Sandia

Exceptional service in the national interest @ National
Laboratories

Sparse Matrix-Matrix Multiplication for

Modern Manycore Architectures
Mehmet Deveci, Erik Boman,

Siva Rajamanickam

Sandia National Laboratories saml i-program laboratory managed and oper: dbyS ndia C p a wholly owned s b d ary of Lockheed Mart
Corp n, for the U.S. Dej p rtment fE ergy’s National Nuclear Seci yAdmlnls ration unde r contract DE-AC04- 94AL85000

Problem

= SPGEMM: fundamental block for
= Algebraic multigrid

e again. If the red x still appears, you may have to delete the image and then insert it again

Sandia
National
Laboratories

= Various graph analytics problems: clustering, betweenness

centrality...
= Extrairregularity: nnz of Cis unknown beforehand

Sandia
National

Background) g,

W []X

%

= Distributed algorithms:
= 1D Trilinos
= 2D Combinatorial Blas [Bulug 12],
= 3D [Azad 15]
= Hypergraph-based: [Akbudak 14], [Ballard 16]

= Most of the shared memory algorithms bases on 1D-Gustavson
algorithm [Gustavson 78]

Sandia
"1 National
Laboratories

Background

= Multi-threaded algorithms:
= Dense Accumulator (with B column partitions) [Patwary 15]
= Sparse Heap accumulators: ViennaCL, CommBIlass
= Sparse accumulators: MKL
= GPUs:
= CUSP [Dalton 15]: 3D - outer product (O(FLOPS) memory)
= Hierarchical: cuSPARSE, bhSparse [Liu 14]

= Aim: Portable methods for GPUs and massively-threaded
architectures using Kokkos

= C++templated library
= Abstracting execution, memory spaces, and data layouts
= Contact: Carter Edwards hcedwar@sandia.gov

Portable SPGEMM Method) .

= 2-phase, symbolic (calculate #nnz), then numeric (actual flops)

= Qver allocation is expensive or dynamic increase are not suitable on
GPUs. Estimations [Cohen 98] are still not an upperbound.

= |tis common in scientific computing where multiplication is repeated
for different numeric values with same symbolic structure

Speedup symbolic with compression:

= Symbolic phase performs unions on rows, which consists of binary
relations

= Compress the rows of B: O(nnz(B)) using 2 integers.
= Column Set Index (CSl): represents column set index
= Column Set (CS): the bits represent the existence of a column
= Symbolic complexity: O(FLOPS) -> on average ~O(avgdeg(A)x nnz(B))

9 | 10|33 (34]|35]|36]|37

csI CS

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

o
o o o

1 2 3 4 5
oOfo0ofO0O(fO0(O
1 1 1 1 1

o (= (e}
o (= ~

8 9
1 1 ifofofofofofOfOfOfOfOfOfO|O|]O]O]O]JOf[O|O0O]|]O]O
0] 0

ofofofofofofofofOoOfOfOfOfO[O|O0O|]O]O]O|[Of[O0O]|O0]O

5

i\

KokkosKernels (KK) - SPGEMM

= Each team works on a bunch of rows of C (or A)
= Team: Thread block (GPU)

group of hyper-threads in a core (CPU)
= Each worker in team works on consecutive rows of C
= Worker: Warp (GPUs), hyperthread (CPU)
= More coalesced access on GPUs,
= better L1-cache usage on CPUs.
= Each vectorlane in a worker works on a different
multiplications within a row:
= Vectorlane: Threads in a Warp (GPUs), vector units
(CPU)

Sandia
National _
Laboratories

San_diaI
K K - S P G E IVI IVI m laat}oratories
= Implemented 4 methods
= KKMEM: Memory efficient

= Uses sparse hashmap accumulators and memory pools
= KKSPEED:

= Dense accumulators on CPU
= KKMCR

= Graph coloring variant - 1
= KKMCW

= Graph coloring variant - 2

Sandia
’11 National
Laboratories

KKMEM

= Hierarchical 1D Gustavson Algorithm
= Features to make it thread scalable

= 2 level Hashmap Accumulator:
= 1st]evel uses scratch space:

= GPUs shared memory
= Small memory that will fit in L1 cache on CPUs

= 2nd Jevel goes to global memory

= Memory Pool:
= Only some of the workers need 2" level hash map.

= Request memory from memory pool.

Distance-2 Graph Coloring

X |

= Distance-2 coloring on the structure of C in symbolic phase

= Dense accumulator per color

= Coloring on Cis more restrictive coloring on A

= |tis also distance-2 coloring on A

— The rows of A do not share any column (!)

