
The Revolution in Graph Theoretic
Optimization Problems

Gary L Miller

CSC	2016
October	12,	2016

OUTLINE

• Linear system solvers
• Graph Sparsifiers.
• Regression and Image Denoising.
• Simple formulation and connection with solving

linear systems.
• Overview of SDD solvers.
• A better L1 formulation of denoising.
• Maximum flow using solvers

• er

SPECTRAL GRAPH THEORY
LAPLACIAN PARADIGM

Use graph algorithms to solve linear
algebra problems.

Use linear algebra to solve graph
problems.

Use both to solve optimization problems

ASYMPTOTIC ANALYSIS

• The goal is to find algorithms with provable worst
case run times.
• Randomized methods are assumed
• A scalable algorithm is one whose run scales linearly

with problems size, ignoring log terms.
• When possible we hope to find a scalable

algorithm.

SOLVING AX=B, A SPARSE

1) Direct Methods (Gaussian elimination)+
1) + Ones gets the exact answer!
2) + Partial elimination reduces vertex count
3) - Fill and work may be large!
4) - Good pivot orders may be expense to find!
5) - Elimination will not give scalable algorithms on it own.

SOLVING AX=B, A SPARSE

1) Iterative Methods
1) Each step performs a

1) Sparse Matrix Vector product
2) Constant number of dot products and additions

2) + Each step is linear time and parallel
• - Finds at best closets point in the Krylov spaces
• < b, Ab, … , An-1 b >

2) Two work arounds
1) Find a good preconditioner

1) i.e. Change our Krylov space.
2) Include matrix-matrix produces and subsample to abtain

a approximate product.

GRAPH SPARSIFIERS

Sparse Equivalents of Dense Graphs
that preserve some property

• Spanners: distance, diameter.
• [Benczur-Karger ‘96] Cut sparsifier:

weight of all cuts.
• Spectral sparsifiers: eigenstructure

GENERAL GRAPH SAMPLING
MECHANISM

• For each edge, flip a coin with
probability of ‘keep’ being P(e).
• If coin says ‘keep’, keep the edge, but

scale it up by factor of 1/P(e).

Expected value of an
edge: same as before

Sampling gives the graph in expectation;
we only need to bound concentration.

TWO APPROACHES: GRAPH SAMPLING

• Sample in parallel: Pick k samples and return the
average graph.

• Pick a few samples and based on the sample
update the probabilities. Repeat!

•

EXAMPLE: COMPLETE GRAPH
O(n logn) sampling edges

uniform suffice!

SrivSriv

EFFECTIVE RESISTANCE

• View the graph as a circuit: each edge is a
resistor with conductance W(e).
• Effective resistance between u and v, R(u,v)
is the resistance of the circuit when passing 1
unit of current from u to v.

`

MATRIX CHERNOFF BOUNDS

• Def: A ≼ B if ∀x xTAx ≤ xTBx

• THM: Let X1, … Xk be ind random matries
• 0 ≼ Xi ≼ R 𝐈, ∑ E(Xi) ≼ u 𝐈 then
• Prob[𝝀max(∑Xi) > (1+ δ)∑ E(Xi)] ≤ exp small

Th

SPECTRAL SPARSIFICATION BY
EFFECTIVE RESISTANCE

Answer: [Spielman-Srivastava `08]:
• Set P(e) = R(u,v) effective resistance from u to v.
• For each sampled edge set weight to 1/P(e)
• Sample O(n log n) times and return average.

Foster: ∑e R(e) = n-1

spectral sparsifier with
O(nlogn) edges for any graph

What	probability	P(e)		should	we	sample	an	edge?	

SPARSE CHOLESKY FOR GRAPHS

Running time bound: O(mlog3n), OPEN: improve this

Kyng-Sachdeva `16:
1. Run Gaussian Elimination in random order
2. After each pivot sample the new fill by effective

resistance.

REGRESSION

OVER CONSTRAINED SYSTEMS

Over Constrained System: A x = b.
Solve system AT A x = ATb
•Matrix ATA is Symmetric Positive

Semi-Definite (SPSD).
•Open Question:

Find sub-quadratic time solvers
for SPD systems?

We will need problems with an
underlying graph.

APPROXIMATION ALGORITHMS

• Whole conferences NP-Approximation
• Same ideas and goals can be applied problems in

Polytime.
• Our goal is find good approximation but much

faster than known exact solutions.
• Maybe even faster exact solutions!

CLASSIC REGRESSION PROBLEM

• Image Denoising
•Critical step in image

segmentation and detection
• Good denoising makes the

segmentation almost obvious.

