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Problem

= SPGEMM: fundamental block for
= Algebraic multigrid

e again. If the red x still appears, you may have to delete the image and then insert it again

Sandia
National
Laboratories

= Various graph analytics problems: clustering, betweenness

centrality...
= Extrairregularity: nnz of Cis unknown beforehand
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= Distributed algorithms:
= 1D Trilinos
= 2D Combinatorial Blas [Bulug 12],
= 3D [Azad 15]
= Hypergraph-based: [Akbudak 14], [Ballard 16]

= Most of the shared memory algorithms bases on 1D-Gustavson
algorithm [Gustavson 78]
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Background

= Multi-threaded algorithms:
= Dense Accumulator (with B column partitions) [Patwary 15]
= Sparse Heap accumulators: ViennaCL, CommBIlass
= Sparse accumulators: MKL
= GPUs:
= CUSP [Dalton 15]: 3D - outer product (O(FLOPS) memory)
= Hierarchical: cuSPARSE, bhSparse [Liu 14]

= Aim: Portable methods for GPUs and massively-threaded
architectures using Kokkos

= C++templated library
= Abstracting execution, memory spaces, and data layouts
= Contact: Carter Edwards hcedwar@sandia.gov




Portable SPGEMM Method ) .

= 2-phase, symbolic (calculate #nnz), then numeric (actual flops)

= Qver allocation is expensive or dynamic increase are not suitable on
GPUs. Estimations [Cohen 98] are still not an upperbound.

= |tis common in scientific computing where multiplication is repeated
for different numeric values with same symbolic structure

Speedup symbolic with compression:

= Symbolic phase performs unions on rows, which consists of binary
relations

= Compress the rows of B: O(nnz(B)) using 2 integers.
= Column Set Index (CSl): represents column set index
= Column Set (CS): the bits represent the existence of a column
=  Symbolic complexity: O(FLOPS) -> on average ~O(avgdeg(A)x nnz(B))
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KokkosKernels (KK) - SPGEMM

= Each team works on a bunch of rows of C (or A)
= Team: Thread block (GPU)

group of hyper-threads in a core (CPU)
= Each worker in team works on consecutive rows of C
= Worker: Warp (GPUs), hyperthread (CPU)
= More coalesced access on GPUs,
= better L1-cache usage on CPUs.
= Each vectorlane in a worker works on a different
multiplications within a row:
= Vectorlane: Threads in a Warp (GPUs), vector units
(CPU)
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= Implemented 4 methods
= KKMEM: Memory efficient

= Uses sparse hashmap accumulators and memory pools
= KKSPEED:

= Dense accumulators on CPU
= KKMCR

= Graph coloring variant - 1
= KKMCW

= Graph coloring variant - 2
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KKMEM

= Hierarchical 1D Gustavson Algorithm
= Features to make it thread scalable

= 2 level Hashmap Accumulator:
= 1st]evel uses scratch space:

= GPUs shared memory
= Small memory that will fit in L1 cache on CPUs

= 2nd Jevel goes to global memory

= Memory Pool:
= Only some of the workers need 2" level hash map.

= Request memory from memory pool.




Distance-2 Graph Coloring

X |

= Distance-2 coloring on the structure of C in symbolic phase

= Dense accumulator per color

= Coloring on Cis more restrictive coloring on A

= |tis also distance-2 coloring on A

— The rows of A do not share any column (!)

= No reuse of rows of B
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Distance-2 Graph Coloring

X |

= Distance-2 coloring on the structure of C in symbolic phase

= Dense accumulator per color

= Coloring on Cis more restrictive coloring on A

= No reuse of rows of B
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= |mprove by using multiple colors at a time=nnz(C) / numcols(C)

= MCR: Permute rows within multicolors — better reads
= MCW: Permute rows within single colors — better writes
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Hypergraph Model [Ballard 15] e

5 © © ©
©

©

5 | multiplications

o

2 | Cu Ciq &
O ™~

s /’ ?\

©

8. A12 B41 I‘7'24 A14 I-:"44 A44
=

Computat,on— 1 for red vertices, O for yellow

« W = 0 for red vertices, 1 for yellow
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* No owners of the data, data lies in the memory (part k+1)
« There are no messages exchanged between parts
* Instead incoming/outgoing arrows correspond reads/writes
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+ Merge nets for data that lives in the same cache line, or range of coalesced accesses
*  We use the model to evaluate the read/write of algorithms




Experiments

= Experiments on matrices
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= Laplace3D (15M, 109M), Brick (15M, 418 M) and Empire

(2M, 303M)(Internal Sandia App.)

= Multiplications for multigrid solver in the form

_ Acoarse = Rrestric'cion X Aﬁne X Pprolongation W x x
— RxA, RAxP, AxP RxAP |

= Some matrices used in the literature for AxA

= Bowman and Hansen Clusters
= Bowman: Intel KNL
= 68 cores, 1.40 GHz, 4 hyper-threads per core.