= No reuse of rows of B

Sandia
National _
Laboratories

Distance-2 Graph Coloring

X |

= Distance-2 coloring on the structure of C in symbolic phase

= Dense accumulator per color

= Coloring on Cis more restrictive coloring on A

= No reuse of rows of B

Sandia
National _
Laboratories

= |mprove by using multiple colors at a time=nnz(C) / numcols(C)

= MCR: Permute rows within multicolors — better reads
= MCW: Permute rows within single colors — better writes

10

Sandia

Hypergraph Model [Ballard 15] e

5 © © ©
©

©

5 | multiplications

o

2 | Cu Ciq &
O ™~

s /’ ?\

©

8. A12 B41 I‘7'24 A14 I-:"44 A44
=

Computat,on— 1 for red vertices, O for yellow

« W = 0 for red vertices, 1 for yellow

memory —

SHMEM Directed HG Model) e

T~

(@
11 Cag
—

I NN
g e

* No owners of the data, data lies in the memory (part k+1)
« There are no messages exchanged between parts
* Instead incoming/outgoing arrows correspond reads/writes

W

44

+ Merge nets for data that lives in the same cache line, or range of coalesced accesses
* We use the model to evaluate the read/write of algorithms

Experiments

= Experiments on matrices

Sandia
’11 National
Laboratories

= Laplace3D (15M, 109M), Brick (15M, 418 M) and Empire

(2M, 303M)(Internal Sandia App.)

= Multiplications for multigrid solver in the form

_ Acoarse = Rrestric'cion X Aﬁne X Pprolongation W x x
— RxA, RAxP, AxP RxAP |

= Some matrices used in the literature for AxA

= Bowman and Hansen Clusters
= Bowman: Intel KNL
= 68 cores, 1.40 GHz, 4 hyper-threads per core.

E

= 16 Gb HBW MCDRAM (476.2 GB/s), 96 GB DDR4 (84.3 GB/s)

= Hansen: NVIDIA Tesla K80
= CC3.7and 11.25 GB memory

13

GPU Gflops for RxAxP

2.50

2.00

1.50

g

11,

AxP | RX(AP) | RXA RAXP AxP | RX(AP) | RXA RAXP AXP | RX(AP) RXA RAXP

Laplace Brick Empire
W CUSPARSE| 0.10 0.23 0.16 0.16 0.29 0.54 0.32 0.51 0.65 0.71 1.61 0.52
1 KKMEM 1.49 1.46 0.87 0.68 2.23 2.12 1.78 0.97 2.38 1.68 2.06 0.79

Higher is better

« CUSP runs out of memory
« Speedups range from 1.28 to 14.83. Average 3.90

Sandia
National
Laboratories

KNL Experiments il

C=OKKMEM

6.00 -
= MKL

5.00

4.00

GFlops

3.00

2.00 ;
4

1.00 =
)
N 54

0.00 -

1 8116|32|64 128256 1 4| 8 |16/32 64128256 1 4| 8 16/32/64|128256

8116|32|64 (128256
DDR4 | MCDRAM DDR4 | MCDRAM

No-Reuse Reuse

+ Geometric mean for 13 multiplications. Compared against MKL.
* First MKL run takes 4-5x times more than the next ones. First one is excluded.

* Opverall: almost linear scaling up to 64 cores.
* MKL is slightly faster up to 64 cores — no performance diff for MCDRAM and DDR4 (!).

« KKMEM is 1.17 times faster on 128 threads MCDRAM,

« MKL does not scale on 256 threads
* Ifreuse 2.12 - 2.25 on 1-128 threads (3.05, 4.08 on 256 threads) times faster.

« The difference between reuse vs no-reuse is high.

. Comeression reduces the size 7-20 % for RxAxP, while it can reduce 87% for UFL matrices

Sandia
m National
Laboratories

Flop per Double Laplace AxP

120 +—— EKernelFlops 1.60
= Numeric Flops
1 «/w=FLOP/Double L ~ [140
135 35

1.00

1.43 128 B ¥
\ \ 120

0.80
)
(7] =]
2 . 0.85 o . 0.85 2
= 0.60 0.80 ‘ B | 0.80 >
© . 0.73 073 &
o
\ - 0.60
0.40 \ \
. & 0.44 1,043 L0-45 LOM 0,043 (0
. 034 .. 0.34 .. 034 .. 034 .. 034 .. |0.34
0.20
- 0.20
0.00 — T T T T T T T T T T T T — T T T T T T T T T T 0.00
=853 |2e8/8/3 |z/g/83 |28 ¢35 =g 3 |28l83
S a| 2|3 S|lal|2| S S|lal2|sS S al 2|sS S al 2|s s|al=| s
~ ~ ~ ~ ~ ~ ~ he ~ ~ ~ ~
64 128 256 64 128 256
DDR4 MCDRAM
Dense

Accumulator

Laplace AxP MCDRAM .

