=B, A SPARSE

1) Direct Methods (Gaussian elimination)+

- 1) + Ones gets the exact answer!
- 2) + Partial elimination reduces vertex count
- 3) Fill and work may be large!
- 4) Good pivot orders may be expense to find!
- 5) Elimination will not give scalable algorithms on it own.

SOLVING AX=B, A SPARSE

1) Iterative Methods

- 1) Each step performs a
 - 1) Sparse Matrix Vector product
 - 2) Constant number of dot products and additions
- 2) + Each step is linear time and parallel
- Finds at best closets point in the Krylov spaces
- < b, Ab, ... , Aⁿ⁻¹ b >

2) Two work arounds

- 1) Find a good preconditioner
 - 1) i.e. Change our Krylov space.
- 2) Include matrix-matrix produces and subsample to abtain a approximate product.

GRAPH SPARSIFIERS

Sparse Equivalents of Dense Graphs that preserve some property

- Spanners: distance, diameter.
- [Benczur-Karger '96] Cut sparsifier: weight of all cuts.

• Spectral sparsifiers: eigenstructure

GENERAL GRAPH SAMPLING MECHANISM

- For each edge, flip a coin with probability of 'keep' being P(e).
- If coin says 'keep', keep the edge, but scale it up by factor of 1/P(e).

Expected value of an edge: same as before

Sampling gives the graph in expectation; we only need to bound concentration.

TWO APPROACHES: GRAPH SAMPLING

- Sample in parallel: Pick k samples and return the average graph.
- Pick a few samples and based on the sample update the probabilities. Repeat!

EXAMPLE: COMPLETE GRAPH

O(n logn) sampling edges uniform suffice!

EFFECTIVE RESISTANCE

- View the graph as a circuit: each edge is a resistor with conductance W(e).
- Effective resistance between u and v, R(u,v) is the resistance of the circuit when passing 1 unit of current from u to v.

MATRIX CHERNOFF BOUNDS

- Def: $A \leq B$ if $\forall x \ x^T A x \leq x^T B x$
- THM: Let $X_1, \ldots X_k$ be ind random matries
- $0 \leq X_i \leq R I$, $\sum E(X_i) \leq \cup I$ then
- Prob[$\lambda_{max}(\sum X_i) > (1 + \delta) \sum E(X_i)] \le \exp \text{small}$

This Thm and its extension is central to what follows!

SPECTRAL SPARSIFICATION BY EFFECTIVE RESISTANCE

What probability P(e) should we sample an edge?

Answer: [Spielman-Srivastava `08]:

- Set P(e) = R(u,v) effective resistance from u to v.
- For each sampled edge set weight to 1/P(e)
- Sample O(n log n) times and return average.

spectral sparsifier with O(nlogn) edges for any graph

Foster:
$$\sum_{e} R(e) = n-1$$

SPARSE CHOLESKY FOR GRAPHS

Kyng-Sachdeva `16:

- 1. Run Gaussian Elimination in random order
- 2. After each pivot sample the new fill by effective resistance.

Running time bound: O(mlog³n), OPEN: improve this

REGRESSION

OVER CONSTRAINED SYSTEMS

Over Constrained System: A x = b. Solve system $A^T A x = A^T b$

- Matrix A^TA is Symmetric Positive Semi-Definite (SPSD).
- Open Question: Find sub-quadratic time solvers for SPD systems?

We will need problems with an underlying graph.

APPROXIMATION ALGORITHMS

- Whole conferences NP-Approximation
- Same ideas and goals can be applied problems in Polytime.
- Our goal is find good approximation but much faster than known exact solutions.
- Maybe even faster exact solutions!

CLASSIC REGRESSION PROBLEM

- Image Denoising
- Critical step in image segmentation and detection
- Good denoising makes the segmentation almost obvious.

CAMOUFLAGE DETECTION

Given image + noise, recover image.

CAMOUFLAGE DETECTION

Hui-Han Chin

IMAGE DENOISING: THE MODEL

- Assume there exist a 'original' noiseless image.
- Noise generated from some distribution.
- Input: original + noise.
- Goal: approx the original image.

CONDITIONS ON X

ENERGY FUNCTION

MATRICES ARISING FROM IMAGE PROBLEM HAVE NICE STRUCTURES

A is Symmetric Diagonally Dominant (SDD) •Symmetric. •Diagonal entry ≥ sum of absolute values of all off diagonals.

OPTIMIZATION PROBLEMS IN CS

Many algorithm problems in CS are optimization problems with underlying graph.

- Maximum flow in a graph.
- Shortest path in a graph.
- Maximum Matching.
- Scheduling
- Minimum cut.

