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Abstract We revisit an algorithm [called Edge Pushing (EP)] for computing Hessians
using Automatic Differentiation (AD) recently proposed by Gower and Mello (Optim
Methods Softw 27(2): 233-249, 2012). Here we give a new, simpler derivation for the
EP algorithm based on the notion of live variables from data-flow analysis in compiler
theory and redesign the algorithm with close attention to general applicability and
performance. We call this algorithm LIVARH and develop an extension of LIVARH that
incorporates preaccumulation to further reduce execution time—the resulting algo-
rithm is called LIVARHACC. We engineer robust implementations for both algorithms
LIVARH and LIVARHACC within ADOL-C, a widely-used operator overloading based
AD software tool. Rigorous complexity analyses for the algorithms are provided, and
the performance of the algorithms is evaluated using a mesh optimization application
and several kinds of synthetic functions as testbeds. The results show that the new algo-
rithms outperform state-of-the-art sparse methods (based on sparsity pattern detection,
coloring, compressed matrix evaluation, and recovery) in some cases by orders of mag-
nitude. We have made our implementation available online as open-source software
and it will be included in a future release of ADOL-C.
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1 Introduction

We deal with the design, analysis, implementation and performance evaluation of
algorithms for the efficient computation of Hessians using automatic, or algorithmic,
differentiation (AD).

AD background AD is a technology for analytically (thus accurately within machine
precision) computing the derivatives of a function encoded as a computer program. AD
relies on the premise that the execution of any computer-coded function, regardless of
how complex it is, can be decomposed into a finite sequence of elementary functions—
operators or intrinsic functions. Once decomposed, the derivatives of each elementary
function can be directly computed, and then the chain rule of calculus is applied on
the sequence to yield the derivatives of the objective function.
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Capitalizing on live variables: new algorithms for efficient. . .

An objective, or input, function could in general be either scalar or vector. Since
our focus here is on Hessians, we will be concerned with the former. Let y = F(x),
x € R™1 and y € R denote a scalar objective function of real values. Following
the notations of Griewank and Walther [1], both here and elsewhere in the paper, let
Vi—p, ..., o denote the independent variables (x). The execution of the objective
function can then be decomposed as:

fori=1,2,...,1

Vi = @i (Vj)v;<v;,1-n<j<is

where each v; = ¢; (v j)vj <v; Tepresents the evaluation of an elementary function, and
v; < v; denotes that variable v; directly depends on variable v;. That is, in each step,
v; is the result of the elementary function ¢;, which takes v; where v; < v; as operands
or parameters (for intrinsics). We call each v; = ¢;(v;) a Single Assignment Code
(SAC).1 The last variable in the sequence of elementary functions, vy, holds the return
value of the objective function, the only dependent variable. Evaluating the objective
function F is, thus, equivalent to evaluating the SAC sequence.

The evaluation of an objective function in the above fashion can be modeled using a
directed acyclic graph, where vertices represent the variables and edges represent the
precedence relations. Such a graph is known in the AD literature as the computational
graph of the function.

Example 1 Consider a function defined by the line of code y = (x[1] * sin(x[2])) *
x[1]. We will use this function as a running example to illustrate various points
throughout the paper.

Figure 1 shows how the function given in Example 1 is represented in terms of
SACs and an associated computational graph.

Traditional Hessian algorithms For a given scalar objective function, the correspond-
ing computational graph contains sufficient structural information for the purpose of
evaluating the function’s first order derivative, the gradient. This statement is true
whether the computation is done via the forward mode or the reverse mode of AD.
In particular, what needs to be done is to associate appropriate derivative quantities
(tangents in the case of forward mode and adjoints in the case of the reverse mode)
with the vertices of the graph and associate weights with the edges of the graph to
represent partial derivatives.

For Hessian computation, on the other hand, the computational graph of the func-
tion by itself is insufficient, since it does not capture nonlinear interactions between
variables.

Traditional AD algorithms for Hessian, either implicitly or explicitly, work with
some “extended” version of the computational graph to deal with this deficiency.
Depending on the way in which the forward and the reverse mode are combined to

! The term Single Assignment Code is used in Griewank—Walther [1] to refer to a block of evaluation
procedure rather than an elementary function; here we use it to mean the latter, since, for simplicity, we
identify mathematical variables with program variables.
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v_q = z[1]
vg = z[2] (independents)
v1 = sin(vg) (intermediates)

V2 = vV_1 * U1
V3 = V2 kV_1

Yy =v3 (dependent)

Fig. 1 The relationship between a function, its SAC and the corresponding computational graph. The
illustration is for the function given in Example 1. The SAC sequence is shown in the left box, and the
computational graph is depicted in the right box

obtain the second order derivatives, these traditional approaches can potentially give
rise to four different methods: forward-over-forward, forward-over-reverse, reverse-
over-forward, and reverse-over-reverse. Of these four, forward-over-forward and
reverse-over-reverse can be easily ruled out since they are obviously impractical or
highly inefficient. Of the remaining two, forward-over-reverse, which is also called
second-order-adjoint mode (SOAM), is known to be significantly more efficient than
reverse-over-forward [1,2].

A SOAM-based approach works with a Hessian computational graph that consists
of two distinct parts: the computational graph of the objective function and the compu-
tational graph of the adjoints. The graph of the adjoints is a mirror copy of the graph of
the objective function, with the direction between vertices reversed to reflect that the
dependency between adjoints is in the opposite direction relative to the dependency
between intermediate variables. Further, nonlinear interactions are captured by edges
joining the two parts.

The Hessian computational graph that results from this abstraction is symmetric.
Several previous studies (within the basic framework of SOAM) have focused on
detecting and exploiting this symmetry, but most of them fall short in their ability
to exploit the symmetry to its fullest performance benefit [3—-6]. To be precise, a
SOAM method actually computes a Hessian-vector product as a basic unit, and the
full Hessian is then obtained via multiple Hessian-vector products. Therefore, the
approach is inherently limited in its capacity to dynamically and fully take advantage
of the symmetry in the Hessian computational graph. Consequently, a SOAM-based
method typically relies on a rather static exploitation of sparsity, the sparsity that is
available in the ultimate Hessian matrix rather than the computational graph of the
Hessian. This is done via the compression-and-recovery paradigm, a paradigm equally
applicable to automatic differentiation as it is to finite differencing [7-10].

The Edge Pushing algorithm Gower and Mello [11], recently introduced a funda-

mentally different graph model for Hessian computation using the reverse mode of
AD. In their model, the computational graph of the function is augmented with mini-
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mal information, exploiting symmetry. The minimal augmenting information (to the
computational graph of the function) is additional edges corresponding precisely with
the nonlinear interactions. Using the graph model, Gower and Mello developed an
algorithm for Hessian computation they named Edge Pushing, where edges corre-
sponding to nonlinear interactions are “created”” and their contributions to descendants
are “pushed” as the algorithm proceeds. In a follow-up work, they develop a variant of
the algorithm that computes only the sparsity pattern of the Hessian and show that the
method results in better performance than previously known Hessian sparsity pattern
detection algorithms [12].

The Edge Pushing algorithm work presented in [11] makes a significant stride
towards the construction of efficient, symmetry-exploiting AD algorithms for Hes-
sians. Meanwhile, it also opens up several important avenues for improvements and
corrections. First, the derivation of the algorithm is somewhat complicated. Specif-
ically, the algorithm is derived by viewing the SAC sequences as a composition of
multivariable vector functions and then writing down the closed form of the Hessian
under that representation. This makes the derivation hard to understand and obscures
the concepts central to the algorithm. Second, the implementation of the algorithm
based on ADOL-C relies on an indexing assumption that is not necessarily supported
by native ADOL-C. As a result, the code gives incorrect results in some cases. Third,
the implementation in general places little or no emphasis on performance.

Our contribution In this work, we derive the Edge Pushing algorithm from a com-
pletely different perspective, and provide a robust implementation that works correctly
in all cases. We show that a “better” way to derive the algorithm is to work with just the
precedence relations between variables and apply the chain-rule of calculus directly.
Nevertheless, we use the computational graph to provide helpful alternative perspec-
tives and to prove auxiliary structural properties. We outline the main contributions of
this paper below:

1. Invariant and algorithm design As a foundation for our approach, we identify an
invariant in the first order incremental reverse mode of AD by taking a data-flow
perspective. We then obtain the Hessian algorithm by extending the invariant to
second order. Central to the data-flow perspective is a recognition of the role of live
variables in reverse mode AD. This perspective not only simplifies the derivation
of the Edge Pushing algorithm but it also serves as a useful guide to a correct
implementation and as a framework for extension to higher order derivatives. We
call the live variable-centered Hessian algorithm LIVARH.

