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Abstract

We present an e"cient and scalable coarse grained multicomputer (CGM) coloring algorithm
that colors a graph G with at most ! + 1 colors where ! is the maximum degree in G. This
algorithm is given in two variants: randomized and deterministic. We show that on a p-processor
CGM model the proposed algorithms require a parallel time of O(|G|=p) and a total work and
overall communication cost of O(|G|). These bounds correspond to the average case for the
randomized version and to the worst case for the deterministic variant.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The graph coloring problem deals with the assignment of positive integers (colors)
to the vertices of a graph such that adjacent vertices do not get the same color and
the number of colors used is minimized. A wide range of real-world problems, among
others, time tabling and scheduling frequency assignment, register allocation, and ef-
#cient estimation of sparse matrices in optimization, have successfully been modeled
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using the graph coloring problem. See [2,4,8,20] for some of the works in each of
these applications, respectively. Besides modeling real-world problems, graph coloring
plays a crucial role in the #eld of parallel computation. In particular, when a computa-
tional task is modeled using a graph where the vertices represent the subtasks and the
edges correspond to the relationship among them, graph coloring is used in dividing
the subtasks into independent sets that can be performed concurrently.
The graph coloring problem is known to be NP-hard [9], making heuristic approaches

inevitable in practice. There exist a number of sequential graph coloring heuristics that
are quite e$ective in coloring graphs encountered in practical applications. See [4] for
some of the popular heuristics. However, due to their inherent sequential nature, these
heuristics are di"cult to parallelize. In fact, in [12], coloring the vertices of a graph
in a given order where each vertex is assigned the smallest color that has not been
given to any of its neighbors is shown to be P-complete. Consequently, parallel graph
coloring heuristics of di$erent %avor than the e$ective sequential coloring heuristics
had to be suggested. One of the important contributions in this regard is the parallel
maximal-independent set #nding algorithm of Luby [21] and the coloring algorithm
based on it. Subsequently, Jones and Plassmann [16] improved Luby’s algorithm and
in addition used graph partitioning as a means to achieve a distributed memory coloring
heuristic based on explicit message-passing. Unfortunately, Jones and Plassmann did not
get any speedup from their experimental studies. Later, Allwright et al. [1] performed a
comparative study of the implementations of the Jones–Plassmann algorithm and a few
other variations and reported that none of the algorithms included in the study yielded
any speedup. The justi#cation for the usage of these parallel coloring heuristics has
been the fact that they enabled solving large-scale problems that could not otherwise
#t onto the memory of a sequential machine.
Despite these discouraging experiences, Gebremedhin and Manne [10] recently pro-

posed a shared memory parallel coloring algorithm that yields good speedup. Their
theoretical analysis using the PRAM model shows that the algorithm is expected to
provide an almost linear speedup and experimental results conducted on the Origin
2000 supercomputer using graphs that arise from #nite element methods and eigen-
value computations validate the theoretical analysis.
The purpose of this paper is to make this successful approach feasible for a larger

variety of architectures by extending it to the coarse grained multicomputer (CGM)
model of parallel computation [6]. The CGM model makes an abstraction of the in-
terconnection network among the processors of a parallel computer (or network of
computers) and captures the e"ciency of a parallel algorithm using only a few pa-
rameters. Several experiments show that the CGM model is of practical relevance:
implementations of algorithms formulated in the CGM model in general, turn out to
be portable, predictable, and e"cient [13,14].
In this paper, we propose a CGM coloring algorithm that colors a graph G with

at most ! + 1 colors where ! is the maximum degree in G. The algorithm is given
in two variants: one randomized and the other deterministic. We show that the pro-
posed algorithms require a parallel time of O(|G|=p) and a total work and overall
communication cost of O(|G|). These bounds correspond to the average case for the
randomized version and to the worst case for the deterministic variant.
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The remainder of this paper is organized as follows. In Section 2 we review the
CGM model of parallel computation and the graph coloring problem. In Section 3 we
discuss a good data organization for our CGM algorithms and present the randomized
variant of the algorithm along with its various subroutines. In Section 4 we provide
an average case analysis of the randomized algorithm’s time and work complexity.
In Section 5 we show how to de-randomize our algorithm to achieve the same good
time and work complexity also in the worst case. Finally, in Section 6 we give some
concluding remarks.