LINEAR PROGRAMMING

Many optimization problems can be written as an LP EG: Single source shortest path. Is this useful?

FASTER OPTIMIZATION

- Undirected Maximum flow in a graph.
 - Peng O(m E⁻²) time
- Shortest path in a graph (negative weights)
 - Cohen-Madry O(m^{10/7} log (1/E)) time
- Maximum Matching.
 - Madry O(m^{10/7} log (1/E)) time
- General Linear Programs.
 - Lee-Sidford O($\sqrt{Rank(A)}$ (1/ ε)) iterations
- Total Variation image Denoising
 - Madry-M-Peng O(m^{4/3} E⁻²) time

THE BOUNDARY MAP B

```
Let G = (V,E) be n vertex m oriented edges graph.
Def: B is a Vertex by Edge matrix
where B<sub>ij</sub> = +1 if v<sub>i</sub> is head of e<sub>j</sub>
-1 if v<sub>i</sub> is tail of e<sub>j</sub>
0 otherwise
```

• Note: If f is a flow then Bf is residual vertex flow.

BOUNDARY MATRIX

B^T AND POTENTIAL DROPS

- Let v be a n-vector of potentials
- $B^{T}v = vector of potential drops.$
- $R^{-1}BTv = vector of edge flows.$
 - R a diagonal matrix of resistive values
 - Ohms law: Rule to go from potentials to flows.
- Today we set resistors all to one.
- Thus $B^{T}v = vector of flows$.

GRAPH LAPLACIAN SOLVERS

- Def: L := BB^T , Laplacian of G.
- Two dual approaches to approximately solving Lv =b
- 1) Find a potential that minimizes Lv-b
- 2) find a minimum energy flow f s.t.
 Bf=b

THE SPACE OF FLOWS

SOLVING LAPLACIANS

DUAL APPROACH: SOLVING A LINEAR SYSTEM

DUAL APPROACH: SINGLE STEP (ST'04,KMP '10, '11)

PRIMAL APPROACH: SOLVING A FLOW PROBLEM

PRIMAL APPROACH: SINGLE STEP (KOSZ '13)

POTENTIAL BASED SOLVERS [SPIELMAN-TENG`04] [KOUTIS-M-PENG`10, `11]

Input: n by n SDD matrix A with m non-zeros
 vector b
Output: Approximate solution Ax = b
Runtime: O(m log n)

[Blelloch-Gupta-Koutis-M-Peng-Tangwongsan. `11]: Parallel solver, O(m^{1/3}) depth and nearly-linear work

FLOW BASED SOLVER [KELNER-ORECCHIA-SIDFORD-ZHU `13] [LEE-SIDFORD `13]

Input: n by n SDD matrix A with m non-zeros, demand b Output: Approximate minimum energy electrical flow Runtime: O(m log^{1.5} n)

POTENTIAL BASED SOLVER AND ENERGY MINIMIZATION

 Suppose that A is SPD: Claim: minimizing ¹/₂ x^T A x - x^Tb gives solution to Ax = b.
 Note: Gradient = Ax-b

Thus solving these systems are quadratic minimization problems!

ITERATIVE METHOD GRADIENT DESCENT

- Goal: approx solution to Ax = b
- Start with initial guess $u^0 = 0$
- Compute new guess

$$u^{(i+1)} = u^{(i)} + (b - Au^{(i)})$$

This maybe slow to converge or not converge at all!

STEEPEST DESCENT

PRECONDITIONED ITERATIVE METHOD

- Goal: approx solution to $B^{-1}Ax = B^{-1}b$
- Start with initial guess $u^0 = 0$
- Compute new guess

$$u^{(i+1)} = u^{(i)} - \mathbf{B}^{-1}(b - Au^{(i)})$$

Recursive solve Bz=y where y=(b-Au⁽ⁱ⁾).

PRECONDITIONING WITH A GRAPH

[Vaidya `91]: Since A is a graph, B should be as well. Apply graph theoretic techniques!

And use Chebyshev acceleration

PRECONDITIONING WITH A GRAPH

Vaidya `91: Since A is a graph, B should be as well. Apply graph theoretic techniques!

Vaidya used maximum weight spanning trees

Plus some nontree edges

We will use low stretch trees and sampled nontree edges

PROPERTIES B NEEDS

SPECTRAL SPARSIFICATION BY EFFECTIVE RESISTANCE

What probability P(e) should we sample an edge?