800 —— E==IKernelFlops 1.60
E=Numeric Flops
7.00 |- “I=FLOP/Double 183 : 1.40
1.35 1.35
143 . 1.28
6.00 - 1.20
5.00 - 1.00
5
2 0.85 2
2 4.00 - 080 &
© 0.73 2
9
T8
3.00 - 0.60
0.45 0.45
200 0.44 0.43 0.44 0.40
0.34 0.34 0.3 0.3 0.3 0.34
1.00 0.20
0.00 0.00
AEHEREEEEREEEEREEHEEREEEEREEHE
S|lal23 Slal 2|3 Sla 2|3 Slal2|s Slal2|3 Slal2|s
MR MR MR MR MR M
X ¥ X Y X Y X 4 X 4 X 4
64 128 256 64 128 256
ook Has more hashmap MCDRAM

operations than Flops

Laplace AxP DDR4 h .

8.00 —— KernelFlops 1.60
= Numeric Flops
7.00 - “=/=>FLOP/Double 143 1.40

1.35

143
6.00 1.20
5.00 - 1.00 2
Q2
7] 3
& 8
S 4.00 0-8 - 080 &
© a
°
('
3.00 ‘ - 0.60
N ﬂ “ | o
0.00 - 0.00
s &= 3 S & 2|s Ss|lals|s S a =2|3s S a =2 s S|la 2 S
g\ g g | g g| g g | g g < g L
h4 h4 N4 N4 N4 N4
64 128 256 64 128 256
DDR4 MCDRAM

Conclusions & Future Work h

Portable SPGEMM method with decent performance
on various new architectures

Hypergraph model to study the effect of read/writes
to the overall performance

Ongoing:
= Analyzing flop per read and flop per write and
experiment with MCDRAM and DDRA4.

Future:

= Fast packing of columns of B for better
compression

= Fast reordering of rows of A to use better locality

19

Sandia
| Netional
Laboratories

For more information

= KokkosKernels:
= Download through Trilinos: http://trilinos.org
= Public git repository: http://github.com/trilinos

= For more information:
= mndevec@sandia.gov

= Thanks to:
= NNSA ASC program
= DOE ASCR SciDAC FASTMath Institute \
= ATDM /‘ s Ny

AsC FASTMATH

Sandia
’11 National
Laboratories

References

= F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication and permuted transposition," ACM
Transactions on Mathematical Software (TOMS), vol. 4, no. 3, pp. 250{269, 1978.

= Bulug, Aydin, and John R. Gilbert. "Parallel sparse matrix-matrix multiplication and indexing:
Implementation and experiments." SIAM Journal on Scientific Computing 34.4 (2012): C170-C191.

= Azad, Ariful, et al. "Exploiting multiple levels of parallelism in sparse matrix-matrix multiplication." arXiv
preprint arXiv:1510.00844 (2015).

= Akbudak, Kadir, and Cevdet Aykanat. "Simultaneous Input and Output Matrix Partitioning for Outer-
Product--Parallel Sparse Matrix-Matrix Multiplication." SIAM Journal on Scientific Computing 36.5 (2014):
C568-C590.

= Ballard, Grey, et al. "Brief announcement: Hypergraph partitioning for parallel sparse matrix-matrix
multiplication." Proceedings of the 27th ACM symposium on Parallelism in Algorithms and Architectures.
ACM, 2015.

= Patwary, Md Mostofa Ali, et al. "Parallel efficient sparse matrix-matrix multiplication on multicore
platforms." International Conference on High Performance Computing. Springer International Publishing,
2015.

= Liu, Weifeng, and Brian Vinter. "An efficient GPU general sparse matrix-matrix multiplication for irregular
data." Parallel and Distributed Processing Symposium, 2014 IEEE 28th International. |IEEE, 2014.

= Dalton, Steven, Luke Olson, and Nathan Bell. "Optimizing sparse matrix—matrix multiplication for the gpu."
ACM Transactions on Mathematical Software (TOMS) 41.4 (2015): 25.

21

GPU RxAxP Numeric Flops LS

6.00
5.00
4.00
3.00
2.00 -
1.00 - -
0.00 -
AxP | RX(AP) | RXA RAXP
Laplace Brick Empire
W CUSPARSE| 0.18 0.28 0.25 0.21 0.36 0.58 0.50 0.57 0.72 0.76 2.15 0.57
 KKMEM 3.36 3.24 132 1.14 4.04 5.29 3.45 157 3.78 4.00 2.86 1.48
KKSPEED 3.41 3.30 1.60 1.33 4.65 5.24 3.62 1.79 4.28 3.89 2.75 1.64
& KKMCR 0.77 1.42 1.11 0.97 1.49 3.06 3.39 1.47 4.99 153
“ KKMCW 0.71 1.84 1.13 1.09 1.79 3.95 3.75 1.71 5.00 1.68

» Coloring based ones does much less operations.
« But accesses to B (second matrix) suffer from non-coalesced
» Still performance is comparable or better when second matrix has
dense rows.