2. Background

2.1. Coarse grained models of parallel computation

In the last decade, several e$orts have been made to de#ne models of parallel (or
distributed) computation that are more realistic than the classical PRAM models; see
[7] or [19] for an overview of PRAM models. In contrast to the PRAM models that
suppose that the number of processors p is polynomial in the input size N , the new
models are coarse grained, i.e. they assume that p and N are orders of magnitude
apart. Due to this assumption, the coarse grained models map much better on existing
architectures where, in general, the number of processors is in the order of hundreds
and the size of the data to be handled could be in the order of billions.
The introduction of bulk synchronous parallel (BSP) bridging model for parallel

computation by Valiant [24] marked the beginning of the increasing research interest in
coarse grained parallel computation. The BSP model was later modi#ed along di$erent
directions. For example, Culler et al. [5] suggested the LogP model as an extension of
Valiant’s BSP model in which asynchronous execution was modeled and a parameter
was added to better account for communication overhead. In an e$ort to de#ne a
parallel computation model that retains the advantages of coarse grained models while
at the same time is simple to use (involves few parameters), Dehne et al. [6] suggested
the CGM model.
The CGM model considered in this paper is well suited for the design of algorithms

that are not too dependent on a particular architecture and our basic assumptions of
the model are listed below.

• The model consists of p processors and all the processors have the same size M =
O(N=p) of memory, where N is the input size.

• An algorithm on this model proceeds in the so-called supersteps. A superstep consists
of one phase of local computation and one phase of interprocessor communication.

• The communication network between the processors can be arbitrary.

The goal when designing an algorithm in this model is to keep the sum total of the
computational cost per processor, the overall communication cost, and idle time of
each processor within T=s(p), where T is the runtime of the best sequential algorithm
on the same input, and the speedup s(p) is a function that should be as close to p as
possible.
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To achieve this, it is desirable to keep the number of supersteps of such an algorithm
as low as possible, preferably within o(M). The rationale here lies in the fact that,
among others, the message startup-cost and the bandwidth of an architecture determine
the communication overhead. In each superstep, a processor may need to do at most
O(p) communications and hence a number of supersteps of o(M) ensures that the total
startup-cost is at most O(Mp) = O(N ) and therefore lies within the complexity bound
of the overall computational cost we anticipate for such an algorithm. The bandwidth
restriction of a speci#c platform must still be observed, and here the best strategy is
to reduce the communication volume as much as possible. See [13] for an overview
of algorithms, implementations and experiments on the CGM model.
As a legacy from the PRAM model, it is usually assumed that the number of su-

persteps should be polylogarithmic in p. However, the assumption seems to have no
practical justi#cation. In fact, there is no known relationship between the coarse grained
models and the complexity classes NCk . In practice, algorithms that simply ensure
number of supersteps that are functions of p (but not of N ) perform quite well [11].
To be able to organize the supersteps well, we assume that each processor can store

a vector of size p for every other processor. Thus, the following inequality is assumed
throughout this paper:

p2¡M: (1)

2.2. Graph coloring

A graph coloring is a labeling of the vertices of a graph G = (V; E) with positive
integers, called colors, such that adjacent vertices do not obtain the same color. It can
equivalently be viewed as searching for a partition of the vertex set of the graph into
independent sets. The primary objective in the graph coloring problem is to minimize
the number of colors used. Even though coloring a graph with the fewest number of
colors is an NP-hard problem, in many applications coloring using a bounded number
of colors, possibly far from the minimum, may su"ce. Particularly, in many parallel
graph algorithms, a bounded coloring (partition into independent sets) is needed as
a subroutine. For example, graph coloring is used in the development of a parallel
algorithm for computing the eigenvalues of certain matrices [22] and in parallel partial
di$erential equation solvers [1].
One of the simplest and yet quite e$ective sequential heuristics for graph coloring

is the greedy algorithm that visits the vertices of the graph in some order and in each
visit assigns a vertex the smallest color that has not been used by any of the vertex’s
neighbors. It is easy to see that, for a graph G = (V; E), such a greedy algorithm
always uses at most !+1 colors, where !=maxv∈V{degree of v}. In Greenlaw et al.
[12], a restricted variant of the greedy algorithm in which the ordering of the vertices
is prede#ned, and the algorithm is required to respect the given order, is termed as
Lexicographically First !+1-coloring (LF!+1-coloring). We refer to the case where
this restriction is absent and where the only requirement is that the resulting coloring
uses at most !+ 1 colors, simply as !+ 1-coloring.
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The LF! + 1-coloring is known to be P-complete [12]. But for special classes of
graphs, some NC algorithms have been developed for it. For example, Chelbus et al.
[3] show that for tree structured graphs LF!+1-coloring is in NC. In the absence of
the lexicographically #rst requirement, a few NC algorithms for general graphs have
been proposed. Luby [21] has given an NC algorithm for !+ 1-coloring by reducing
the coloring problem to the maximal independent set problem. Moreover, Karchmer
and Naor [17], Karlo$ [18], and Hajnal Szemer!edi [15] have each presented di$erent
NC algorithms for Brook’s coloring (a coloring that uses at most ! colors for a graph
whose chromatic number is bounded by !). Earlier, Naor [23] had established that
coloring planar graphs using #ve colors is in NC.
However, all of these NC coloring algorithms are mainly of theoretical interest as

