DE LA RECHERCHE À L'INDUSTRIE

Balance-Enforced Multi-Level Algorithm for Multi-Criteria Graph Partitioning

Rémi BARAT ^{1,2} Cédric CHEVALIER ¹ François PELLEGRINI^{2,3} ¹ CEA, DAM, DIF, F-91297 Arpajon, France ² University of Bordeaux, France ³ INRIA, France

12 October 2016 SIAM Combinatorial Scientific Computing

www.cea.fr

1 Objective

- Context
- Model
- State of the art
- 2 Approach
 - The multi-level framework
 - Contributions
 - Example

3 Experiments

- Mono-criterion partitioning (mesh of 3500 cells)
- Multi-criteria partitioning (mesh of 3500 cells)
- Multi-criteria partitioning (mesh of 22800 cells)

1 Objective

- Context
- Model
- State of the art
- 2 Approach
 - The multi-level framework
 - Contributions
 - Example

3 Experiments

- Mono-criterion partitioning (mesh of 3500 cells)
- Multi-criteria partitioning (mesh of 3500 cells)
- Multi-criteria partitioning (mesh of 22800 cells)

High Performance Computing on distributed memory architectures.

To get an efficient code, one must:

- 1 balance the workloads of each processor
- 2 overlap or minimize communications
- take care of memory accesses
- 4 exploit full processor characteristics

We focus on the 1st and 2nd items.

Direct application: multi-physics numerical simulations using $2D \mbox{ or } 3D$ meshes.

Hypergraph model

Mesh	Dual Hypergraph $H = (V, E)$
cell c _i	vertex $v_i \in V$
weight vector of a cell	weight vector of a vertex
c_i and its neighboring cells N_i	hyperedge $e = N_i \cup c_i \in E$
communicate c_i means y communications	weight y on the hyperedge corresponding to cell c_i

Problem : Hypergraph partitioning

Let \boldsymbol{p} be the number of processors.

We search for an indexed family $(V_k)_{0 \le k < p}$ of subsets of V pairwise disjoint and of union V, respecting:

- **1** some **constraints**: well-balanced workloads
- 2 an **objective**: minimize the communications.

NP-Hard Problem, no algorithm can always return the optimal solution.

Main existing software:

Software	Representations	Multi-Criteria	Origin
Scotch	Topological	No	INRIA, F. Pellegrini et. al.
Matis	Topological	Voc	University of Minnesota, G. Karypis
IVIE I IS	Topological	Tes	et. al.
Zaltan	Geometric	Yes	Sandia National Laboratories,
Zoitan	Topological	No	K. Devine et. al.

Current limitations for the codes in CEA, DAM, DIF:

- Scotch does not fit: real need of a multi-criteria partitioner
- MeTiS does not meet the balance constraints
- Zoltan geometric representations are inefficient for our meshes
- \Rightarrow Lack of efficient multi-criteria partitioning tools.

1 Objective

Context

- Model
- State of the art
- 2 Approach
 - The multi-level framework
 - Contributions
 - Example

3 Experiments

- Mono-criterion partitioning (mesh of 3500 cells)
- Multi-criteria partitioning (mesh of 3500 cells)
- Multi-criteria partitioning (mesh of 22800 cells)

Classic algorithm: The multi-level framework

A 3-phases algorithm:

- Coarsening
- Initial partitioning of the coarsened hypergraph
- **3** Uncoarsening and refinement

Our approach: Multi-level multi-criteria algorithm

A 3-phases algorithm:

- Coarsening
- 2 Initial partitioning of the coarsened hypergraph
 - \rightarrow New algorithm focusing on balance constraints
- **3** Uncoarsening and refinement
 - \rightarrow Adapted Fiduccia-Mattheyses algorithm

Problem: partition a set of vectors of numbers

- The vertices' weights alone are considered, not the hyperedges.
- Some algorithms exist in mono-criterion (number partitioning), but in our knowledge not in multi-criteria.

Algorithm 1 Initial partitioning algorithm

Require: V set of vertices, Π partition

```
1: b_{max} \leftarrow \max_{criterion c} \operatorname{Imbal}_{c}(\Pi)
```

2: repeat

3: for $v \in V$ do

- 4: **if** changing partition of v decreases b_{max} **then**
- 5: $\Pi \leftarrow \text{change partition of } v$
- 6: update b_{max}
- 7: end if
- 8: end for
- 9: **until** No more vertex move can decrease b_{max}

Simple instance:

- 8 vertices
- 2 criteria
- 2 partitions

Given a partition, choose a vertex to move:

Key points:

- Move vertices according to their gain ("moves").
- Avoid opposite moves: lock on the moved vertices.
- When no more moves are possible: restore the best partition found.
- If improvement: start a new "pass". Otherwise, end of the algorithm.