CAMOUFLAGE DETECTION

Given image + noise, recover image.

CAMOUFLAGE DETECTION

Hui-Han	Chin

IMAGE DENOISING: THE MODEL

• Assume there exist a
‘original’ noiseless image.
• Noise generated from

some distribution.
• Input: original + noise.
• Goal: approx the original

image.

Denoised Image:

Noise
:

Input:

s-x

s

x

CONDITIONS ON X

• Noise is small: denoised
image should still be close
to image + noise.
• Real images are ‘smooth’

except at boundaries.

Function of (x-s)

Function computed
on differences of
neighboring pixels of x

Fidelity(x, s)

Smoothness(x)

ENERGY FUNCTION

Noisy image: s

Candidate solution: x

Fidelity(x, s) + Smoothness(x)

(xi-si)2 summed
over all pixels i.

(xi-xj)2 summed over all
neighbor pixels i, j.

This is a toy example

⎡

⎢⎢⎢⎣

0 x12 x13 x14
−x12 0 x23 0
−x12 −x23 0 x34
−x14 0 −x34 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

⎤

⎥⎥⎥⎦

E(S, S̄)

min{vol(S), vol(S̄)}

max
x

xTAx

xTBx
·max

y

yTBy

yTAy

1

MATRICES ARISING FROM IMAGE
PROBLEM HAVE NICE STRUCTURES

A is Symmetric Diagonally
Dominant (SDD)
•Symmetric.
•Diagonal entry ≥ sum of
absolute values of all off
diagonals.

OPTIMIZATION PROBLEMS IN CS

Many algorithm problems in CS are optimization
problems with underlying graph.
• Maximum flow in a graph.
• Shortest path in a graph.
• Maximum Matching.
• Scheduling
• Minimum cut.

LINEAR PROGRAMMING

Many		optimization	problems	can	be	written	as	an	LP
EG:		Single	source	shortest	path.

Is	this	useful?

FASTER OPTIMIZATION

• Undirected Maximum flow in a graph.
• Peng O(m ℇ-2) time

• Shortest path in a graph (negative weights)
• Cohen-Madry O(m10/7 log (1/ℇ)) time

• Maximum Matching.
• Madry O(m10/7 log (1/ℇ)) time

• General Linear Programs.
• Lee-Sidford O(√Rank(A) (1/ℇ)) iterations

• Total Variation image Denoising
• Madry-M-Peng O(m4/3 ℇ-2) time

THE BOUNDARY MAP B

Let G = (V,E) be n vertex m oriented edges graph.
• Def: B is a Vertex by Edge matrix

where Bij = +1 if vi is head of ej
-1 if vi is tail of ej
0 otherwise

• Note: If f is a flow then Bf is residual vertex flow.

BOUNDARY MATRIX

e1 e2
v1
v2
v3

0

@
�1 0
+1 �1
0 +1

1

A

✓
2

�3

◆
=

0

@
�2
5

�3

1

A

5

-2
-32 -3

BT AND POTENTIAL DROPS

• Let v be a n-vector of potentials
• BTv = vector of potential drops.
• R-1BTv = vector of edge flows.
• R a diagonal matrix of resistive values
•Ohms law: Rule to go from potentials

to flows.
• Today we set resistors all to one.
• Thus BTv = vector of flows.

GRAPH LAPLACIAN SOLVERS

•Def: L := BBT, Laplacian of G.
• Two dual approaches to

approximately solving Lv =b
• 1) Find a potential that minimizes Lv-b
• 2) find a minimum energy flow f s.t.

Bf=b

THE SPACE OF FLOWS

potential	flows

flows	of	meeting	demand	d

fcirculation

potential	flow

fp

fc

SOLVING LAPLACIANS

potential	flows

flows	of	demand	d

Given	G and	d,	
find	this	point	

DUAL APPROACH:
SOLVING A LINEAR SYSTEM

potential	flows

flows	of	demand	d

Start	with	a	
potential	flow	Bv,	
update	v to	get	
closer	to	satisfying	d

vopt = LG-1d

DUAL APPROACH:
SINGLE STEP (ST’04,KMP ‘10, ‘11)

potential	flows

flows	of	demand	d

Faster	Gradient	Descent

PRIMAL APPROACH:
SOLVING A FLOW PROBLEM

potential	flows

flows	of	demand	d

Start	with	a	flow	
meeting	the	
demands,	project	
off	the	circulation

PRIMAL APPROACH:
SINGLE STEP (KOSZ ‘13)

potential	flows

flows	of	demand	d

Pick	a	single	cycle	
and	remove	the	
circulation	along	it

POTENTIAL BASED SOLVERS
[SPIELMAN-TENG`04]

