Parallel machine learning approaches for reverse engineering genome-scale networks

Srinivas Aluru
School of Computational Science and Engineering
Institute for Data Engineering and Science (IDEaS)
Georgia Institute of Technology

- Arabidopsis Thaliana
 - · Widely studied model organism.
 - 125 Mbp genome sequenced in 2000.
 - About 22,500 genes and 35,000 proteins.
- ► NSF Arabidopsis 2010 Program launched in 2001
 - Goal: discover function(s) of every gene.
 - ∼\$265 million funded over 10 years
 - Sister programs such as *AFGN* by German Research Foundation (DFG).

- Arabidopsis Thaliana
 - · Widely studied model organism.
 - 125 Mbp genome sequenced in 2000.
 - About 22,500 genes and 35,000 proteins.
- NSF Arabidopsis 2010 Program launched in 2001
 - **Goal:** discover function(s) of every gene.
 - \sim \$265 million funded over 10 years
 - Sister programs such as *AFGN* by German Research Foundation (DFG).
- ► **Status today:** > 30% genes with no known function.

- Arabidopsis Thaliana
 - · Widely studied model organism.
 - 125 Mbp genome sequenced in 2000.
 - About 22,500 genes and 35,000 proteins.
- ► NSF Arabidopsis 2010 Program launched in 2001
 - **Goal:** discover function(s) of every gene.
 - \sim \$265 million funded over 10 years
 - Sister programs such as *AFGN* by German Research Foundation (DFG).
- ► **Status today:** > 30% genes with no known function.
- How can computer science help?

- Arabidopsis Thaliana
 - Widely studied model organism.
 - 125 Mbp genome sequenced in 2000.
 - About 22,500 genes and 35,000 proteins.
- NSF Arabidopsis 2010 Program launched in 2001
 - **Goal:** discover function(s) of every gene.
 - \sim \$265 million funded over 10 years
 - Sister programs such as *AFGN* by German Research Foundation (DFG).
- ► **Status today:** > 30% genes with no known function.
- ► How can computer science help?
 - 11,760 microarray experiments available in public databases.
 - Construct genome wide networks to generate intelligent hypotheses.

- Structure Learning Methods
 - Pearson correlation (D'Haeseleer et al. 1998)
 - Gaussian Graphical Models
 - GeneNet (Schafer et al. 2005).
 - Information Theory
 - ARACNe (Basso et al. 2005)
 - CLR (Faith et al. 2009)
 - Bayesian networks
 - Banjo (Hartemink et al. 2002)
 - bnlearn (Scutari 2010)

- Structure Learning Methods
 - Pearson correlation (D'Haeseleer et al. 1998)
 - Gaussian Graphical Models
 - GeneNet (Schafer et al. 2005).
 - Information Theory
 - ARACNe (Basso et al. 2005)
 - CLR (Faith et al. 2009)
 - Bayesian networks
 - Banjo (Hartemink et al. 2002)
 - bnlearn (Scutari 2010)

- Structure Learning Methods
 - Pearson correlation (D'Haeseleer et al. 1998)
 - Gaussian Graphical Models
 - GeneNet (Schafer et al. 2005).
 - Information Theory
 - ARACNe (Basso et al. 2005)
 - CLR (Faith et al. 2009)
 - Bayesian networks
 - Banjo (Hartemink et al. 2002)
 - bnlearn (Scutari 2010)

Poor Prognosis

- ► Many do poorly on an absolute basis. One in three no better than random guessing.
- ▶ Compromise: Quality of method vs. data scale.

(Marbach et al., PNAS 2010; Nature Methods 2012)

Information Theoretic Approach

► Connect two genes if they are dependent under mutual information

$$I(X_i; X_j) = I(X_j; X_i) = \mathcal{H}(X_i) + \mathcal{H}(X_j) - \mathcal{H}(X_i, X_j)$$
$$\mathcal{H}(X) = -\sum_{X \in X} P_X(X) \cdot \log(X)$$

► Remove indirect dependencies by Data Processing Inequality (Basso et al. PNAS 2005)

▶ For each (X_i, X_j) , compute all m! values of $I(X_i; \pi(X_j))$.

▶ Accept (X_i, X_j) as dependent if $I(X_i; X_j)$ is greater than at least the fraction $(1 - \epsilon)$ of all tested permutations.

► A large sample is used in practice.

We use the following property

$$I(X_i; X_j) = I(f(X_i); f(X_j))$$

where f is a homeomorphism.