2. Implementation We implement LIVARH in ADOL-C, a widely-used operator over-
loading based AD software tool [14, 15]. In order to take advantage of the symmetry
available in Hessian computation, the result variables v; in the SAC sequence must
have monotonic indices. However, the location scheme for variables currently used
in native ADOL-C does not satisfy this property, which is one reason why the
Gower—Mello implementation of the Edge Pushing algorithm fails. As a part in
our implementation, we developed a routine (outside ADOL-C) that translates the
indices appropriately. Our entire implementation is made available as open-source
at https://github.com/CSCsw/LivarH.
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3. Raising performance via preaccumulation To further improve efficiency, we incor-
porate statement-level preaccumulation in LIVARH and its implementation—we
call the resultant algorithm LIVARHACC. Preaccumulation divides the evaluation
into local and global components. Its use reduces the number of global operations
significantly, and in most cases, it also reduces the total number of operations,
resulting in overall performance gain.

4. Complexity analysis We provide rigorous complexity analysis for both LIVARH
and LIVARHACC. We uncover the circumstances and spell out the conditions under
which the gain due to preaccumulation is maximized. One of our complexity results
is that the runtime of LIVARH is O (I¢q), where [ is the number of SACs into which
the input function is decomposed and ¢ is the maximum size of live variable set
attained during the course of the algorithm.

5. Empirical performance evaluation Using both synthetic and real-world testcases,
we conduct a systematic experimental evaluation of the performance of the new
algorithms and compare these against several existing approaches, including sparse
methods based on compression-and-recovery. We find that the new algorithms
outperform the existing methods in some cases by several orders of magnitude.

The remainder of the paper is structured as follows. We formalize our observation on
the invariant in first order derivative computation in Sect. 2. We extend the observation
to the second order in Sect. 3, and show in the same section how we use that extension to
derive the new Hessian algorithms. We discuss preaccumulation and its incorporation
in the Hessian algorithm in Sect. 4. We describe our implementation and associated
design decisions in Sect. 5. We present and discuss performance evaluation results
on experiments conducted using mesh optimization and other applications in Sect. 6.
We give concluding remarks and point out avenues for further work in Sect. 7. In the
“Appendix”, we provide proofs and other details left out from the analyses in Sects. 2
through 6.

2 Incremental reverse mode AD

In forward mode AD, derivatives are evaluated in the same order as the evaluation of
the intermediate variables of the objective function. To implement this mode, an AD
tool evaluates the derivatives simultaneously with the SAC sequence. In contrast, in
reverse mode AD, derivatives are evaluated in an order opposite to that of the objective
function evaluation. To implement the reverse mode, therefore, pertinent information
on the SAC sequence needs to be stored in some internal data structure. This is often
called the trace of the function. The SAC sequence is then traversed in the reverse
order in the trace to evaluate the derivatives.

The reverse mode has an extremely attractive feature: using it, the gradient of a
function can be computed at a temporal cost that is a small multiple of the cost of
evaluating the function, completely independent of the number of input variables in
the objective function [1]. This nice feature comes at the expense of a higher memory
cost relative to the requirements in the forward mode. Devising reverse mode-based
methods that strike the right balance in memory/run-time trade-off has long been an
active research area in AD [1,2]. The Hessian algorithm we describe here is based
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entirely on the reverse mode without any checkpointing or related memory saving
strategies.

Live variables In data-flow analysis in compiler theory, a variable is said to be live
if it holds a value that might be read in the future. Clearly, identifying such variables
facilitates analysis of the program. We find a similar notion—that takes the advantage
even a step further—useful in our context. In particular, since in reverse mode AD
all information about the execution sequence of the objective function is recorded on
an evaluation trace, we can in fact work with a more restricted definition of a live
variable: we say a variable is /ive if it holds a value that will be read in the future. We
call the set of all live variables at each step of the execution sequence a live variable
set in that sequence. In the forward mode, we can deduce from the definition that the
independent variables are the only live variables initially, and that v; is the only live
variable finally. In the reverse mode, this order of live variable sets would be reversed.

There are two variants of first order reverse mode in AD: incremental and non-
incremental [1]. The non-incremental reverse mode is mainly of theoretical interest
since it requires global information in processing each SAC. The incremental reverse
mode is what is more commonly implemented in practice. Following the notation of
Griewank and Walther mentioned earlier in Sect. 1, the first order incremental reverse
mode of AD can be written as follows:

Algorithm: First Order Incremental Reverse Mode (FOIRM)
Input: a function f expressed as a SAC sequence v; = (p,-(vj)vjﬂ,., 1<i<l

Output: the adjoints {v1_, ..., U} = {331"1 e g—:j’(’)}
Initialization:
=10, v_,=...=yp=v1=...=0v_-1=0

for i=1,...,1do
forall v; < v; do

Do — 0%,
vit+ = avj”l

Note that the loop in the algorithm FOIRM traverses the SAC sequence in the
reverse order to that of the function evaluation. Note further that in each step, only
one SAC is processed, and information on local partial derivatives is used to compute
the adjoints incrementally.

We will now make the definitions of live variables and equivalent functions precise
in the context of the FOIRM algorithm. Table 1 provides an example that illustrates
the use of live variables in adjoint computation via the FOIRM algorithm. The reader
will find it helpful to follow along in this table during the steps of the algorithm. The
example uses the same function as that used in Fig. 1, but it is written in the equivalent
form vz = (v_y * sin(vg)) * v_;. As a result, the SAC sequence in the left column
is the same as that in Fig. 1. The middle column gives the live variable set and the
intermediate results computed in FOIRM. The right column gives the expressions for
the functions defined by the processed SACs and their adjoints.

At the beginning of the reverse mode, when no SAC has yet been processed, all
we have is the dependent variable v;. Thus we can define an equivalent function
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Table 1 An example illustrating the use of live variables in adjoint computation using FOIRM (Observa-

tion 1)

Execution sequence
in each step (SAC)

Live variables
and adjoints

Equivalent obj. function
w.r.t live var. and the
derivatives

Initialization:

V3 =V k% U_|

V) =U_1 %]

vy = sin(vg)

S4 = {v3}

13 =1

U =0 =99 =0_1=0
83 = {v_1.Vv2}

v_1 =0+ vv3 = v_q sin(vg)
v =04+v_1v3 =v_1
Sy = {v_1.v1}
v_1 = v_1 sin(vp) + v1v2
= 2v_1 sin(vg)
v =0+v_j0p = v%l
S1 = {v_1. vo}
v_1 = 2v_j sin(vg)

vg = 0+ cos(vy)vg

F4(S4) = v3
13 =1

F3(S3) = v x vy

F1(S1) = v%l * sin(vg)
v_1 = 2v_1 sin(vg)

vy = v%l cos(vg)

= u2_1 cos(vg)

v_1, vg are independents

The underlying function is the same function given in Example 1

Fi4+1(v;) = v;. In the example, this corresponds to the function F4, and live variable
set S4 = {v3}. The first SAC to be processed is v; = ‘Pl(vj)v_,-<v1- After this SAC is
processed, we have an equivalent function F; obtained by replacing v; in F; by the
variables on the right-hand-side in v; = <p1(vj)vj<v]. That is, Fl(vj)vﬁw =Fi1(vy=
o1 (vj)y j<vz)- In the second step in the example, we have replaced v3 by v, and v_1,
to obtain the function F3 and the new set of live variables S3 = {vo, v_1}.

At each step i from [ to 1, we inductively define an equivalent function F; in this
manner. That is, F; is defined by treating v; in F;41 as a composite function defined
by the SAC v; = ¢; (vj)y =< wherein v; is considered as an independent variable in
Fii1.