« Or when KKMEM also suffers from noncoalesced B accesses

GPU Gflops for RxAxP .

3.00
2.50
2.00
1.50 —_
1.00 —
0.00 -
| RX(AP) | | RAXP | RX(AP) | | RAXP | ORX(AP) | RxA | RAXP
Laplace Brick Empire
“CUSPARSE| 0.10 0.23 0.16 0.16 0.29 0.54 0.32 0.51 0.65 0.71 1.61 0.52
“ KKMEM 1.49 1.46 0.87 0.68 2.23 2.12 1.78 0.97 2.38 1.68 2.06 0.79
KKSPEED | 1.50 1.47 0.99 0.75 2.40 2.10 1.84 1.05 2.56 1.65 2.01 0.83

Higher is better
« CUSP runs out of memory

« Speedups range from 1.28 (1.25) to 14.83 (14.93). Average 3.90 (4.06)
« Cons:

KKMEM - cost to get memory through uniform pool
KKSPEED - hash operations are done through ‘%’ instead of &.

GPU AxA Speedup w.r.t CUSPARSE (@i,

12.00
EKKMEM
10.00 |~ wkKsPEED
8.00 -+ BHSPARSE-GTX
I cISparse-K40-sp
6.00
4.00
2.00 &
0.00 -
>
N
‘06
S

* Overall KKMEM speedup: 3.76

« KKSPEED -4.19 (4.14 for KKMEM)
* Audi has a very irregular row distribution. Output 7586MB

» Pool requires -> 952 MB symbolic and 308MB numeric
 Bump — Output 6410MB: pool: 280MB and 87 MB

KNL Audi AxA) .

10.00

9.00 — C=JKKMEM
D= MKL

8.00 [—

7.00

6.00

5.00

GFlops

4.00

3.00

2.00 |

1.00 |

0.00

1/2|4)8|16/32/64128256 2|4)8|16/32/64128256 2|4|8|16/32/64128256 2|4|8|16/32/64(128256

DDR4 MCDRAM DDR4 MCDRAM

No-Reuse Reuse

 MKL is faster upto 64 cores. Similar performance on 128, and MKL does not
scale on 256 threads.

« With reuse upto 1.95 to 2.33 (1.20 on 128) speedups.

« Compression is successful here. Symbolic is 85% faster than numeric.

KNL Laplace AxP) %,

6.00

COKKMEM

==MKL

2.00

| S

T I :

y A | 4

P |

---' iIn E{
3 d H i d .

=,

1.00]
9 g ¢

o
N
> —I‘ . ™~

10.03

1[
0.00 -

1/2)4)8|16|32|64[128256 1/2)4)8|16|32/64[128256 1]2 8 116|32|64128256 1 4|8 |16/32|64 128256

DDR4 MCDRAM DDR4 MCDRAM

« MKL is faster upto 64*¢Sres. KKMEM is 1|O% faster on 128tfireads
« MKL does not finish in 1000 seconds on 256 threads.

* With reuse upto 2.48 speedups.
« Compression is not successful here (7% reduction).
« Symbolic has same time with numeric, sometimes even more expensive
* Need: Reorder/Pack of columns to improve compression. (SPMV cache
locality)

Sandia
National
Laboratories

h

a|qnoqg/doj4

- 25
5

L KernelFlops
= Numeric Flops
“=/=>FLOP/Double

/

0.5

KKMEM FLOP/Double vs GFLOPS

dXv-ig
dVvXxy-lig
Xy-iig
dXvy-lig
dxv-deq
dvxy-deq
dxvy-deq
vxy-deq

dXv-ig
dVXy-lig
Xy-1ig
dXvd-i1g
dxv-deq
dvxy-deq
dXvy-deq
xy-deq

dXxv-ig
Xy-14g
dVXxy-lig
dXvy-iig
dxv-deq
dvxy-deq
dxvy-deq
Xxy-deq

256

128

64

MCDRAM

dXv-ug
dvxy-iig
VXxy-1u1g
dXvy-iig
dxy-deq
dvxy-del
dxvy-del
vxy-deq

256

dXv-ug
dvxy-iig
Xxy-1ug
dXvy-iig
dxy-deq
dvxy-del
dxvy-del
xy-deq

dXv-ug
Xxy-1g
dvxy-iig
dXvy-iig

dxy-deq

dvxy-del
dXvy-del

xy-deq

128

64

DDR4