We rank transform each profile, i.e., we replace $x_{i,l}$ with its rank in the set $\{x_{i,1}, x_{i,2}, \dots, x_{i,m}\}$ [Kraskov 2004]

Mutual information computed on rank transformed data. (Zola *et al.*, *IEEE TPDS 2010*)

▶ Each profile is a permutation of 1, 2, ..., m

► A random permutation of one profile is a random permutation of another

▶ Use q permutations per pair for a total of $q \times \binom{n}{2}$ permutations

$$I(X_i, X_j) = 2 \times \mathcal{H}(\langle 1, 2, \dots, m \rangle) - \mathcal{H}(X_i, X_j)$$

Each step is done in parallel:

Input: $M_{n\times m}$, ϵ Output: $D_{n\times n}$

- 1. read M
- 2. rank transform each row of M
- 3. Compute MI between all $\binom{n}{2}$ pairs of genes, and $q \cdot \binom{n}{2}$ permutations
- 4. find l_0 , $\epsilon \cdot q \cdot \binom{n}{2}$ largest value among permutations
- 5. remove values in D below threshold I_0
- 6. apply DPI to D
- 7. write D

Tool for Inferring Network of Genes (TINGe)

▶ Decomposes D into p × p submatrices.

▶ Iteration i: P_j computes $D_{j,(j+i) \bmod p}$ (Zola et al., IEEE TPDS 2010)

1,024 node IBM Blue Gene/L— 45 minutes (2007)

► 1,024 core AMD dual quad core Infiniband cluster — 9 minutes (2009)

► A single Xeon Phi accelerator chip — 22 minutes (Misra *et al.*, *IPDPS 2013*; *IEEE TCBB 2015*)

Arabidopsis Whole Genome Network

Dataset

- 11,760 experiments, each measuring \sim 22,500 genes.
- Statistical normalization (Aluru et al., NAR 2013).

Dataset Classification

- 9 tissue types (whole plant, rosette, seed, leaf, flower, seedling, root, shoot, and cell suspension)
- 9 experimental conditions (chemical, development, hormone, light, pathogen, stress, metabolism, glucose metabolism, and unknown)

Dataset combinations

Generated 90 datasets including one for each (tissue, condition) pair.

► BR8000

Method	Genes	Edges	Comp.	Largest Comp.	%
GeneNet	4447	15703	791	(3612, 15652)	55.58
ACGN	3977	198848	175	(3787, 198830)	49.71
TINGe	6646	136681	8	(6639, 136681)	83.07
AraNet	7420	142284	325	(7073, 142260)	92.75

► RD26-8725

Method	Genes	Edges	Comp.	Largest Comp.	%
GeneNet	4709	17890	801	(3859, 17839)	53.97
ACGN	4253	319757	183	(4059, 319745)	46.52
TINGe	7049	162091	16	(7034, 162091)	80.79
AraNet	8062	231478	351	(7703, 231468)	92.40

- ► Arabidopsis Transcription Regulatory Map (Jin et al., 2015)
 - Experimentally validated interactions extracted via text mining.
 - 1431 interactions among 790 genes.
- Results: % of identified interactions vs. cut off distance.

Method	Cut off Distance				
	1	2	3		
ACGN	4.13	14.26	25.02		
GeneNet	5.77	35.54	61.65		
TINGe	9.43	50.66	97.11		
AraNet	14.88	43.26	85.34		

Score-based Bayesian Network Structure Learning

- ▶ Scoring Function : s(X, Pa(X))
 - Fitness of choosing set Pa(X) as parents for X

► Score of a network *N*

Bayesian Network Modeling

- Bayesian Networks
 - DAG N and joint probability P such that $X_i \perp ND(X_i)|Pa(X_i)$
 - Super exponential search space in n: $\frac{n!2^{\frac{n}{2}(n-1)}}{rz^n}$ possible DAGs over n variables, $r \approx 0.57436$, $z \approx 1.4881$ (Robinson, 1973)
 - NP-hard even for bounded node in-degree (Chickering et al., 1994)]
- Optimal Structure Learning
 - Serial: $O(n^22^n)$; n = 20 in ≈ 50 hours (Ott et al., PSB 2004).
 - Work-optimal Parallel Algorithm (Nikolova et al., HiPC 2009).
- ► Heuristic Structure Learning
 - Serial: n = 5000 in ≈ 13 days (Tsamardinos et al., Mach. Learn. 2006)
 - Genome-scale: 13,731 human gene network estimated by 50,000 random subnetworks of size 1,000 each (Tamada et al. TCBB 2011)