The function F is defined on the variables {vi_,, ..., vo}, since it is the objective
function. It is natural to ask what set of variables each F;, 1 < i <[ + 1 is defined
on. At first glance, it might appear that F; is defined on {vi_j, ..., vi_1}. On a closer
look, however, one can see that not every variable in that set will necessarily be used
in later SACs. Specifically, F; is defined only on those variables that will indeed be
used in later SACs. Those variables constitute precisely the live variable set S;; hence
we can write the incremental formula that defines S; from S;1:

Si = {Siri\{vil} U {vjlv; < v} (D

We call the series of functions F;(S;) equivalent functions, because they express the
objective function v; in terms of the current live variable set S;.
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We observe that the set of live variables at step i includes not only the variables
in the definition of ¢;, but also variables from earlier steps that will be used at some
future step. E.g., in the table, Sj includes v_; although it is not a variable on which v
depends. Hence, we can formally define

Si={w:1-n<k<ist Ivjwithy <v;andi < j <I}. 2)

In the FOIRM algorithm, when we arrive at the point corresponding to F; in the
SAC sequence, the algorithm has already processed the SACs ¢y, .. ., ¢;. The current
state can be viewed as an intermediate result if we want to compute the adjoints for Fy,
which is defined by the whole original SAC sequence. However, the current state can
also be viewed as exactly the adjoints of F;, which is defined by the SACs that have
already been processed. The set of independent variables of F; is the live variables set
S;. Thus we can state an invariant of the FOIRM algorithm as follows.

Observation 1 The set of adjoints computed at the end of each step i of FOIRM
constitute the partial derivatives with respect to only the current live variable set S;,
not the entire set of variables.

The notion of live variables and its usage here bears some similarity to the To-Be-
Recorded (TBR) analysis studied, for example, in [16,17]. In both TBR analysis and
the live variables analysis introduced here, the ideas originate from data-flow analysis
in compilers. In that they are similar, but the two differ in how they are applied. TBR
analysis is done by analyzing the call graph of a code, so it is necessarily static and
conservative. In contrast, live variables analysis is based on a specific execution path
of a code. For example, given a conditional statement, TBR analysis would need to
consider both branches of the statement. In contrast, in the live variables analysis
used here, only the information of the executed branch is recorded (on the trace) and
judiciously retrieved for effective use. Furthermore, TBR analysis aims at a coarser
granularity, targeting constructs such as basic blocks or even functions, whereas live
variable analysis targets elementary functions. Therefore, TBR analysis is better suited
for AD tools based on source code transformation, whereas live variable analysis is
well-suited for operator overloading based AD, since it works at the level of elementary
functions.

3 The Hessian algorithm
We now extend the invariant in first order incremental reverse mode expressed in

Observation 1 to the second order. This extension is an initial step we need to derive
our target Hessian algorithm.

3.1 The second order invariant

Stated formally the invariant reads:
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Observation 2 At the completion of the processing of the ith SAC, the proposed
Hessian algorithm maintains the Hessian of the equivalent function ¥; with respect to
the current live variable set S;.

For a given equivalent function F; (S;), the first order derivatives (adjoints), which
we previously denoted by v, for each v € §;, can be viewed as a mapping

) _ oF;
a; . S;i > R, a,-(v):v:a—v. 3)

(We use the notation a; (v) instead of v to make it easier to see the connections.)
Extending the mapping, the second order derivatives (Hessian) for the equivalent
function F;(S;) can be viewed as a symmetric mapping

a .
hi S xSi— R, hi(v,u) = hi(u,v) = Cg(”). 4)
u

The target algorithm is then precisely a prescription of how to compute S;, a; (S;) and
h;(S;, S;) to maintain the second order invariant.

Suppose the next SAC to be processed is v; = ¢; (v j)v_,<v,~~ Before processing this
SAC, according to the invariant, we have a current live variable set S; 1, an equivalent
function F;41(S;+1) and a current adjoint mapping a;+1(S;+1) as well as a Hessian
mapping h;41(Si+1, Si+1) for the equivalent function F;1(S;4+1). After this SAC is
processed, we will have a new current live variable set S;, a new equivalent function
F; (S;) and a new adjoint mapping a; (S;) as well as a new Hessian mapping 4; (S;, S;)
for the equivalent function F;(S;). So what we need to establish is the relationship
between {S;, a; (S;), hi (S;, S)} and {S; 1, @i+ 1(Siv1), hit1(Sit1, Siv1)}

Recall from the last section that the live variable set is updated as

Si = {Siri\{vi}} U {vjlv; < v}

For adjoints a; (S;), from the first order chain rule, we know that

a .
3—f;ai+1(vi), v; < v and v ¢ Si41,
. : dg;
Yuj € Si: ai(vj) = {air1(vj) + a—f}ai+1(vi)7 v; <v;andv; € Sipq,  (5)
ai+1(vj), v A ;.

Noting that g—f; = 0 when v; £ v;, and g;41(v;) = 0 when v; ¢ S;41, Expression
(5) can be simplified as

Qi
Vo € 80 ai(v)) = a1 (V) + S =i (v), (6)
J

This is the same as the reverse mode computation of adjoints given earlier (FOIRM).
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In the second order case, assuming that A;41(vj, vx) = 0 when v; ¢ ;11 or
vk ¢ Si+1,and applying the second order chain rule of calculus, we have Yv;, v; € §;:

hiv1(vj, vg), vj A Vi, v A,
a .
hit1(vj, vi) + rf;hiﬂ(vi, Vi), vj < Vi, U A Vi,

hi(v;, o) = v, _
(v, o) hi+1(Uj7Uk)+gT;hi+l(Ui7Uk)+g%hwl(vj,vi)

dgi 9¢i g, . g A . .
5, o i1 (Vi V) + gy i (Vi) Vj < Ui, Vg < Vi

(N

Analogous to the adjoint case, we can simplify Expression (7) as

Yvj, vx € S :

09 09
hi(j, v) = hip1(vj, vg) + —hit1(vi, vj) + —hi+1(vi, V)
AV av;

d¢i d¢i *gi
R (v, ) +
ov; dvg +1 (v, Vi) v v

aj1(v;). (8)

3.2 A basic version of the Hessian algorithm

Based on what we have developed so far, we can write down an algorithm which
directly “implements” Eqs. (6) and (8). This straightforward Hessian algorithm is
given in Fig. 2. The algorithm processes the SAC sequence in the reverse order. In the
algorithm, instead of maintaining all the sets {S;, a; (S;), hi (S;, S;)}, we maintain only
one set {S, a(S), h(S, S)} to keep the current result in such a way that the invariant
in Observation 2 is maintained after the SAC is processed. Therefore in subsequent
discussions, we exclude the subscripts and simply use {S, a(S), (S, S)}. From the
invariant, the mapping (S, S) represents a symmetric matrix, which is the current
Hessian matrix with respect to the current live variable set S. Each row/column of the
matrix is associated with a current live variable v € S. We will use these two views—
the mapping and the matrix—interchangeably in our discussions in this section and
elsewhere in future sections.

The processing of each SAC ¢; consists of three substeps. The first substep is to
update the live variable set S. From the definition of live variables, we can infer that
v; is not a live variable after the processing of the SAC ¢;. Therefore all values in a
and A related to v; need to be removed. But those values are needed in calculating
later updates. Thus we use a temporary variable w to store the adjoint a(v;) and a
temporary mapping r(S) to store the row h(v;, S) corresponding to v;. The latter is
a retrieval followed by a deletion of a row (and a column) in a symmetric matrix.
Furthermore, after the processing of the SAC, the new live variable set S will contain
all v; such that v; < v;. Therefore, the values of a(v;) and h(v;, S) for those newly
added live variables v; need to be initialized to zero. The first substep thus consists in
all of these tasks, and is reflected in the code fragment grouped under the “% Update
the live variables $” comment in Fig. 2.

The second and third substeps correspond to updating the adjoint mapping a(S)
and the Hessian mapping (S, S) [recall Egs. (6) and (8)], respectively. The values w
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Algorithm: Basic Reverse Mode Hessian
Input: a function f expressed as a SAC sequence v; = p; (vj)vj <v;, 1 <1<
Output: the gradient Vf as a(S), the Hessian V2f as h(S, S)
Initialization:
S ={v}, a(v)=1.0, h(v,v)=0.0

for i=1---,1do % Process v; = i (vj)v,<v;
% Update the live variables S
Set w = a(v;)
Retrieve mapping r : S — R as r(v) = h(v;,v)
Remove v; from S: a(v;) =0, h(v;,S) =0, h(S,v;) =0
for all v; < v; do
if vj ¢ S
Set S =SU{v;}, a(v;)=0, h(v;,S)=0
% Update the adjoints a(S)
for all v; < v; do

a(v;) = a(v;) +
% Update the Hessian h(S, S)
for all unordered pairs (vj,vg) in S such that v; < v; or v, < v; do

dp; dp; dp; 8 2%,
h(vj,vk) = h(vj, vg) + af; r(vj) + @f]’ r(vg) + 3;/;; a;i: r(vi) + iawigf,kw

9¢;
Ov; w

Fig. 2 A basic version of the Hessian algorithm

and r(S) stored in the first substep are used here. The derivatives for ¢; are computed
directly because ¢; is an elementary function. In the outline given in Fig. 2, the second
substep (adjoint update) is performed before the third substep (Hessian update). But
these substeps could also be swapped; that is, we could update the Hessian first and
then update the adjoints. The order will not affect the result.