they require polynomial number of processors, whereas, in reality, one has only a lim-
ited number of processors on a given parallel computer. In this regard, Gebremedhin
and Manne [10] have recently shown a practical and e$ective shared memory parallel
! + 1-coloring algorithm. They show that distributing the vertices of a graph evenly
among the available processors and coloring the vertices on each processor concur-
rently, while checking for color compatibility with already colored neighbors, creates
very few con%icts. More speci#cally, the probability that a pair of adjacent vertices
are colored at exactly the same instance of the computation is quite small. On a some-
what simpli#ed level, the algorithm of Gebremedhin and Manne works by tackling the
list of vertices numbered from 1 to n in a ‘round robin’ manner. At a given time t,
where 16 t6 r and r = !n=p", processor Pi colors vertex (i − 1)r + t. The shared
memory assumptions ensure that Pi may access the color information of any vertex
at unit cost of time. Adjacent vertices that are, in fact, handled at exactly the same
time are the only causes for concern as they may result in con%icts. Gebremedhin
and Manne show that the number of such con%icts is small on expectation, and that
con%icts can easily be resolved a posteriori. Their analysis of the resulting algorithm
using the PRAM model shows that the algorithm colors a general graph G = (V; E)
with !+ 1 colors in an expected time O(|G|=p), when the number of processors p is
such that p6 |V |=

√

2|E|.
However, in a distributed memory setting, the most common case in our target model

CGM, one has to be more careful about access to data located on other processors.

3. A CGM ! + 1-coloring algorithm

We start this section by discussing how we distribute the input graph among the
available processors for our CGM ! + 1-coloring algorithms. Then, the randomized
variant of our algorithm is presented in a top-down fashion, starting with an overview
and #lling the details as the presentation proceeds.

3.1. Data distribution

In general, a good data organization is crucial for the e"ciency of a distributed
memory parallel algorithm. For our CGM-coloring algorithm in particular, the input
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graph G = (V; E) is organized in the following manner:

• Each processor Pi (16 i6p) is responsible for a subset Ui of the vertices (V =
⋃p
i=1 Ui). With a slight abuse of notation, the processor hosting a vertex v is denoted

by Pv.
• Each edge e= {v; w}∈E is represented as arcs (v; w) stored at Pv, and (w; v) stored
at Pw.

• For each arc (v; w) processor Pv stores the identity of Pw and thus the location of
the arc (w; v). This is to avoid a logarithmic blow-up due to the search for Pw.

• The arcs are sorted lexicographically and stored as a linked list per vertex.

In this data distribution, we require that the degree of each vertex be less than D =
!N=p", where N = |E|. Vertices with degree greater than D are treated in a separate
preprocessing step.
If the input of the algorithm is not of the desired form, it can be e"ciently trans-

formed into one by carrying out the following steps.

• Generate two arcs for each edge as described above,
• Radix sort (see [13] for a CGM radix sort) the list of arcs such that each processor
receives the arc (v; w) if it is responsible for vertex w,

• Let every processor note its identity on these sibling arcs,
• Radix sort the list of arcs such that every processor receives its proper arcs (arcs
(v; w) if it is responsible for vertex v).

3.2. The algorithm (Schemes 1–9)

As the time complexity of sequential !+1-coloring is linear in the size of the graph
|G|, our aim is to design a parallel algorithm in CGM with O(|G|=p) work per processor
and O(|G|) overall communication cost. In an overview, our CGM coloring algorithm
consists of two phases, an initial and a main recursive phase; see Algorithm 1.