Algorithm 2 Fiduccia-Mattheyses algorithm

Require: Partition respecting the constraints repeat

- 2: Unlock all vertices, compute their gains while possible moves remain do
- 4: Move vertex of best gain and lock it Update neighbor gains and save current partition
- 6: end while

Restore the best partition reached in the pass

8: until No improvement on the best partition quality

Make a pass

Lots of possible variations:

Options	Our choice	Scotch	MeTiS
Prescribed tolerance	strict	relaxed at lower	relaxed
	Strict	levels	$(\propto \frac{1}{2 \times graph \ size})$
Select move	best gain	best gain	best gain (if imbalanced: from the heaviest part for most imbalanced criterion)
Tie breaking	first	lowest imbalance	first
Inner loop stop condition (maximum number of moves of negative gain made in a row)	120		between 25 and 150 $(1\% \times graph \ size)$

Other remarks	hypergraph	2 independent	rebalancing
Other remarks	model	runs by default	phases

Algorithmic contribution: multi-level for multi-criteria partitioning

- **1** Classic coarsening (Heavy-Edge Matching)
- 2 Greedy initial partitioning returning a solution respecting the balance constraints
- 3 Refinement of the objective function respecting the balance constraints
- \implies Each solution found is **guaranteed** to respect all balance constraints

Summary of the algorithm A small example

Algorithmic contribution: multi-level for multi-criteria partitioning

- 1 Classic coarsening (Heavy-Edge Matching)
- 2 Greedy initial partitioning returning a solution respecting the balance constraints
- **3** Refinement of the objective function respecting the balance constraints
- \implies Each solution found is **guaranteed** to respect all balance constraints

Mesh of 600 triangles Vertex weights: 3 criteria Edge weights depend on vertex weights

Summary of the algorithm Example: initial partitioning

Algorithmic contribution: multi-level for multi-criteria partitioning

- 1 Classic coarsening (Heavy-Edge Matching)
- 2 Greedy initial partitioning returning a solution respecting the balance constraints
- 3 Refinement of the objective function respecting the balance constraints
- \implies Each solution found is **guaranteed** to respect all balance constraints

Algorithmic contribution: multi-level for multi-criteria partitioning

- **1** Classic coarsening (Heavy-Edge Matching)
- 2 Greedy initial partitioning returning a solution respecting the balance constraints
- 3 Refinement of the objective function respecting the balance constraints
- \implies Each solution found is **guaranteed** to respect all balance constraints

Algorithmic contribution: multi-level for multi-criteria partitioning

- **1** Classic coarsening (Heavy-Edge Matching)
- 2 Greedy initial partitioning returning a solution respecting the balance constraints
- **3** Refinement of the objective function respecting the balance constraints
- \implies Each solution found is **guaranteed** to respect all balance constraints

IP (-3) R (coms: 583 coms

R (-3) coms: 197

4.7%

Algorithmic contribution: multi-level for multi-criteria partitioning

- 1 Classic coarsening (Heavy-Edge Matching)
- 2 Greedy initial partitioning returning a solution respecting the balance constraints
- **3** Refinement of the objective function respecting the balance constraints
- \implies Each solution found is **guaranteed** to respect all balance constraints

Algorithmic contribution: multi-level for multi-criteria partitioning

- 1 Classic coarsening (Heavy-Edge Matching)
- 2 Greedy initial partitioning returning a solution respecting the balance constraints
- **3** Refinement of the objective function respecting the balance constraints
- \implies Each solution found is **guaranteed** to respect all balance constraints

1 Objective

Context

- Model
- State of the art

2 Approach

- The multi-level framework
- Contributions
- Example

3 Experiments

- Mono-criterion partitioning (mesh of 3500 cells)
- Multi-criteria partitioning (mesh of 3500 cells)
- Multi-criteria partitioning (mesh of 22800 cells)

Experiment 1 Comparison with MeTiS and Scotch (mono-criterion)

Instance		
# cel	ls	3500
vertex weights s	tatist	ics:
m	in 🛛	10
ma	ax	2457
averag	ge	318
st	td	507
edge weights:		
hypergraph mod	el	weight of cell
graph mod	el	sum of weights of ends
Parameters		
runs		$500 \ ({ m random\ numbering}$ of the graph vertices for each run)
tolerance		5%
MeTiS version		5.1.0 ¹

Scotch version

Bi-partition example The darker a cell, the heavier its weight Blue line: border

 1 MeTiS is used with vertex sizes provided, so that it minimizes exactly communication volume (unlike Scotch which minimizes the edge-cut).

 $6.0.4^{2}$

 $^2 \rm By$ default, Scotch launches 2 independent runs and returns the best partition found.