Finally, note that only the necessary entries are updated as each SAC is processed in
the algorithm. For example, in updating the adjoints mapping, we compute the value
of a(v;) only for the variables v; < v;, and in updating the Hessian mapping, we only
compute the values of the elements i (v, vy) that arise from the variables v; < v; or
vi < v;i. These elements correspond to the elements in the row r(S) and w. That way,
the sparsity of the Hessian is automatically exploited.

Figure 3 illustrates the workings of the algorithm using the example objective
function we saw in Example 1. The figure gives step-by-step results on the values of
the adjoints and Hessian mapping.

3.3 An enhanced version of the Hessian algorithm (LTVARH)

The algorithm in Fig. 2 does the job, but it is not efficient enough in updating the
Hessian mapping. For example, given an unordered pair (v;, vg) where v; < v; and
vr € S, we need to update the entry i (v, vr) by adding to it the four terms:

0©; dw; d0;: ; 32 .
D)y, ), ) and Y w
v ov; dvj duy v vy

C))
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Fs(v3) =vs

\\ 11 3 1 .
’ \ Initialization: a(vs) = 1.0

Fa(v_1,v2) =v_1*v2
Step i = 3: a(v—1) = v h(v—1,v2) =1.0
a(ve) = v_1

Fa(v_1,v1) = v%l * V1
v Step i =2: a(vfl) =2v_1v1 h(’U717 ’L),l) = 2vq
! a(vi) = v2_1 h(v—1,v1) =2v_1

F1(v_1,vo) = v2, sin(vo)

. Step i = 1: a(v—1) =2v_ysin(vg) h(v—1,v—1) = 2sin(vo)
! " a(vg) = v2 4 cos(vg) h(v_1,v0) = 2v_1 cos(vo)
- h(vo,vg) = —v? | sin(vo)

Fig. 3 A step-by-step illustration of how the basic reverse Hessian algorithm outlined in Fig. 2 works. The
objective function is the same as that in Example 1. In each step, the live variable set is shown enclosed in
an eclipse. Notice that in each step, we have the Hessian of the equivalent objective function with respect
to the current live variable set

Notice, however, that if 7(v;) = 0, computing and then adding the value of the term

aw, r(v j) is unnecessary. Furthermore, computing the values of the terms fz r(vjy)

are also unnecessary when updating for other palrs (vj,v), v, € S. Similarly, if
r(v;) = 0, we don’t need to consider the term —‘&, Ly (v;) for all (vj, vg).

Therefore, the algorithm can be improved by performmg the updates incrementally.
That is, instead of focusing on each i (v;, vi), we focus on the row 7(S) and on w. In
other words, we carry out only necessary updates and do so at a finer granularity. In
particular,

- Ifr(v)) ;é 0, we incrementally update 2 (v;, vy) for variables v; € S, vi # v; by
addlng r(v]) to it, and update i (v;, v;) by adding Zﬁr(v]) to it.

— If r(v;) # 0, we add gf‘ gf’ r(v;) to h(vj, vg) for v; < v; and Vg < v;.

— Ifw # 0, we add a 8v w to h(vj, vg) for v; < v; and Vg < v;.

Putting these together, we get the enhanced version of the reverse Hessian algorithm
outlined in Fig. 4. We refer to this algorithm as LIVARH (short for live variable based
Hessian algorithm). LIVARH is equivalent to the Edge Pushing algorithm of Gower
and Mello [11], where the updates in the first two bullet items above correspond to the
pushing part and the last item corresponds to the creating part in the component-wise
version of their algorithm. Figure 5 shows how these various updates can be interpreted
as insertion and manipulation of weighted edges in the computational graph, which is
where the notions of pushing and creating originate from.

@ Springer



M. Wang et al.

Algorithm: Enhanced Reverse Mode Hessian (LIVARH)
Input: a function f expressed as a SAC sequence v; = p; (v])vjﬂ,l7 1<i<li
Output: the gradient V£ as a(S), the Hessian V2f as h(S, S)
Initialization:
S ={v}, a(v)=10, h(v,v)=0.0

for i=1,---,1do % Process v; = i (vj)v,<v;
% Update the live variables S
Set w = a(v;)

Retrieve mapping r : S — R as r(v) = h(v;,v)
Remove v; from S: a(v;) =0, h(v;,S) =0, h(S,v;) =0
for all v; < v; do
ifv; ¢ S
Set S =SU{v;}, a(v;)=0, h(v;,S)=0
% Update the adjoints a(S)
ifw#0
for all v; < v; do
a(v;) = a(vj) + 8% w

% Update the Hessian h(S, S)
% Pushing
for all v; # v; such that r(v;) # 0 do % Fig. 5 (a)
for all vi # v; such that 8% #0do

9
h(vj,vg)+ = 62]0,; 7"('”])

if Bnp, #0 % v = Vg
gt = 25257 (v;)
if r(v;)) #0 % Fig. 5 (b)

for all unordered pairs (v;,vy) such that gi; gf): # 0 do

h(vj,vk)+ = Gok gir(vi)

% Creating
ifw#0 % Fig. 5 (c)
for all unordered pairs (v, vy) where 75 0 do

82
h('Uj,’l)k)+ v C})]Z]kw

ava

Fig. 4 Enhanced version of the Hessian algorithm (LIVARH)

3.4 Complexity analysis

We use the number of updates needed of the Hessian mapping as a measure of the
time complexity of LIVARH. This number is a good measure for the complexity of the
algorithm because the cost of updating the live variable set and the adjoints mapping
constitutes a much smaller portion that we can afford to ignore in the analysis.

We make several assumptions to simplify the analysis. In LIVARH, the number of
necessary updates on the Hessian mapping depends not only on the structure of the
computational graph, but also on the type of each node. For example, an addition

operation will not trigger the “edge creating” part in updating the Hessian mapping,
because 375‘% = 0, but a multiplication operation will do so. In our analysis, we
compute an upper bound on such numbers. That is, we make the conservative assump-
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(a)
r(v;) #0
ASN
4 \
! \
\ ’
9p; Ovp; . Op; O¢; )
GT;TU;T(’UZ 8vkL/ kall T(Ul)
e -T o N
1 \
D ,
AY e
.“_ N _ _-
dp; O
e af,;, r(vi)
(b)
w = a(v;) #0

Fig. 5 An example illustrating how the Hessian updates can be represented on the computational graph.
The left subfigures show the status before the processing of the SAC v; = ¢;(vj)y =i and the right
subfigures show the status after. A weighted dashed arc between v; and v; represents the entry i (v;, v;).
a represents the updates caused by a nonzero r(v;). b represents the updates caused by a nonzero r(v;). ¢
represents the updates caused by a nonzero w = a(v;)

tion that all local derivatives are nonzero so that the dependency in the computational
graph always leads to nonzero derivative values.

First let’s consider the number of operations needed to process one SAC v; =
i (v j)v_/<vi- Let the live variable set at this time be S. Let d; denote the number of
nonzero elements in the mapping r (S); thatis, d; = [{v;|r(v;) = h(v;,v;) #0, v; €
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S}|. Further, let P; be the set of predecessors of v;, that is, ; = {v;|v; < v;}, and let
pi = | P;|. Then we can make the following statements:

1. Recall that computing the mapping r : S — R involves retrieval and deletion of
the row/column corresponding to v; from a symmetric matrix. So, d; operations
are needed for removing the nonzero elements.

2. In the “pushing” parts, for each v; € Sand v; # v;, whenever r(v;) # 0, we
need to enumerate v, € P; and update 2 (v, vy) (see Fig. 5Sa). Moreover, whenever
r(v;) # 0, we need to enumerate all unordered pairs (v}, v) over P; (see Fig. 5b).
Thus, in total, we can see at most d; p; + M +updates are needed.

3. In the “creating” part, whenever w # 0, we need to generate all unordered pairs

over P; (see Fig. 5¢). So, at most M updates are needed.

Thus, overall, we will need at most (d; + p;)(p; + 1) updates to process the SAC
v; = ¢;i(v j)v,<v,~ Note that the cost depends on two factors: how complex the SAC
is, which is gauged by p;; and how many non-linear interactions the result variable
involves, which is gauged by d;.