In the initial phase, the subgraph induced by the vertices with degree greater than
!N=p" is colored sequentially on one of the processors. Clearly, there are at most p
such vertices since otherwise we would have more than N edges in total. Thus, the
subgraph induced by these vertices has at most p2 edges. Since p2 is assumed to be
less than M , the induced subgraph #ts on a single processor (say P1) and a call to
Algorithm 3 colors it sequentially. Algorithm 3 is also used in another situation than
coloring such vertices. We defer the discussion on the details of Algorithm 3 to Section
3.2.1 where the situation that calls for its second use is presented.
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Fig. 1. Graph on 72 vertices distributed onto 6 processors and 4 timeslots.

The main part of Algorithm 1 is the call to Algorithm 2 which recursively colors
any graph G such that the maximum degree !6M . The basic idea of the algorithm
is based on placing the vertices residing on each processor into di$erent timeslots.
The assignment of timeslots to the vertices gives rise to two categories of edges. The
#rst category consists of edges which connect vertices having the same timeslot. We
call these edges bad and all other edges good. Fig. 1 shows an example of a graph
distributed on 6 processors and 4 timeslots in which the bad edges are shown in bold.
In a nutshell, Algorithm 2 proceeds timeslot-by-timeslot where in each timeslot the

graph de#ned by the bad edges and the vertices incident on them is identi#ed and
the algorithm is called recursively with the identi#ed graph as input while the rest of
the input graph is colored concurrently.
In Algorithm 2, while partitioning the vertices into k timeslots, where 1¡k6p, we

would like to achieve as even a distribution as possible. The call to Algorithm 6 in line
group vertices does this by using the degree of each vertex as a criterion. This randomi-
zed algorithm is presented in Section 3.2.2.2 where the issue of load balancing is brie%y
discussed. Prior to calling Algorithm 6, vertices with ‘high degrees’ that would other-
wise result in an uneven load balance are treated separately; see line high degree. The
algorithm for treating high degree vertices, Algorithm 5, is presented in Section 3.2.2.1.
Notice that an attempt to concurrently color vertices incident on a bad edge may

result in an inconsistent coloring (con%ict). In a similar situation, Gebremedhin and
Manne, in their shared memory formulation, tentatively allow such con%icts and resolve
eventual con%icts in a later sequential phase. The success of their approach lies in the
fact that the expected size of the edges in con%ict is relatively small. In our case, we
deal with the potential con%icts a priori. We #rst identify the subgraphs that could
result in con%ict and then color these subgraphs in parallel recursively until their union
is small enough to #t onto the memory of a single processor. See lines identify con!icts
and recurse in Algorithm 2. Note that, in general, some processors may receive more
vertices than others. We must ensure that these recursive calls do not produce a blow-up
in computation and communication. In order to ensure that the subgraph that goes into
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recursion is evenly distributed among the processors, a call to Algorithm 7 is made at
line balance load. Algorithm 7 is discussed in Section 3.2.2.3.
In the recursive calls one must handle the restrictions that are imposed by previously

colored vertices. We extend the problem speci#cation and assume that a vertex v also
has a list Fv of forbidden colors that initially is empty. An important issue for the
complexity bounds is that a forbidden color is added to Fv only when the knowledge
about it arrives on Pv. The list Fv as a whole will only be touched once, namely when
v is #nally colored.
Observe also that the recursive calls in line resolve need not be synchronized. In other

words, it is not necessary (nor desired) that the processors start recursion at exactly
the same moment in time. During recursion, when the calls reach the communication
phase of the algorithm, they will automatically be synchronized in waiting for data
from each other.
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Clearly, the subgraph de#ned by the good edges and their incident vertices can be
colored concurrently by the available processors. In particular, each processor is re-
sponsible for coloring its set of vertices as shown in line color vertex of Algorithm
2. In determining the least available color to a vertex, each processor maintains a
Boolean vector Bcolors. This vector is indexed with the colors and initialized with
all values set to ‘true’. Then when processing a vertex v, the entries of Bcolors
corresponding to v’s list of forbidden colors are set to ‘false’. After that, the #rst
item in Bcolors that is still true is looked for and chosen as the color of v. Then,
the vector is reset by assigning all its modi#ed values the value ‘true’ for future
use.
After a processor has colored a vertex, it communicates the color information to

processors hosting a neighbor. In each timeslot the messages to the other processors
are grouped together, see send messages and receive messages. This way at most p−1
messages are sent per processor per timeslot.
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3.2.1. The base case
The base case of the recursion is handled by a call to Algorithm 3 (see base case in