E

= 16 Gb HBW MCDRAM (476.2 GB/s), 96 GB DDR4 (84.3 GB/s)

= Hansen: NVIDIA Tesla K80
= CC3.7and 11.25 GB memory
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GPU Gflops for RxAxP

2.50

2.00

1.50

g

11,

AxP | RX(AP) | RXA RAXP AxP | RX(AP) | RXA RAXP AXP | RX(AP) RXA RAXP

Laplace Brick Empire
W CUSPARSE|  0.10 0.23 0.16 0.16 0.29 0.54 0.32 0.51 0.65 0.71 1.61 0.52
1 KKMEM 1.49 1.46 0.87 0.68 2.23 2.12 1.78 0.97 2.38 1.68 2.06 0.79

Higher is better

« CUSP runs out of memory
« Speedups range from 1.28 to 14.83. Average 3.90
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KNL Experiments il
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+ Geometric mean for 13 multiplications. Compared against MKL.
* First MKL run takes 4-5x times more than the next ones. First one is excluded.

* Opverall: almost linear scaling up to 64 cores.
* MKL is slightly faster up to 64 cores — no performance diff for MCDRAM and DDR4 (!).

« KKMEM is 1.17 times faster on 128 threads MCDRAM,

« MKL does not scale on 256 threads
* Ifreuse 2.12 - 2.25 on 1-128 threads (3.05, 4.08 on 256 threads) times faster.

« The difference between reuse vs no-reuse is high.

. Comeression reduces the size 7-20 % for RxAxP, while it can reduce 87% for UFL matrices
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Flop per Double Laplace AxP
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Laplace AxP MCDRAM .
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Laplace AxP DDR4 h .
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Conclusions & Future Work h

Portable SPGEMM method with decent performance
on various new architectures

Hypergraph model to study the effect of read/writes
to the overall performance

Ongoing:
= Analyzing flop per read and flop per write and
experiment with MCDRAM and DDRA4.

Future:

= Fast packing of columns of B for better
compression

= Fast reordering of rows of A to use better locality

19
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For more information

= KokkosKernels:
= Download through Trilinos: http://trilinos.org
= Public git repository: http://github.com/trilinos

= For more information:
= mndevec@sandia.gov

= Thanks to:
= NNSA ASC program
= DOE ASCR SciDAC FASTMath Institute \
= ATDM /‘ s Ny

AsC FASTMATH
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GPU RxAxP Numeric Flops LS

6.00
5.00
4.00
3.00
2.00 -
1.00 - -
0.00 -
AxP | RX(AP) |  RXA RAXP
Laplace Brick Empire
W CUSPARSE|  0.18 0.28 0.25 0.21 0.36 0.58 0.50 0.57 0.72 0.76 2.15 0.57
 KKMEM 3.36 3.24 132 1.14 4.04 5.29 3.45 157 3.78 4.00 2.86 1.48
KKSPEED 3.41 3.30 1.60 1.33 4.65 5.24 3.62 1.79 4.28 3.89 2.75 1.64
& KKMCR 0.77 1.42 1.11 0.97 1.49 3.06 3.39 1.47 4.99 153
“ KKMCW 0.71 1.84 1.13 1.09 1.79 3.95 3.75 1.71 5.00 1.68

» Coloring based ones does much less operations.
« But accesses to B (second matrix) suffer from non-coalesced
» Still performance is comparable or better when second matrix has
dense rows.

« Or when KKMEM also suffers from noncoalesced B accesses




GPU Gflops for RxAxP .

3.00
2.50
2.00
1.50 —_
1.00 —
0.00 -
| RX(AP) | | RAXP | RX(AP) | | RAXP | ORX(AP) | RxA | RAXP
Laplace Brick Empire
“CUSPARSE|  0.10 0.23 0.16 0.16 0.29 0.54 0.32 0.51 0.65 0.71 1.61 0.52
“ KKMEM 1.49 1.46 0.87 0.68 2.23 2.12 1.78 0.97 2.38 1.68 2.06 0.79
KKSPEED |  1.50 1.47 0.99 0.75 2.40 2.10 1.84 1.05 2.56 1.65 2.01 0.83

Higher is better
« CUSP runs out of memory

« Speedups range from 1.28 (1.25) to 14.83 (14.93). Average 3.90 (4.06)
« Cons:

KKMEM - cost to get memory through uniform pool
KKSPEED - hash operations are done through ‘%’ instead of &.




GPU AxA Speedup w.r.t CUSPARSE (@i,

12.00
EKKMEM
10.00 |~  wkKsPEED
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* Overall KKMEM speedup: 3.76

« KKSPEED -4.19 (4.14 for KKMEM)
* Audi has a very irregular row distribution. Output 7586MB

» Pool requires -> 952 MB symbolic and 308MB numeric
 Bump — Output 6410MB: pool: 280MB and 87 MB




KNL Audi AxA ) .
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 MKL is faster upto 64 cores. Similar performance on 128, and MKL does not
scale on 256 threads.

« With reuse upto 1.95 to 2.33 (1.20 on 128) speedups.

« Compression is successful here. Symbolic is 85% faster than numeric.




KNL Laplace AxP ) %,
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« MKL is faster upto 64*¢Sres. KKMEM is 1|O% faster on 128tfireads
« MKL does not finish in 1000 seconds on 256 threads.

* With reuse upto 2.48 speedups.
« Compression is not successful here (7% reduction).
« Symbolic has same time with numeric, sometimes even more expensive
* Need: Reorder/Pack of columns to improve compression. (SPMV cache
locality)
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L KernelFlops
= Numeric Flops
“=/=>FLOP/Double
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KKMEM FLOP/Double vs GFLOPS
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