Then by simply taking a summation over all SACs, we get the following upper
bound on the complexity of LIVARH:

i=l

> (di + pi)pi + D). (10)

i=1

In Eq. (10), p; is the number of operands that the SAC v; = ¢; (Uj)vj<vi has.
Since most elementary functions are unary or binary, we have p; = O(1). Moreover,
d; is always bounded by the size of the live variable set S existing right before the
processing of v; = ¢; (v j)v_,-<vi~ Let the maximum size of a live variable set in the
course of LIVARH be ¢g. Then we can bound the quantity in Expression (10) as:

i=l

i=l
D @i+ p)pi+1) = O(Z(di +pz-))= 0dlyg). (1)
i=1

i=1

Expression (11) tells us that the complexity of LIVARH is proportional to the product
the number of SACs times the maximum size of live variable set over the course of
the algorithm. Note that each of these factors is a property solely of the computational
graph of the function.

If we take d = maxle1 {d;}, then we can get a better bound:

i=l i=l
D i+p)pi+H=0 (Z(di + pl-)) = 0(d). (12)
i=1

i=1

Expression (12) in turn tells us that the complexity of LIVARH is proportional to the
product the number of SACs times the maximum number of nonzeros per row in all of
the Hessian matrices (mappings) occurring in the course of the algorithm. This shows
that the algorithm exploits the sparsity available in the Hessian matrix.
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We note that Gower and Mello have given an analysis of the complexity for their
Edge Pushing algorithm [11,12]. The complexity expression they obtained using a
similar measure is: O( + d* Zizll d?), where [ is the number of SACs, d;* is the
degree of node i in the final augmented graph, and d* = maxle1 {d}. The relationship
between d; in our expression and dl.* in their expression is this: d; < dl.*. Hence, the
derivation provided here not only improves on the complexity bound but it is also
expressed solely in terms of the computational graph.

4 The Hessian algorithm with preaccumulation

Preaccumulation has been introduced as a technique for reducing runtime as well as
memory requirements in derivative computation in AD, especially in the first order
case [18,19]. Here, we apply a similar statement-level preaccumulation strategy to the
algorithm LIVARH described in the previous section. We show that preaccumulation
can help reduce the overall cost of evaluating a Hessian. We first describe how the
statement-level preaccumulation works and how it is incorporated to LIVARH to give
LIVARHACC, and then we provide a complexity analysis of LIVARHACC.

4.1 Statement level preaccumulation

Consider an objective function given in the form of a piece of code, possibly con-
taining branches. Even in the presence of branches, once the set of initial values for
independents is fixed, the evaluation of the objective function is exactly the same as the
evaluation of assignment statements along the execution path. Here and in later sec-
tions we use the word ‘statement’ to refer to assignment statements to avoid confusion
with SACs. Each statement defines a local scalar function, where the left-hand side
variable represents the dependent variable, and all variables needed at the right-hand
side are independent variables. Suppose we know the first and second order deriva-
tives for each local function. Then, we can write a reverse mode Hessian algorithm
that works on the statement level in exactly in the same way as we did in LIVARH.
The only difference would be that in each step we process a local function which is
defined by a statement rather than a SAC.

For the derivatives of each local function, notice that the evaluation of a statement
is indeed equivalent to the evaluation of the SACs it corresponds to. So the first
and second order derivatives for every local function can be computed by applying
LIVARH on the SAC level. Thus, the algorithm with statement-level preaccumulation
incorporated, LIVARHACC, divides the Hessian evaluation into two levels. In the first
level, every SAC is processed to compute the first and second order derivatives for the
local functions defined by statements. We refer to this as local accumulation. In the
second level, the derivatives of local functions are processed to compute the derivatives
for the objective function globally. We refer to this as global accumulation.

To successfully incorporate preaccumulation, first, we need to efficiently partition
the SAC sequence based on statements (that is, group SACs according to statements).
Because we only consider serial code here, we know that the SACs that belong to
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the same statement are contiguous in the SAC sequence. Second, we want to avoid
roll-back reads during the processing. That is, we want to read and process each SAC
only once. As we will show, both of these can be incorporated in our reverse mode
framework at no additional cost.

In most codes, the last evaluated operator in an assignment statement is the basic
assignment operator (=). In rather infrequent cases, other operators might come as the
last operator; we will discuss how to deal with such cases in Sect. 5.3. For now let us
assume that in our objective function every statement ends with the basic assignment
operator. Let us further assume that there is no other assignment operator besides the
last one in all statements. (This assumption is reasonable, since in operator overloading
based AD tools implicit assignment of variables is an unsafe operation. It changes
the precedence of operators, and people normally don’t write codes containing that
behavior.) Then, the assignment operators in the SAC sequences act as “splitters” for
statements: they divide up the SAC sequence according to statements. If we read the
SAC sequence in the reverse order, the “last” assignment operator will show up first.

So, to realize LIVARHACC, we simply maintain two sets of live variables, two sets of
adjoints mapping, and two sets of Hessian mapping, in each case the one set dedicated
for local accumulation and the other for global accumulation. Notationally, we have
the sets (7, az, hy) for local accumulation and (Sg, ag, hg) for global accumulation.
For each SAC, we work with (S, a;, h;) to compute the derivatives for a local function
(statement). The updates during this phase are local because they only affect the results
for each statement. When we encounter an assignment operator in the SAC sequence,
we know that it is the beginning of a new statement and that we have finished com-
puting the derivatives of the last statement—(S;, a;, h;) contains the derivatives for
the last local function. Before processing the new statement, we first do one global
accumulation step; that is, apply LIVARH using (S;, a;, h;) to update (Sg, ag, hg).
The updates during this phase are global because they affect the final results. Then,
we store the left-hand-side variable in the transient variable p and reset (reinitialize)
(81, ay, hy) with respect to p for the next statement. After that, we process the assign-
ment operator as the first SAC for a new local function. Figure 6 provides a high-level
pseudocode for LIVARHACC as a whole, and Fig. 7 provides an illustration of its
workings.

4.2 Complexity analysis

In this subsection we aim to answer the following question: Is incorporating statement-
level preaccumulation in the Hessian algorithm beneficial? Just as we did in our
analysis of LIVARH in Sect. 3.4, here again we assess complexity using the num-
ber of updates needed on the Hessian mapping. Recall that for LIVARHACC, we have
to account for both local and global updates. The global updates take place only after
all the SACs that belong to a statement have been processed. We want to compare
the complexity of the two schemes LIVARH and LIVARHACC. To do so, instead of
comparing the overall updates for the objective function, we focus on one statement
and compare the number of local and global updates for LIVARHACC with the number
of updates for LIVARH.
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Algorithm: Enhanced Reverse Mode Hessian With Preaccumulation (LIVARHACC)
Input: a function f expressed as a SAC sequence v; = p; ('Uj)vj<v7-,7 1<i<l
Output: the global Gradient V f as ag(Sy), the global Hessian V2f as hg(Sg, Sq)
Initialization:

ng{vl}, CLg(’L}l):l.O7 hg(vl,vl):0.0, Sl :Q), a :hl :07 p =

for i =10,---,1do

if v; = @; (v]-)vj ~<v; begins a new statement

% Update global live variables Sy
Set w = aq4(p)
Retrieve mapping r : S¢ — R as r(v) = h(p,v)
Remove p from Sy
for all v € S; do
ifvé¢g Sy
Set Sy =Sy U{v}, ag(v) =0, hg(v,Sg)=0
% Update global adjoints ag(Sg)
for all a;(v) # 0 do
ag(v) = ag(v) + ar(v)w
% Global Pushing
for all v # p such that r(v) # 0 do
for all u # v such that a;(u) # 0
h(v,u)+ = a;(u)r(v)
if aj(v) #0
h(v,v)+ = 2a;(v)r(v)
ifr(p) #0
for all unordered pairs (v, u) such that a;(v)a;(u) # 0
hg (v, u)+ = ar(v)ai(w)r(p)
% Global Creating
ifw#0
for all unordered pairs (v, u) where h;(v,u) # 0 do
hg(v,u)+ = hy(v,u)w

% Initialize p and (S, aj, h;) for the next statement:
P =

Sl = {”Ui}, al(vi) = 1, hl(vi,vi) =0

% Process v; = @i (vj)v; <v; locally

(Same as LIVARH, just use Sj, aj, h; instead)

Fig. 6 The Hessian algorithm with preaccumulation (LIVARHACC)