Algorithm 2). Note that the sizes of the lists Fv of forbidden colors that the vertices
might have collected during higher levels of recursion may actually be too large and
their union might not #t on a single processor. To handle this situation properly, we
proceed in three steps as shown in Algorithm 3. Notice that Algorithm 3 is the same
routine called in the initial phase of Algorithm 1.
In the step "nd allowed, for each vertex v∈V ′ a short list of allowed colors Av is

computed. Observe that a vertex v can always be colored using one color from the set
{1; 2; : : : ; d(v) + 1}, where d(v) is the degree of v. Hence, a list of d(v) + 1 allowed
colors su"ces to take all restrictions of forbidden colors into account. Using a similar
technique as described in color vertex of Algorithm 2, we can obtain a sorted list Av
of allowed colors for v in time proportional to |Fv|+ d(v). This is done by the call to
Algorithm 4 in line "nd allowed. Then in the step color sequentially, the vertices of
the input graph are colored sequentially using their computed lists of allowed colors.
In the #nal step communicate, the color information of the vertices is communicated.

3.2.2. Load balancing
In this section, we address the issue of load balancing. In Algorithm 2, three matters

that potentially result in an uneven load balance are: (i) high variation in the degrees of
the vertices, (ii) high variation in the sum of the degrees in the timeslots, and (iii) the
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recursive calls on the subgraphs that go into recursion. The following three paragraphs
are concerned with these points.

3.2.2.1. Handling high degree vertices. Whereas for the shared memory algorithm
di$erences in degrees of the vertices that are colored in parallel just causes a slight
asynchrony in the execution of the algorithm, in a CGM setting it might result in a
severe load imbalance and even in memory over%ow of a processor.
Line group vertices of Algorithm 2 groups the vertices into k6p timeslots of about

equal degree sum. If the variation in the degrees of the vertices is too large, such a
grouping would not be even. For example, if we have one vertex of very large degree,
it would always dominate the degree sum of its time slot thereby creating an imbalance.
So, we have to make sure that the degree of each vertex is fairly small, namely smaller
than !M ′=q" where q is a parameter of Algorithm 5. Observe that the notion of ‘small’
degree depends on the input size M ′ and thus may change during the course of the
algorithm. This is why we need to have the line high degree in every recursive call and
not only at the top level call. Note that q is a multiple of k, the number of timeslots
of Algorithm 2.
Thus, the high degree vertices that we indeed have to treat in each recursive call are

those vertices v with !M ′=q"¡deg(v)6M ′. Such vertices are handled using Algo-
rithm 5, which essentially divides the set of high degree vertices into k ′6 q timeslots
and colors each of the subgraphs induced by these timeslots sequentially.

3.2.2.2. Grouping vertices into timeslots. Algorithm 6 partitions the vertices into k
timeslots. It does so by #rst dividing the set of vertices into groups of size k and
then distributing the vertices of each group into the distinct timeslots. Observe that no
communication is required during the course of this algorithm.
The partition obtained with this algorithm is relatively balanced.

Lemma 1. On each processor P, the di!erence of the degree sums of the vertices in
any two timeslots is at most the maximum degree over all vertices that P holds.

Proof. Since the vertices are considered in descending order of their degrees, the dif-
ference in degree sums between two timeslots is maximized when one of the timeslots
always receives the vertex with the highest degree in the group and the other the small-
est. In group i, the vertex of highest degree is vik+1 and the one of smallest degree is
v(i+1)k . Thus, we can estimate the di$erence as follows:

#s=k$−1
∑

i=0

deg(vik+1)−
#s=k$−1
∑

i=0

deg(v(i+1)k) ≤
#s=k$−1
∑

i=0

deg(vik+1)−
#s=k$−2
∑

i=0

deg(v(i+1)k+1);

which is in turn bounded by deg(v1), where v1 has the maximum degree over all
vertices that P holds.

From Lemma 1 and from the fact that we do not have high degree vertices, it
follows that the sum of the degrees of the vertices in any timeslot is between M ′=2k
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and 3M ′=2k.

3.2.2.3. Balancing during recursion. In Algorithm 2, unless proper attention is paid,
the edges of the subgraph that goes into recursion may not be evenly distributed among
the processors. To address this, we suggest an algorithm that ensures that Grec, the graph
that goes into recursion in Algorithm 2, is evenly distributed among the processors.
See Algorithm 7.

Obviously Algorithm 7 runs in time proportional to the input size on each processor
and has a constant number of supersteps.

4. Average case analysis

In this section we provide an average case analysis of Algorithm 2. In Section 5 we
show how to replace the randomized algorithm, Algorithm 6, by a deterministic one.
All the lemmas in this section refer to Algorithm 2 unless stated otherwise.