Our Heuristic Parallel Algorithm

- 1. Conservatively estimate candidate parents set CP(X) for each X
 - Use pairwise mutual information (Zola et al. TPDS 2010)
 - Symmetric: $Y \in CP(X) \Rightarrow X \in CP(Y)$
- 2. Compute optimal parents sets (OPs) from CPs using exact method
 - Directly compute *OP*s from small *CP*s $(|CP(X)| \le t)$
 - Reduce large CPs by using

$$CP(Y) \leftarrow CP(Y) \setminus \{X \in CP(Y) \mid Y \in OP(X)\}$$

- Select top t correlations for still large CP sets
- Directly compute *OP*s from the now small *CP*s
- 3. Detect and break cycles

(Nikolova et al. SC 2002)

Our Heuristic Parallel Algorithm

- 1. Conservatively estimate candidate parents set CP(X) for each X
 - Use pairwise mutual information (Zola et al. TPDS 2010)
 - Symmetric: $Y \in CP(X) \Rightarrow X \in CP(Y)$
- 2. Compute optimal parents sets (OPs) from CPs using exact method
 - Directly compute *OP*s from small *CP*s $(|CP(X)| \le t)$
 - Reduce large CPs by using

$$CP(Y) \leftarrow CP(Y) \setminus \{X \in CP(Y) \mid Y \in OP(X)\}$$

- Select top t correlations for still large CP sets
- Directly compute OPs from the now small CPs
- 3. Detect and break cycles

(Nikolova et al. SC 2002)

Key Ideas

- Combine the precision of Optimal Learning with scalability of Heuristic Learning.
- ▶ Push limit on t using massive parallelism.

▶ Compute $CP(X_i) \rightarrow OP(X_i)$.

$$OP(X_i) = \underset{A \subseteq CP(X_i)}{\operatorname{arg max}} s(X_i, A)$$

Proposed Hypercube Representation

▶ Compute $CP(X_i) \rightarrow OP(X_i)$.

$$OP(X_i) = \underset{A \subseteq CP(X_i)}{\operatorname{arg max}} s(X_i, A)$$

▶ But, more efficient to compute $s(X_i, A)$ from $s(X_i, B)$ where $B \subset A$.

Reusing Computations

▶ Compute $CP(X_i) \rightarrow OP(X_i)$.

$$OP(X_i) = \underset{A \subseteq CP(X_i)}{\operatorname{arg max}} s(X_i, A)$$

- ▶ But, more efficient to compute $s(X_i, A)$ from $s(X_i, B)$ where $B \subset A$.
- ► Depth First traversal to cap memory usage.

▶ Compute $CP(X_i) \rightarrow OP(X_i)$.

$$OP(X_i) = \underset{A \subseteq CP(X_i)}{\operatorname{arg max}} s(X_i, A)$$

- ▶ But, more efficient to compute $s(X_i, A)$ from $s(X_i, B)$ where $B \subset A$.
- ► Depth First traversal to cap memory usage.

Challenges

- 1. Available parallelism limited by number of genes.
- 2. Workload varies exponentially.

► Maximum unit of work set as *r*-dimensional hypercube.

- ► Maximum unit of work set as *r*-dimensional hypercube.
- ► Larger Hypercubes are split into *r*-dimensional sub-hypercubes.

- ► Maximum unit of work set as *r*-dimensional hypercube.
- ► Larger Hypercubes are split into *r*-dimensional sub-hypercubes.
- Direct access to subhypercube facilitated by computing the root.

Key Idea

Significantly increases parallelism with negligible compromise on reuse.

▶ Variable sized loads even when hypercube sizes are same.

- ▶ Variable sized loads even when hypercube sizes are same.
- ▶ Dynamic Scheduling over a processor tree.

- ▶ Variable sized loads even when hypercube sizes are same.
- ▶ Dynamic Scheduling over a processor tree.

- ▶ Variable sized loads even when hypercube sizes are same.
- ▶ Dynamic Scheduling over a processor tree.

- ▶ Variable sized loads even when hypercube sizes are same.
- ▶ Dynamic Scheduling over a processor tree.

(Pamnany et al. ISC 2015)

Score Computation

To compute $s(X_4, \{X_1, X_2\})$, estimate $\tilde{P}(X_4 | \{X_1, X_2\})$.

	X_1	X_2	X_4
1			
2			
3			
4			
5			
6			
7			
8			
9			

To compute $s(X_4, \{X_1, X_2\})$, estimate $\tilde{P}(X_4 | \{X_1, X_2\})$.