Suppose a statement is represented by k SACs, namely ¢; k41, ..., @i—1, ¢; (this
means v; is the left hand side variable of the statement). Then, processing these k SACs
would need le‘ ;(1) (di—j+pi—j)(pi—j+1) = U updates in LIVARH. In LIVARHACC, for
each SAC, we perform local updates on 4, and after all the k SACs have been locally
processed, we perform global updates on /.. Suppose the number of local updates is
U, and the number of global updates is Ug. Then, assuming that every SAC is a unary
or a binary operator, we can prove the following result (see the “Appendix” for proof):

Theorem 3 Given a statement represented by k SACs with v; as the left hand side

variable, the number of local updates U and global updates Ug in LIVARHACC and the
number of overall updates U in LIVARH are related by the inequality Uy + Ug < U
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Function: SAC: ag(v—2) =v_1 *xexp(v_2)
(1): v3 =wv_1 % (v—1 *sin(vg)) w1 = sin(vg) ag(v_1) = exp(v_2)
(2):v6(y) = v3 +v—1 * exp(v—2) v2 =v_1*v1 ag(v3) =1.0
V3 = V_1 * Vg hg(v—1,v_2) = exp(v_2)
vg = exp(v—2) hg(v—2,v-2) = v_1 * exp(v_2)
V5 = U_1 % V4 kg
1 Ve )

; = U3 + U5

aj(v_2) =v_1 xexp(v_2)
a;(v-1) = exp(v_2)

aj(v3) =1.0

hi(v—1,v-2) = exp(v_2)
hi(v_2,v_2) = v_1 * exp(v—_2)

(d)
aj(v—1) = 2v_1 sin(vg)
a;(vo) = v2 | cos(vp)
hi(v—1,v—1) = 2sin(vg)
hi(v—1,v0) = 2v_1 cos(vp)
hi(vo,vo) = v2 4 sin(vo)

Pk

1 V6

A2

Final Hessian:

hg(v—2,v_2) = v_1 * exp(v_2)
hg(v—1,v_2) = exp(v_2)
hg(v—1,v—1) = 2sin(vo)
hg(
hg(

v_1,v0) = 2v_1 cos(vg)
2
vo,vp) = —vZ 4 sin(vg)

Fig.7 Anexample illustrating how preaccumulation in the Hessian algorithm works. The example function
consists of two statements, each decomposed into 3 SACs. a gives the computational graph. b shows local-
accumulation for Statement (2). The rectangular box represents the sub-computational graph induced by
Statement (2). After the local accumulation, we get the local results shown in ¢. Then, right before processing
Statement (1), we need to performe one step of global accumulation, as depicted in d. The local accumulation
of Statement (1) gives the results shown in e. Lastly, a global accumulation gives the final Hessian as shown

in f
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when di(k — 1) > 2k(k + 1), where d; is the number of non-linear interactions
corresponding to v; in LIVARH.

Itis interesting to note what Theorem 3 is saying for different values of k. When k =
1, which means preaccumulation degenerates to no preaccumulation, the condition in
the statement cannot be satisfied, which is reasonable. Asymptotically, we only need
d; > 2k for preaccumulation to pay off. The quantity k shows how complex an
assignment in the source code is. We can expect k to be bounded because people don’t
normally write arbitrarily long statements in their codes. The quantity d;, the number
of nonzeros in the result variable’s row in the Hessian matrix, indicates how sparse
the Hessian matrix is. We can thus give the following intuitive explanation for why
the condition suffices. In LIVARH, the cost for processing each SAC ¢;_;,0 < j <k
is proportional to d; j, and d; — ; > d; (see the “Appendix” for proof). In LIVARHACC,
the local cost is defined by &, which represents how complex the statement is, and
the global cost is proportional to d;. So, the benefit of preaccumulation comes from
the fact that instead of letting each SAC to have a global interaction, we gather the
derivatives locally and proceed globally at a coarser granularity. So for real problems
in general, we expect the algorithm with preaccumulation to be superior.

Moreover, as will be discussed in the next section, the cost of each update depends
on the size of the live variable set. This means that the local updates are cheaper than
the global updates. So, even when the number of total updates in LIVARHACC is similar
to that in LIVAR, we may still expect performance gain.

5 Implementation

We implemented both of the algorithms LIVARH and LIVARACC in ADOL-C. We
discuss in this section details of the implementation including design decisions we
made and the motivations behind them.

5.1 Index translation

In native ADOL-C, a variable is represented by an integer index on the trace (called
tape in ADOL-C). For each SAC, only the indices of the involved variables, the kind of
operator and necessary constant(s) are stored. This scheme requires a forward sweep
to prepare the intermediate values of every result variable v; before a reverse sweep
begins, because those values are needed when computing g% in the reverse sweep.

In ADOL-C, the index of each variable is an integer representing a “memory loca-
tion”. Different variables may have the same index as long as their “live regions” do
not overlap. If their regions overlap, then the indices are necessarily different. In par-
ticular, if S is a live variable set, then for every pair of distinct variables v;, vg in S, the
index of v; is different from the index of vy. Variables without live-region overlaps,
on the other hand, can use the same memory location. This means we cannot expect
a guaranteed ordering on indices of variables. This phenomenon presents us with an
issue in taking advantage of the symmetry available in the Hessian matrix/mapping in
our algorithms.
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We will explain why this is an issue in a moment, but first a note on notation.
In our description of the algorithms so far, it appears as if we give each variable v;
an index i. This usage is only for clarity of presentation in the evaluation order of
the SACs, but it is not necessarily mirrored in the implementation. To avoid potential
misunderstanding, in what follows, we will use / (v; ) to represent the index of a variable
v; in the implementation.

Since a Hessian is symmetric, we would prefer to store and work with only half of it
in the Hessian mapping we use in our algorithms. Suppose we decide to store the lower
half. Then, when we want to get all nonzeros of r(/(v;)) for a SAC v; = i (v})v;<v;>
what we actually do is get all nonzeros from the entire row / (v;) of the Hessian matrix.
Since we only store the lower half of the matrix, we have to search all rows below [ (v;)
to determine whether there is a variable v; s.t. A(I(v;), [(v;)) # 0 and [(v;) > [(v;).
This entails a complexity proportional to the size of the current live variable set. But
we would like to have a complexity proportional to only the number of nonzeros in
that row.

The cause behind this undesirable higher complexity is, as alluded to earlier, the
fact that the location index in ADOL-C does not guarantee an ordering. So, even if
we are processing the SAC with result variable v; using the location index /(v;), we
cannot assume that all variables that have a non-linear interaction with v; have smaller
location indices than /(v;). If, in contrast, the indices of variables were monotonically
increasing—that is, i > j = [(v;) > [(vj)—then, v; would have had the largest
index among S—that is, /(v;) = max{l(v;) : v; € S}—since all v; for j > i would
not yet have been evaluated at that point in time during the function evaluation. So,
in such a scenario, we could safely get the nonzeros from just the lower half of the
Hessian matrix for [(v;) as all nonzeros for the entire row.

Gower and Mello make this monotonic indexing assumption in their implementa-
tion, and they directly use the location indices provided by ADOL-C. The assumption,
however, is not supported by ADOL-C, which is why their algorithm fails in some
cases. In our implementation, we overcome this obstacle by translating the indexing
scheme in ADOL-C into another, monotonically increasing indexing scheme. The
routine we implemented for the translation is a simple and cheap operation that can
be done in the forward sweep. In it, we recompute the objective function and store
the results of each SAC for later use. We also keep an index counter and increase its
value by one every time a SAC is processed. The index of each result variable v; is
assigned the value of the index counter. Finally, we also keep a mapping table so that
future references of v; as operands are redirected to the new index.

5.2 Implementing LIVARH

In our implementations, we use the map container in the Standard Template
Library (STL) in C++ as the main data structure to store the adjoint- and the
Hessian-mappings. A typical implementation of STL: :map uses a red-black tree,
so search/insert/delete operations in STL: :map each have O (logm) complexity,
where m is the number of elements already in the data structure. Further, enu-
meration of elements is a constant time operation in STL: :map. We implement
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the adjoint mappings as map < int, double > and the Hessian mappings as
map < int,map < int, double >>.

With such data structures and the index translation discussed in Sect. 5.1 in place,
we can implement LIVARH in a relatively straightforward manner following the speci-
fication outlined in Fig. 4. However in the implementation, we do not need to explicitly
maintain the live variable set S since it is the key set of the adjoint mapping a(S). Fur-
ther, the temporary mapping r (S) can be implemented usingmap < int, double >.