[KOUTIS-M-PENG`10, `11]

Input: n by n SDD matrix A with m non-zeros
vector b

Output: Approximate solution Ax = b
Runtime: O(m log n)

[Blelloch-Gupta-Koutis-M-Peng-Tangwongsan. `11]:
Parallel solver, O(m1/3) depth and nearly-linear work

FLOW BASED SOLVER
[KELNER-ORECCHIA-SIDFORD-ZHU `13]

[LEE-SIDFORD `13]

Input: n by n SDD matrix A with m
non-zeros, demand b
Output: Approximate minimum
energy electrical flow
Runtime: O(m log1.5 n)

POTENTIAL BASED SOLVER
AND ENERGY MINIMIZATION

• Suppose that A is SPD:
Claim: minimizing ½ xT A x – xTb

gives solution to Ax = b.
Note: Gradient = Ax-b

Thus solving these systems are quadratic
minimization problems!

ITERATIVE METHOD
GRADIENT DESCENT

• Goal: approx solution to Ax = b
• Start with initial guess u0 = 0
• Compute new guess

u(i+1) = u(i) + (b − Au(i))

This	maybe	slow	to	converge	or	
not	converge	at	all!

STEEPEST DESCENT

PRECONDITIONED ITERATIVE METHOD

• Goal: approx solution to B−1Ax = B−1b
• Start with initial guess u0 = 0
• Compute new guess

u(i+1) = u(i) − B−1(b − Au(i))

Recursive	solve	Bz=y	where	
y=(b-Au(i)).

PRECONDITIONING WITH A GRAPH

[Vaidya `91]: Since A is a graph, B
should be as well.
Apply graph theoretic techniques!

And	use	Chebyshev acceleration			

PRECONDITIONING WITH A GRAPH

]:	Since	A	is	a	graph,	B	should	be	as	well.
Apply	graph	theoretic	techniques!

Apply	graph	theoretic	techniques!

[[[[Vaidya	`91:	Since	A	is	a	graph,	B	should	be	as	well.
Apply	graph	theoretic	techniques!

Vaidya used maximum weight spanning
trees
Plus some nontree edges

We	will	use	low	stretch	trees	
and	sampled	nontree edges

PROPERTIES B NEEDS

•Easier to solve
•Spectrally close to A

Will only focus on decreasing
edge count, but maintaining
spectral structure.

2 ways of being smaller:
Reduction in vertex count
Reduction in edge count

Can use partial Gaussian
elimination to reduce vertex
count if edge count is small

SPECTRAL SPARSIFICATION BY
EFFECTIVE RESISTANCE

Answer: [Spielman-Srivastava `08]:
• Set P(e) = R(u,v) effective resistance from u to v.
• For each sample set edge set weight to 1/P(e)
• Sample O(n log n) times.

Foster: ∑e R(e) = n-1

spectral sparsifier with
O(nlogn) edges for any graph

What	probability	P(e)		should	we	sample	an	edge?	

THE CHICKEN AND EGG PROBLEM

How To Calculate Sample Probablities?

[Spielman-Srivastava `08]: Use Solver

[Spielman-Teng `04]: Need Sparsifier

Workaround: upper bound using
Low Stretch Spanning Trees

CHOICE OF TREES MATTER

n1/2-by-n1/2 unit weighted mesh

stretch(e)= O(1)

total stretch = O(n3/2)

stretch(e)=O(n1/2)

‘haircomb’ tree is both shortest path
tree and max weight spanning tree

AN O(N LOG N) STRETCH TREE

Recursive ‘C’
Construction

stretch(e) still O(n1/2)

But only O(n1/2)
such edges

logn levels,
total = O(nlogn)

Able to obtain good trees for any graph
by leveraging this type of tradeoffs

LOW STRETCH SPANNING TREES

[Abraham-Bartal-Neiman ’08,
Koutis-M-Peng `11,
Abraham-Neiman `12]:
A spanning tree with
total stretch O(m log n) in
O(m log n) time.

Typically
parameters:
• β = log-O(1)n,
• d = O(logn / β)

KEY TOOL IN DECOMPOSING GRAPHS

Low Diameter Decompositions
• Partition of V into clusters S1, S2, … , Sk s.t.
• The diameter of each Si is at most 𝑑.
• βm edges between clusters.