To compute $s(X_4, \{X_1, X_2, X_3\})$, estimate $\tilde{P}(X_4 | \{X_1, X_2, X_3\})$.

To compute $s(X_4, \{X_1, X_2, X_3\})$, estimate $\tilde{P}(X_4 | \{X_1, X_2, X_3\})$.

To compute $s(X_4, \{X_1, X_2, X_3\})$, estimate $\tilde{P}(X_4 | \{X_1, X_2, X_3\})$.

Key Idea

Vectorization: Score function dominates execution time.

Target Supercomputers

- ► Tianhe-2, National University of Defense Technology, Changsha.
- ► Stampede, Texas Advanced Computing Center, Austin.

	Node configuration				
	Tianhe-2 (54.9 PF)	Stampede (8.5 PF)			
CPU	Intel Xeon E5-2600	Intel Xeon E5-2680			
CPU Frequency	2.2 GHz	2.7 GHz			
No. of CPUs	2	2			
DRAM	64 GB	32 GB			
Coprocessors	Intel Xeon Phi 31 S1P	Intel Xeon Phi SE10P			
Coprocessors frequency	1.09 GHz	1.09 GHz			
No. of Coprocessors	3	1			
Coprocessor Memory	8 GB	8 GB			
Cores per node	192 $(2 \times 12 + 3 \times 56)$	$76 (2 \times 8 + 60)$			
Threads per node	696	256			

▶ 4.8-6.4x Speedup due to reuse of computation.

▶ 7-18 % improvement by dynamic scheduling in all cases except – 8192 nodes for the ⟨all,stress⟩ dataset

Where does the speedup come from?

Full Application Runs

	all,all	seedling,all	root,all	all,stress
Genes (n)	14, 330	13,590	15, 236	15, 216
Experiments (m)	11,760	4,933	1,939	2,476
Genes with $ \mathit{CP} \leq t$	13,922	13,086	14,340	13,293
Genes with reduced <i>CP</i>	408	504	896	1,923
Genes with truncated CP	241	15	293	1,376
Run-time on STP (sec)	1,947	269	501	2, 352
Run-time on TH-2 (sec)	113.4			171.2
Billion scores/s (TH-2)	12.3			42.9

(Misra et al. SC 2014, best paper finalist)

GeNA — **Gene Network Analyzer**

Adopted from page rank (Haveliwala, *IEEE Trans. Knowledge Data Engg. 2003*)

Assign transition probabilities:

$$\omega(i,j) = \frac{D[i,j]}{\sum_{k:(i,k)\in N} D[i,k]}$$

Compute ranks:

$$R(j)^{(k+1)} = (1 - \alpha) \cdot \left(\sum_{i:(i,j) \in N} \omega(i,j) \cdot R(i)^{(k)} \right) + \alpha \cdot p(j)$$

Return connected subnetwork with high ranked genes.

Carotenoid Subnetwork and Pathway

Pink – Seed genes; Green – In associated pathways; Blue – Have related GO terms; Yellow – No known function

Carotenoid Subnetwork and Pathway

Pink – Seed genes; Green – In associated pathways; Blue – Have related GO terms; Yellow – No known function

Wild Type

AT1G56500

AT5G07020

Experimental Validation

Network Driven Biology Research

M. Aluru, J. Zola, D. Nettleton and S. Aluru, "Reverse engineering and analysis of large genome-scale gene networks," *Nucleic Acids Research*, Vol. 41, No. 1, pp. e24, doi: 10.1093/nar/gks904, 2013.

- H. Guo, L. Li, M. Aluru, S. Aluru and Y. Yin, "Mechanisms and networks for brassinosteroid regulated gene expression," *Current Opinion in Plant Biology*, Vol. 16, 9 pages, 2013.
- X. Yu, L. Li, J. Zola, M. Aluru, H. Ye, A. Foudree, H. Guo, S. Anderson, S. Aluru, P. Liu, S. Rodermel and Y. Yin, "A brassinosteroid transcriptional network revealed by genome-wide identification of BES1 target genes in Arabidopsis thaliana," *The Plant Journal*, Vol. 65, No. 4, pp. 634-646, 2011.

Group Members:

- ► Sriram Chockalingam
- Wasim Mohammed
- Olga Nikolova
- ► Jaroslaw Zola

Collaborators:

- ► Maneesha Aluru (Bio)
- Yanhai Yin (Bio)
- Daniel Nettleton (Stat)
- Sanchit Misra (Intel)
- Kiran Pamnany (Intel)

Funding

Research supported by NSF CCF-0811804, IOS-1257631, and Intel PCC.