5.3 Implementing LIVARHACC

Implementing LIVARHACC (Fig. 6) correctly and efficiently causes additional chal-
lenges beyond those encountered in the case of LIVARH. We discuss in this subsection
three different aspects of these challenges (memory efficiency, complex statements,
and optimization of the assignment operator in ADOL-C) and our approaches for
addressing them.

5.3.1 Memory performance

The STL: :map container is no longer a good solution for the local adjoints and
Hessian mappings in terms of memory performance. In particular, since each statement
is treated individually, an STL : : map would need to frequently allocate and deallocate
small chunks of memory during the local accumulation, entailing highly increased
runtime. To circumvent this, instead of STL : : map, we implement a memory-efficient
customized data structure for just the local accumulation (the global accumulation
still uses STL :map). The idea is to pre-allocate a fixed size memory, and work with
simple linear searches (instead of the advanced data structure operations) to perform
the updates. Since generally the number of SACs corresponding to a statement is
bounded, the fixed memory would be of small size. In our implementation, we set the
size to be large enough for 50 operators. (Since it is unlikely for a reasonable code to
contain a statement with more than this many operators.) If in the code a statement with
larger than 50 operators is encountered, memory is reallocated with double the size. So,
this way, overall, we avoid the highly costly frequent memory allocation/deallocation
that would occur had we used STL : map for the local accumulation by paying a much
lower overhead for managing the fixed-size memory. In our experiments, we observed
orders of magnitude performance improvement by following this strategy.

5.3.2 Complex statements

Implementing LIVARHACC also requires us to deal with special kinds of statements in
programs. In the discussion in Sect. 4.1, we assumed that every statement in a piece
of code ends with the basic assignment operator (=). Further, we used the assignment
operator as the splitter to divide up a SAC sequence according to statements. Below
we discuss how our implementation handles cases where these assumptions no longer
hold.
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Table 2 Operators which serve as splitters in a SAC sequence

Name (in ADOL-C) Operator Usage Equivalent form
assign_a, assign_d = a=b a=>b

eq plus_a,eq plus_d + = a+=>b a=a+b
eq_minus_a, eq minus_d - = a—=>b a=a—0>b

eq mult_a,eq mult_d * = ax=b a=ax*b
eq_plus_prod + =% a+=bx*c a=a+bxc
eq_minus_prod — =% a—=bx*c a=a—bxc

ADOL-C uses a suffix _d to distinguish between the cases where the right operand is a variable and where
it is a constant. For eq_plus_prod and eq_minus_prod all operands must be variables

Compound assignment operators In C++, there are operators other than the basic
assignment operator that can be the last operator in a statement. These are called com-
pound assignment operators. A compound assignment operator consists of a binary
operator and the basic assignment operator. The equivalent task is to perform the
binary operation on the two operands and store the result on the left operand. For
example, a+ = b is equivalent to a = a + b. In implementing LIVARHACC, we
treat compound assignment operators as splitters in the SAC sequence. In addition
to compound assignment operators, ADOL-C supports two other operators that com-
bine a multiplication and an addition or a subtraction; these assignments are called
eq prod_plus (+ = %) and eq_prod_minus (— = *). We treat these in the
same way as we treat compound assignment operators. Table 2 gives a list of operators
that work as splitters in the SAC sequence and their equivalent forms.

Trigonometric functions Another issue we deal with involves trigonometric functions.
In handling sin/cos operators, ADOL-C introduces implicit temporary variables to
store the corresponding cos/ sin values, to make it easier to compute the derivatives
for the sin/cos operators. These temporary variable are initialized with the value
zero, which entails the occurrence of an assign_d operator on the trace in the middle
of the evaluation of a statement. This implicitly generated assign_d operator cannot
be a splitter. But, without relevant context information, it is hard to know whether the
assign_d operator comes from an explicit source function code or is introduced by
ADOL-C implicitly.

Fortunately, there is a way to tell this apart. If the assign_d operator is indeed
from the source function code, then the previous operator in the SAC sequence must
also be a splitter operator. So, in our implementation, when an assign_d operator
is encountered, instead of making a determination about it immediately, we keep a
record of it and postpone its processing until we meet another operator that serves
as a splitter. This approach won’t affect the explicit assign_d operator as this is
processed immediately. For the implicit ones, because they are introduced as tempo-
raries, their processing is deferred as if they were explicitly written in the code before
the assignment statement that generates them. Table 3 gives an example of the deferred
assign_d operator.
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Table 3 Example of a deferred assign_d operator

Source code Trace (in ADOL-C) Processing order Equivalent to
X1+ =x0 X] = X1+ X0 X1 = X1+ X0 X1+ =X
y = exp(xg) * sin(x]) 11 = exp(xq) t3=0 t3=0
tp = sin(xy) 1] = exp(xp) y = exp(xp) * sin(x])
t3=0 t = sin(xq)
t3 = cos(xq) t3 = cos(xq)
=1t =1t
y =1 y=14

13 is the implicit temporary variable. When processing the SACs from the trace, the processing of 13 = 0
is deferred until the next statement splitter is met. In effect we treat this as if the source code were written
in the equivalent form shown in the right most column

5.3.3 Optimization of the basic assignment operator in ADOL-C

In ADOL-C, overloading of the basic assignment operator is optimized to reduce the
storage requirement of the tape. In particular, if the right-hand-side of a statement is
an expression, the last operator on the right hand side is made to “absorb” the basic
assignment operator by directly assigning the result to the left-hand-side variable. For
an illustration, consider Example 1. In this particular case, the information stored on
the rape by ADOL-C in effect “by-passes” the temporary variable v3, and the product
(v—_1 * vyp) is directly assigned to y. In general, for every assignment statement other
than simple copies such as a = b, ADOL-C avoids storage of information of the
basic operator on the tape. This means with the current ADOL-C implementation, we
cannot directly see any basic assignment operator on the SAC sequence stored on the
tape unless the assignment is the copy statement a = b. Therefore, it is very difficult
to isolate statements from the SAC sequence.

One way of solving this problem is for every operator to define an accompany-
ing “assignment” version. That is, if the result of an operator is redirected to an
assignee (which indicates that this operator is the last one on the right-hand-side and
absorbs the basic assignment operator), we use the assignment version of the oper-
ator. Then when we encounter an assignment version of an operator in the reverse
sweep, we know that another statement begins. There would be no increase in num-
ber of SACs associated with such an approach. However, implementing this requires
rewriting a large portion of ADOL-C. Instead, in our current implementation of
LIVARHACC, we simply furn off the basic assignment operator optimization. This
leads to a longer SAC sequence for the same function evaluation—and thus, in theory,
a higher complexity—compared to LIVARH where the optimization is left turned on.
Nonetheless, we wanted to investigate how LIVARHACC performs even under such a
setting.
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6 Performance evaluation

We present in this section experimental results aimed at evaluating the performance
of the Hessian algorithms introduced in this paper in comparison with several existing
Hessian algorithms. As testbeds, we use synthetic functions obtained from [20] and a
mesh optimization problem obtained from the FeasNewt benchmark [21]. The set of
results on the synthetic testbed is presented in Sect. 6.2 and the set of results on the
mesh optimization testbed is presented in Sect. 6.3.

6.1 Algorithms compared and test platform

A) Algorithms We compare the performance of LIVARH and LIVARHACC against three
existing SOAM-based approaches:

— full-Hessian (or FullHess for short): a full Hessian algorithm in which
sparsity is not exploited at all,

— sparseHess-direct (or Direct for short): a compression-based direct
sparse Hessian algorithm, and

— sparseHess-indirect (or Indirect for short): acompression-based indi-
rect sparse Hessian algorithm.

The compression-based algorithms Direct and Indirect consist of four dis-
tinct steps [10]: sparsity pattern detection (S1), computation of seed matrix via graph
coloring (S2), computation of the compressed Hessian matrix-seed matrix product
(83), and recovery of the original Hessian entries from the compressed representation
(84). The underlying methods for the coloring and recovery steps in both Direct and
Indirect (developed in our earlier work [9,10]) are implemented in the package
ColPack [22] and coupled with ADOL-C for seamless usage. We access these via
the sparse_hess () drivers in ADOL-C, which in turn invoke ColPack routines
for the coloring and recovery steps.