Lemma 2. For any edge {v; w}, the probability that tv = tw is at most 1=k.
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Proof. Consider Algorithm 6. We distinguish between two cases. The #rst is the case
where v and w reside on di$erent processors. In this case, the choices for the timeslots
of v and w are clearly independent, implying that the probability that w is in the same
timeslot as v is 1=k.
The same argument applies for the case where v and w reside on the same processor

but are not processed in the same group. Whenever they are in the same group, they
are never placed into the same timeslot. Therefore, the overall probability is bounded
by 1=k.

Lemma 3. The expected sum total of the number of edges of all subgraphs going
into recursion in recurse is at most |E′|=k.

Proof. The expected total number of edges going into recursion is equal to the expected
total number of bad edges. The latter is in turn equal to

∑

e∈E′ prob(e is bad), which
by Lemma 2 can be bounded by |E′|=k.

Lemma 4. The expected overall size of the subgraphs at the ith recursion level is at
most N=ki, with at most M=ki per processor.

Proof. Notice that the choices of timeslots between two successive recursion levels
may not be independent. However, the dependency that may occur actually reduces
the number of bad edges even more. This can be seen from a similar argument as that
of Lemma 2: vertices that are in the same group of the degree sequence in Algorithm
6 are forced to be separated into two di$erent timeslots. For all others, the choices are
again independent.
Thus, the total number of edges going into recursion can be immediately bounded

by N=ki. The fact that it is also balanced across the processors is due to Algorithm
7.

Lemma 5. The expected sum total of the sizes of all the subgraphs handled by any
processor during Algorithm 2 (including all recursions) is O(M).

Proof. By Lemma 4, the expected sum of the sizes of these graphs is bounded by

∞
∑

i=0

k−iM =
k

k − 1 M6 2M (2)

for all k¿ 2. Thus, the total expected size in all the steps per processor is O(M).

Lemma 6. For any 1¡k6p, the expected number of supersteps is at most quadratic
in p.

Proof. The expected recursion depth of our algorithm is the minimum value d such
that N=kd6M = N=p, which implies kd¿p, i.e. d = !logk p". The total number of
supersteps in each call (including the supersteps in Algorithm 5) is c · k, for some
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constant c¿ 1. The constant c captures the following supersteps:

• some to handle high degree vertices,
• one to propagate the chosen timeslots,
• some to balance the edges inside each timeslot,
• one to propagate the colors for each timeslot.

Thus, the total number of supersteps on recursion level i is c · ki and the expected
number of supersteps is bounded as follows:

#logk p$
∑

i=1

c · ki6 c · k logk p+1 = c · k · p: (3)

Lemma 7. The expected overall work involved in base case is O(M).

Proof. Algorithm 3 on input G′= (V ′; E′) and lists of forbidden colors Fv has overall
work and communication cost proportional to |G′| and the size of the lists Fv.
There are k#logk p$ expected calls to Algorithm 3 in Algorithm 2; therefore P1 is ex-

pected to handle k#logk p$N=kp2 edges and k#logk p$N=kp26 k1+logk pN=kp26 kpN=kp2=
M . This implies an expected work and communication cost of O(M) for base case.

Lemma 8. The expected overall work per processor involved in high degree is O(M).

Proof. In Algorithm 2, in the #rst call to Algorithm 5 (M ′ = M), every processor
holds at most q= 2k high degree vertices (i.e vertices v of degree degv(G) such that
N=pq¡degv(G)6N=p). Otherwise, it would hold more than (M=q) ·q=M edges. So,
overall, there are at most p · q such vertices for the #rst level of recursion. Processor
P1 distributes these O(p2) vertices onto k ′ timeslots such that each timeslot has a
degree sum of at most 2N=p = 2M . Thus, each timeslot induces a graph of expected
size 2M=k ′. Subsequently, sequential !+1-coloring is called for the subgraph induced
by each timeslot, for total work O(M) = O(M ′).
By induction we see that in the ith level of recursion, if a vertex v is of high degree,

its degree degv(Grec) has to be M ′=q¡degv(Grec)6M ′. Using the same argument as
the one above, it can be shown that the total work to handle these vertices is O(M ′).
From Lemma 5, the total expected work in all the steps per processor is O(M).

Lemma 9. The expected overall work per processor involved in group vertices is
O(M).