Parallel variant of a clustering scheme in [Bartal `96]
• Each vertex u starts unit speed BFS at time -Exp(β)
• BFS stops at ‘owned’ v, owns any ‘sleeping’ v reached.

6

EXP START TIME CLUSTERING

β=0.002 β=0.005 β=0.01

β=0.1β=0.05β=0.02

EXP START TIME CLUSTERING ON GRID

SOLVER IN ACTION

`

Find a low stretch spanning treeScale up the tree

Sample off tree edges where
P(e) = 1/(stretch of edge).

SOLVER IN ACTION

`

Eliminate degree 1 or 2
nodes

SOLVER IN ACTION

`

Eliminate degree 1 or 2
nodes

SOLVER IN ACTION

`

Eliminate degree 1 or 2
nodes

SOLVER IN ACTION

`

Eliminate degree 1 or 2
nodes

SOLVER IN ACTION

Eliminate degree 1 or 2
nodes

Recurse

THEORETICAL APPLICATIONS OF SDD
SOLVERS: MULTIPLE ITERATIONS

[Tutte `62] Planar graph embeddings.
[Boman-Hendrickson-Vavasis `04] Finite Element PDEs
[Zhu-Ghahramani-Lafferty, Zhou-Huang-Scholkopf `03,05]
learning on graphical models.
[Kelner-Mądry `09 `15] Generating random spanning
trees in O(mn4/3) time by speeding up random walks.

THEORETICAL APPLICATIONS OF SDD
SOLVERS: MULTIPLE ITERATIONS

[Daitsch-Spielman `08] Directed maximum
flow, Min-cost-max-flow, lossy flow all can
be solved via LP interior point where pivots
are SDD systems in O(m3/2) time.

BACK TO IMAGE DENOISING

PROBLEM WITH QUADRATIC
OBJECTIVE

• Result too ‘smooth’,
objects become blurred
•Quadratic functions favor

the removal of boundaries

FUNCTION ACCENTUATING
BOUNDARIES

s: sharp
boundary

L1 smoothness term

If a<b<c, |a-b|+|b-c|
doesn’t depend on b

Same smoothness term Better fidelity

TOTAL VARIATION OBJECTIVE

• [Rudin-Osher-Fatemi, 92] Total Variation
objective: L2

2 fidelity term, L1 smoothness.

Fidelity(x, s) + Smoothness(x)

(xi-si)2 summed
over all pixels i.

|xi-xj| summed over all
neighbor pixels i, j.

TOTAL VARIATION MINIMIZATION

Effect: sharpen
boundaries

Overdoing makes
image cartoon like

Higher weight on smoothness term

WHAT’S HARD ABOUT L1?

Short answer: cornersAbsolute value function on n
variables has 2n points of
discontinuity, L2

2 has none.

Minimum cut: remove fewest edges
to separate s from t.

MIN CUT PROBLEM AS L1
MINIMIZATION

Minimum cut: remove the fewest
edges to separate vertices s and t

Minimum s-t cut:
minimize Σ|xi-xj|
subject xs=0, xt=1

s t
0 10

0 0

1

1 1

MINCUT VIA. L2 MINIMIZATION

[Christiano-Kelner-Mądry-Spielman-
Teng `11]: undirected max flow and
mincut can be approximated using
Õ(m1/3) SDD solves.

• Multiplicative weights update method
• Repeatedly update the edge weights

of the linear systems being solved

Total: Õ(m4/3)

SEQUENCE OF (ADPATIVELY)
GENERATED LINEAR SYSTEMS

Optimization
Problem

Linear System
Solver

Kevin
Deweese

EVEN FASTER SOLVERS

•Cohen-Kyng-Pachocki-Peng-Rao `13
SDD linear systems Faster solver in
•O(mlog1/2n) time given a LSST.

• The log appears in two places in KMP:
1. Matrix Chernoff Bounds
2. LSST tree construction

FASTER TREE GENERATION

• Koutis-M-Peng `11, Abraham-Neiman `12]:
LSST with stretch O(m log n) in O(m log n) time.

We do not know how to beat these bounds!

We find a tree that is good enough!

FUTURE WORK

• Practical/parallel implementations?
• The win over sequential is parallel!

• Near linear time exact max flow?
• log(1/ε) dependency in runtime?
• Sub-quadratic SPD solver?

JOINT WORK

Guy Blelloch,
Hui Han Chin,

Michael Cohen,
Anupam Gupta,
Jonathan Kelner,

Yiannis Koutis,
Alexsander Madry,

Jakub Pachocki,
Richard Peng,

Kanat Tangwongsan,
Shen Chen Xu