Answer: [Spielman-Srivastava `08]:

- Set P(e) = R(u,v) effective resistance from u to v.
- For each sample set edge set weight to 1/P(e)

• Sample O(n log n) times.

spectral sparsifier with O(nlogn) edges for any graph

Foster:
$$\sum_{e} R(e) = n-1$$

THE CHICKEN AND EGG PROBLEM

CHOICE OF TREES MATTER

n^{1/2}-by-n^{1/2} unit weighted mesh

'haircomb' tree is both shortest path tree and max weight spanning tree

AN O(N LOG N) STRETCH TREE

Able to obtain good trees for any graph by leveraging this type of tradeoffs

LOW STRETCH SPANNING TREES

[Abraham-Bartal-Neiman '08, Koutis-M-Peng `11, Abraham-Neiman `12]: A spanning tree with total stretch O(m log n) in O(m log n) time.

KEY TOOL IN DECOMPOSING GRAPHS

Low Diameter Decompositions

- Partition of V into clusters S_1, S_2, \ldots, S_k s.t.
- The diameter of each S_i is at most d.
- βm edges between clusters.

Typically parameters:

- $\beta = \log^{-O(1)} n$,
- $d = O(\log n / \beta)$

EXP START TIME CLUSTERING

Parallel variant of a clustering scheme in [Bartal `96]

- Each vertex u starts unit speed BFS at time $-Exp(\beta)$
- BFS stops at 'owned' v, owns any 'sleeping' v reached.

EXP START TIME CLUSTERING ON GRID

β=0.002

β=0.005

β=0.01

β=0.05

β=0.1

β=0.02

Sample off tree edges where P(e) = 1/(stretch of edge).

Eliminate degree 1 or 2 nodes

Eliminate degree 1 or 2

nodes

THEORETICAL APPLICATIONS OF SDD SOLVERS: MULTIPLE ITERATIONS

[Tutte `62] Planar graph embeddings. [Boman-Hendrickson-Vavasis `04] Finite Element PDEs [Zhu-Ghahramani-Lafferty, Zhou-Huang-Scholkopf `03,05] learning on graphical models. [Kelner-Mądry `09 `15] Generating random spanning trees in O(mn^{4/3}) time by speeding up random walks.

THEORETICAL APPLICATIONS OF SDD SOLVERS: MULTIPLE ITERATIONS

[Daitsch-Spielman `08] Directed maximum flow, Min-cost-max-flow, lossy flow all can be solved via LP interior point where pivots are SDD systems in $O(m^{3/2})$ time.

BACK TO IMAGE DENOISING

PROBLEM WITH QUADRATIC OBJECTIVE

- Result too 'smooth', objects become blurred
- Quadratic functions favor the removal of boundaries

FUNCTION ACCENTUATING BOUNDARIES

 L_1 smoothness term

lf a<b<c, |a-b|+|b-c| doesn't depend on b

TOTAL VARIATION OBJECTIVE

• [Rudin-Osher-Fatemi, 92] Total Variation objective: L_2^2 fidelity term, L_1 smoothness.

TOTAL VARIATION MINIMIZATION

Higher weight on smoothness term

Effect: sharpen boundaries

Overdoing makes image cartoon like

WHAT'S HARD ABOUT L₁?

Absolute value function on n variables has 2^n points of discontinuity, L_2^2 has none.

MIN CUT PROBLEM AS L₁ MINIMIZATION

```
Minimum s-t cut:
minimize \Sigma | x_i - x_j |
subject x_s = 0, x_t = 1
```


MINCUT VIA. L₂ MINIMIZATION

[Christiano-Kelner-Mądry-Spielman-Teng `11]: undirected max flow and mincut can be approximated using $\tilde{O}(m^{1/3})$ SDD solves.

- Multiplicative weights update method
- Repeatedly update the edge weights of the linear systems being solved

Total: Õ(m^{4/3})

SEQUENCE OF (ADPATIVELY) GENERATED LINEAR SYSTEMS

EVEN FASTER SOLVERS

Cohen-Kyng-Pachocki-Peng-Rao `13
 SDD linear systems Faster solver in
 O(mlog^{1/2}n) time given a LSST.

- The log appears in two places in KMP:
- 1. Matrix Chernoff Bounds
- 2. LSST tree construction

FASTER TREE GENERATION

Koutis-M-Peng `11, Abraham-Neiman `12]:
 LSST with stretch O(m log n) in O(m log n) time.

We do not know how to beat these bounds!

We find a tree that is good enough!
FUTURE WORK

- Practical/parallel implementations?
 - The win over sequential is parallel!
- Near linear time exact max flow?
 - $log(1/\epsilon)$ dependency in runtime?
- Sub-quadratic SPD solver?

JOINT WORK

Guy Blelloch, Hui Han Chin, Michael Cohen, Anupam Gupta, Jonathan Kelner, Yiannis Koutis, Alexsander Madry, Jakub Pachocki, Richard Peng, Kanat Tangwongsan, Shen Chen Xu