Proof. Observe that the radix sort can be done in O(M ′), since the sort keys are less
than M ′. The random permutations can easily be computed locally in linear time.
Again, Lemma 5 proves the claim.

Theorem 1. For any 1¡k6p, the expected work, communication, and idle time per
processor of Algorithm 2 is within O(M). In particular, the expected total run-time
per processor is O(M).
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Proof. From Lemma 6 we see that the expected number of supersteps is O(p2); hence
by inequality (1) the expected communication overhead generated in all the supersteps
is O(M).
We proceed by showing that the work and communication that a processor has to

perform in Algorithm 2 is a function of the number of edges on that processor, i.e.
M . Inserting a new forbidden color into an unsorted list Fv can be done in constant
time. Since an edge contributes an item to the list of forbidden colors of one of its
incident vertices at most once, the size of such a list is bounded by the degree of the
vertex. Thus, the total size of these lists on any of the processors will never exceed
the input size M ′ (recall that vertices of degree greater than N=p have been handled
in the preprocessing step).
As discussed in Section 3.2, a Boolean vector Bcolors is used in determining the

color to be assigned to a vertex. In the absence of high degree vertices no list Fv will
be longer than M ′=q and hence the size of Bcolors need not exceed M ′=q + 1. Even
when this restriction is relaxed, as shown in Section 3.2.2.1, we need at most p colors
for vertices of degree greater than N=p and need not add more than !′ + 1 colors,
where !′ is the maximum degree among the remaining vertices (!′6M ′). Overall,
this means that we have at most p+M ′ + 1 colors and hence the vector Bcolors still
#ts on a single processor. So, Bcolors can be initialized in a preprocessing step in time
O(M ′).
After that, coloring any vertex v can be done in time proportional to the size of Av,

which is bounded by the degree of v. Thus, the overall time spent per processor in
coloring vertices is O(M ′). By Lemma 5, the expected total time (including recursions)
per processor is O(M).
Lemmas 7–9 show that the contributions of base case, high degree, and recurse in

Algorithm 2 are within O(M) per processor, proving the claim on the total amount of
work per processor.
As for processor idle time, observe that the bottleneck in all the algorithms as

presented is the sequential processing of parts of the graphs by processor 1. Since the
total run time (of Algorithm 3) on processor 1 is expected to be O(M), the same
expected bound holds for the idle time of the other processors.

5. An add-on to achieve a good worst case behavior

So far, for a possible implementation of our algorithm, we have some degree of
freedom in choosing the number of timeslots k. If our goal is just to get results
based on expected values as shown in Section 4, we can avoid recursion by choosing
k = p and by replacing the recursive call in Algorithm 2 by a call to Sequential! +
1Coloring(Grec; {Fv}v) (Algorithm 3). We can do this since by Lemma 4 the expected
size of Grec is N=k, which in this case means N=p=M , implying that Grec #ts on one
processor. The resulting algorithm would have cp supersteps, for some integer c¿ 1;
see Lemma 6.
To get a deterministic algorithm with a good worst case bound, we choose the other

extreme, namely k = 2, and replace the call to the randomized Algorithm 6, in line
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group vertices of Algorithm 2, by a call to Algorithms 8 and 9. This will enable us
to bound the number of edges that go into recursion, i.e. the bad edges. We need to
distinguish between two types of edges: internal and external edges. Internal edges
have both of their endpoints on the same processor while external edges have their
endpoints on di$erent processors.
First we argue that internal edges are handled by the call to Algorithm 8, and later

we will argue that external edges are handled by the subsequent call to Algorithm 9.
For internal edges, the following two points need to be observed:

(1) The vertices are grouped into two timeslots of about equal degree sum.
(2) Most of the internal edges are good.

To achieve the #rst goal, Algorithm 8 #rst calls Algorithm 5 to get rid of vertices with
degree ¿M=8. The constant 8 is somewhat arbitrary and could be replaced by any
constant k ′¿ 2 depending on the needs of an implementation. Algorithm 8 groups the
vertices of internal edges according to (1) and (2) above into bucket[0] and bucket[1]
that will form the two timeslots. A bucket is said to be full when the degree sum of
its vertices becomes greater than M=2.

Proposition 1. Suppose "iM of the edges on processor Pi are external (06 "iM6M).
Then after an application of Algorithm 8, at least ( 14 − "i=2)M of the edges on Pi
are good internal edges and each bucket has a degree sum of at most 5M=8.