Experiment 1 Comparison with MeTiS and Scotch (mono-criterion)

Software	Our algorithm	MeTiS	Scotch
constraints			
valid solutions	100%	100%	100%
communicatio	ons		
average	3756	5392	3519
std	1047	751	535
min	2431	2908	2443
median	3434	5482	3514
max	8551	6959	5301

Observations:

- Scotch is the best
- Our algorithm statistics seem close

Experiment 1 Comparison with MeTiS and Scotch (mono-criterion)

Software	Our algorithm	MeTiS	Scotch	
constraints				
valid solutions	100%	100%	100%	
communicatio	ons			Observations:
average	3756	5392	3519	Very different behaviors
std	1047	751	535	High discrepancy
min	2431	2908	2443	
median	3434	5482	3514	
max	8551	6959	5301	

| 12/10/2016 | PAGE 12/18

Instance			
# cells vertex weights statist	ics (3 criteri	a):	3500
min	10	10	10
max	2487	2403	2464
average	296	288	257
std	473	448	444
edge weights:			I
hypergraph model		1st we	ight of cel
graph model	sum	of 1st weig	nts of ends

Parameters

runs 500 (random numb of the graph vertices for each	erin; run
tolerance	5%
MeTiS version 5.	1.0

Bi-partition example One color = one criterion Blue line: border

¹MeTiS is used with vertex sizes provided.

Software	Our algorithm	MeTiS		
constraints statistics:				
valid solutions	100%	60%		
communicatio	on statistics:			
average	2733	2436		
std	2316	1729		
min	215	340		
median	1888	1839		
max	9673	6093		

Observations:

- MeTiS seems to achieve better performance in terms of partition quality
- However, its policy to relax constraints leads to invalid solutions

Software	Our algorithm	MeTiS	Failsafe-MeTiS
constraints st	atistics:		
valid solutions	100%	60%	100%
communicatio	on statistics:		
average	2733	2436	
std	2316	1729	
min	215	340	
median	1888	1839	
max	9673	6093	

Observations:

 Failsafe-MeTiS: if solution found is invalid, relaunched with half-tolerance.

Software	Our algorithm	MeTiS	Failsafe-MeTiS
constraints st	atistics:		
valid solutions	100%	60%	100%
communicatio	on statistics:		
average	2733	2436	2291
std	2316	1729	1517
min	215	340	340
median	1888	1839	1787
max	9673	6093	6093

Observations:

- Failsafe-MeTiS: if solution found is invalid, relaunched with half-tolerance.
- Better performance when constraints are tougher!

Software	Our algorithm	MeTiS	Failsafe-MeTiS		
constraints statistics:					
valid solutions	100%	60%	100%		
communication statistics:					
average	2733	2436	2291		
std	2316	1729	1517		
min	215	340	340		
median	1888	1839	1787		
max	9673	6093	6093		

Observations:

- The comparison is less straightforward
- Our algorithm gets lots of solutions of very good quality
- ...but also some of very bad quality
- Relaxing the constraints does not lead to better solutions more often here
- The discrepancy is greater for this instance.

Instance						
# cells			22800			
vertex weights statistics (3 criteria):						
min	10	10	1			
max	2403	9671	1			
average	148	322	1			
std	418	1074	0			
edge weights:						
hypergraph model	1st weight of cell					
graph model	sum of 1st weights of ends					

Parameters

60 (random numberin of the graph vertices for each run
5%
5.1.0

Bi-partition example One color = one criterion Blue line: border

¹MeTiS is used with vertex sizes provided.

Software	Our algorithm	MeTiS	Failsafe-MeTiS			
runs	60	60	60			
constraints statistics:						
valid solutions	100%	47%	100%			
communication statistics: (×1000)						
average	43.4	57.1	56.8			
std	13.5	9.5	8.8			
min	28.0	41.5	41.5			
median	38.9	57.1	56.2			
max	75.7	71.6	71.6			

Observations:

- MeTiS returns lots of invalid solutions, but does not perform better than Failsafe-MeTiS.
- Our algorithm reaches better partitions for this instance.
- Still a very high discrepancy, no matter the tool.

- Objective : accelerate multi-physics simulations by balancing the workload and minimizing the communications
- Approach and contributions:
 - Adaptation of the multi-level framework to multi-criteria graphs or hypergraphs
 - New initial partitioning algorithm
 - Refinement respecting the balance constraints
- Implementation of a Python prototype
- Comparison with some existing tools:
 - Studies more precisely the algorithms behavior
 - Shows their lack of robustness
 - Questions MeTiS policy to relax constraints

- Currently: implementation (open-source) of the multi-criteria algorithms in Scotch
 - \implies Validation on real size instances
 - \implies Validation on a simulation code
 - \implies New release next year
- Enforce the algorithm robustness by:
 - Analyzing the algorithms behavior
 - Studying the influence of each parameter
 - Working on the graph numbering
- Set up of a parallel version of the algorithms

Thank you

Commissariat à l'énergie atomique et aux énergies alternatives Centre DAM Île-de-France | F-91297 Arpajon T. +33 (0)1 69 26 40 00

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019