Proof. Considering the fact that each vertex is of degree less than M=8, the claim for
the degree sum is immediate.
To see the lower bound on the number of good internal edges, consider the bucket

B that became full. The vertices in B have a degree sum of at least M=2 and at least
( 12 − "i)M of these edges are internal. We claim that at least half of these internal
edges are good.

For the following argument, suppose that an edge is considered only when its second
endpoint is placed into a bucket. We distinguish between two types of internal edges.
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Early edges join vertices both of which have been put into a bucket before the bucket
was full, and edges for which at least one of the endpoints was placed thereafter are
called late edges.
First, observe that until one of the two buckets becomes full, both buckets have

more good internal edges than bad internal edges. So, at least one half of the early
edges are good. But, notice that all the late edges that have one endpoint in B are also
good. This is the case since the second endpoint of a late edge is never placed in B.
Therefore, overall, there are at least 12 (

1
2 − "i)M good internal edges.

To handle the external edges we add a call to Algorithm 9 right after the call to
Algorithm 8. This algorithm counts the number mrr

′

is of edges between all possible pairs
of buckets on di$erent processors, and broadcasts these values to all processors. Then
a quick iterative algorithm is executed on each processor to ascertain as to which of
the processor’s two buckets represents the #rst and second timeslot.
After having decided the order in which the buckets are processed on processors

P1; : : : ; Pi−1, we compute two values for processor Pi: A‖ the number of external
bad edges if we would keep the numbering of the buckets as the timeslot number-
ing, and A× the corresponding number if we would interchange them. Depending on
which value is less, the order of the two buckets of processor Pi is kept as-is or
exchanged.
Using the same type of argument as the one above, we get the following remark.
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Remark 10. Algorithm 9 ensures that overall at least 12 of the external edges are good.

Note that the above statement is true for the whole edge set, but not necessarily for
the set of edges on each processor.

Proposition 2. Algorithms 8 and 9 run with linear work and communication and in
a constant number of supersteps. The assignment of timeslots they make is such that
at least 1

4 of the edges are good.

Proof. For the number of good edges, let "i be the fraction of external edges of
processor Pi. The total amount of good edges can now be bounded from below by

1
2

( p
∑

i=1

"i

)

M +
p
∑

i=1

(

1
4
− "i
2

)

M =
p
∑

i=1

M
4
=
pM
4
=
N
4
: (4)

For the complexity claim, observe that because of the load balancing done in line
balance load of Algorithm 2 (see Section 3.2.2.3) all processors hold the same amount
(up to a constant factor) M ′ of edges.

This implies that the recursion depth is !log 4
3
p" (which is greater than !log2 p" of

the average case). Moreover, more edges go into recursion here than in the average
case and therefore the work and total communication costs are slightly greater than the
costs for the average case, but still within O(M).

6. Conclusion

We have presented a randomized as well as a deterministic Coarse Grained Multi-
computer coloring algorithm that color the vertices of a general graph G using at most
!+1 colors, where ! is the maximum degree in G. We showed that on a p-processor
CGM model our algorithms require a parallel time of O(|G|=p) and a total work and
overall communication cost of O(|G|). These bounds correspond to the average case
for the randomized version and to the worst case for the deterministic variant. To the
best of our knowledge, our algorithms are the #rst parallel coloring algorithms with
good speedup for a large variety of architectures.
In light of the fact that LF! + 1-coloring is P-complete, a CGM LF! + 1-coloring

algorithm, if found, would be of signi#cant theoretical importance. Brent’s scheduling
principle shows that anything that works well on PRAM should, in principle, also work
well on CGM or similar models (although the constants that are introduced might be too
big to be practical). But the converse may not necessarily be true. There are P-complete
problems (problems where we can’t expect exponential speedup on PRAM) that have
polynomial speedup [25]. It can be envisioned that such problems may as well have
e"cient CGM algorithms. In this regard, our CGM !+1-coloring algorithm might be
a #rst step towards a CGM LF!+ 1-coloring algorithm.
We also believe that, in general, designing a parallel algorithm on the CGM model

is of practical relevance. In particular, we believe that the algorithms presented in
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this paper should have e"cient and scalable implementations (i.e. implementations that
yield good speedup for a wide range of N=p).
Such implementations would also be of interest in other contexts. One example is

the problem of #nding maximal independent sets. Notice that in our algorithms the
vertices colored by the least color always constitute a maximal independent set in the
input graph. In general, considering G¿i, the subgraph induced by the color classes
i; i + 1; : : : ; we see that color class i always forms a maximal independent set in the
graph G¿i.
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