The difference between Direct and Indirect lies in how the compression-
recovery trade-off is handled: in Direct the compression is done such that the
recovery is achieved in a direct fashion whereas in Indirect a tighter compres-
sion that requires recovery via substitution is employed. The graph coloring model
underlying Direct is star coloring and the model behind Indirect is acyclic col-
oring [9,10]. Acyclic coloring uses fewer colors than star coloring, which leads to
a lower complexity in computation of the compressed Hessian (§3). Meanwhile, the
coloring step (S2) as well as the recovery step (S4) in Indirect are of higher com-
plexity than the respective steps in Direct. For sparsity detection (in both methods),
we use the recent forward mode-based algorithm described in [24] whose implemen-
tation is available in the ADOL-C version we used. (Older versions of ADOL-C use
an earlier sparsity detection algorithm presented in [23].)

We could not include results on Gower and Mello’s implementation of the Edge
Pushing algorithm in our comparison, since as mentioned previously, their code gives
incorrect results in most of the test cases. (We downloaded the Edge Pushing code
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(on October 6th, 2014) from the author’s webpage at http://www.maths.ed.ac.uk/
~81065527/software.html and had difficulties to make it work correctly. As an exam-
ple, the routine which evaluates the Hessian computes incorrect results so subsequent
routines which convert the results into sparse format either give incorrect results or
cause a segmentation fault.) If we run the first routine despite the incorrect results, the
runtime is within a factor of two of that of our LIVARH implementation.

B) Platform For all of the results we report in the paper, the experiments are conducted
on a computer equipped with a Quad Core 2.5 GHz Intel I5-2400S processor, 8§ GB
Memory. The codes are compiled using gcc/g++ 4.8.2 with optimization flag -03
and we use ADOL-C version 2.5.2. We implemented LIVARH and LIVARHACC on top
of ADOL-C. The only change we made to native ADOL-C—besides of course the new
implementations—is that when running LIVARHACC, we disable the basic assignment
operator optimization as described in Sect. 5.3.3.

C) Runtimes For each test we perform, we report the arithmetic mean of 20 runs
and the coefficients of variation (standard deviation divided by the mean, CV) for the
runs. We exclude outliers which are results three standard deviations away from the
mean because they are most likely due to an unstable status of the system (routine
background jobs, etc). We observed only two outliers in all our experiments.

D) Source code 'We have made our implementations publicly available as open-source
at https://github.com/CSCsw/LivarH. Similarly, we have made the testbeds available
at https://github.com/CSCsw/LivarH-Test.

6.2 Synthetic functions, regular structures

A) Test functions and setup For our tests using synthetic functions, we hand-picked
four functions from the collection in [20]. We chose the functions such that the Hes-
sians would represent varying sparsity structures. We hand-coded the functions for the
purposes of applying AD. In all the tests, we set the number of independent variables to
be 20,000; each Hessian is therefore a 20,000 x 20,000 matrix. Table 4 lists the names
of the four test functions, the number of nonzeros (nnz) in the lower half (including
the diagonal) of each Hessian, and the average number of nonzeros per row in each
Hessian. (All of the algorithms we compare except for Full-Hessian return only
the upper or lower half of the Hessian matrix.) We plot in Fig. 8 the sparsity structure of
the Hessians of the four functions; to ease visualization, we use smaller-size problems
(100 x 100) in these plots rather than the actual dimension used in the Hessian compu-
tations (20,000 x 20,000). In the “Appendix 17, we list the mathematical expressions
specifying the four test functions.

Table 5 lists the properties of the synthetic functions when decomposed into single
assignment codes. The second column gives the number of SACs recorded on ADOL-
C tape with the basic assignment operator optimization turned on. The third column
is the number of SACs recorded on ADOL-C fape when we run LIVARHACC, i.e. the
basic assignment operator optimization turned off. The last column lists the number
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Table 4 List of the synthetic test functions

Func Name nnz in lower H avg [nnz/row]
Fl Chained Rosenbrock function 39,999 3

F2 Generalized Broyden banded function 119,985 11

F3 Potra and Rheinboldt boundary value problem 89,997

F4 Gomez-Ruggiero function 159,972

In each case, number of rows n = 20,000

100

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
(a) F1 (b) F2

10 20 30 40 50 60 70 80 90 100 '0°°70720 30 40 S50 60 70 80 90 100
(a) F3 (b) F4

Fig. 8 Sparsity structure of the Hessians of the synthetic test functions

Table 5 Properties of the synthetic functions when decomposed into single assignment codes

Func No. SACs (assign. optimization on) No. SACs (assign. optimization off) No. statements
F1l 179,998 179,998 20,000
F2 459,964 579,949 139,986
F3 259,989 279,987 39,998
F4 240,008 260,009 80,000

Numbers are shown with the basic assignment operator optimization in ADOL-C turned on or off
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Table 6 Average runtimes (in s) of 20 runs of the different Hessian algorithms on the synthetic test functions
and the corresponding coefficients of variation (CV) percentage (in parentheses)

Func FullHess Direct Indirect LIVARH LIVARHACC

Fl 126.8 (1.03 %) 0.072 (0.58 %) 0.851 (0.13 %) 0.094 (3.95 %) 0.043 (0.96 %)
F2 1723.1 (3.96 %) 1.002 (2.92 %) 2.353 (5.06 %) 0.539 (1.50 %) 0.224 (2.44 %)
F3 145.4 (1.14 %) 0.622 (13.7 %) 1.546 (0.38 %) 0.260 (1.05 %) 0.090 (0.66 %)
F4 115.4 (0.13 %) 49.89 (16.1 %) 106.9 (7.90 %) 0.259 (0.61 %) 0.130 (0.81 %)

Table 7 Breakdown of runtimes (in s) and number of colors needed for Direct and Indirect

Func No. colors S1 S2 S3 S4

Direct (star)

Fl 4 0.027 (0.79%) 0.015 (1.41%) 0.027 (1.06%) 0.003 (0.93 %)
F2 11 0.344 (0.97%) 0.078 (0.47%) 0.573 (5.00%) 0.007 (3.95%)
F3 9 0.509 (0.54 %) 0.056 (1.60%) 0.069 (0.83 %) 0.006 (4.79 %)
F4 10 49.77 (16.1%) 0.066 (1.41 %) 0.049 (0.50%) 0.006 (5.15%)
Indirect (acyclic)
Fl 2 0.028 (0.70%) 0.014 (0.62%) 0.014 (0.71%) 0.796 (0.12%)
F2 6 0.343 (0.75%) 0.045 (0.74 %) 0.294 (4.13%) 1.671 (7.29 %)
F3 6 0.510 (0.63%) 0.038 (1.04%) 0.046 (1.29%) 0.953 (0.48 %)
F4 8 5359 (15.4%) 52.41 (2.12%) 0.037 (0.31%) 0.858 (22.0%)

The CV values are shown in parentheses

of statements in each test function. The number of SACs tells us about the numerical
complexity of the function. The number of statements gives us an idea about how
the functions are implemented. For example, F1 and F3 are implemented with long
statements, whereas F2 and F4 are implemented with short statements.

B) Runtime results Table 6 shows the performance results (in terms of overall runtime
in seconds) of the various algorithms on these test functions. Table 7 shows the run-
time breakdown for the Direct and Indirect methods as well as the number of
colors needed in the underlying star and acyclic colorings for each test function.
We comment on a few points on the results seen in these tables. The Direct and
Indirect methods have been experimentally evaluated over several test problems
earlier [9,10,22]. And hence, here we focus on the new live variable algorithms.
First, the results show that computing Hessians disregarding sparsity is wasteful
and for large problem sizes even infeasible. Second, in all test functions except for F1,
the new algorithm LIVARH is found to be faster than both of the compression-based
methods. The function F1 is an exception because of the extremely simple structure of
its Hessian: a tridiagonal matrix, which can be computed using two or three Hessian-
vector products. Third, in all cases, LIVARHACC is the fastest method (in bold) and on
these problems it is around two to three times faster than LIVARH. Fourth, focusing
just on the compression-based methods, we can see that the Direct (star coloring-
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based) method is faster than the Indirect (acyclic coloring-based) method for the
test functions considered. The reason for this is the banded structure of the matrices:
the cost associated with recovery for the indirect method outweighs the reduction in
number of colors afforded by acyclic coloring relative to star coloring, making the
direct method faster overall. Finally, we note that for F4, whose Hessian is an arrow-
head matrix, both Direct and Indirect methods take extraordinarily long times.
This is primarily because (as can be seen in Table 7) the sparsity detection step takes
exceptionally long time for this particular structure. Also, the breakdown results show
that the sparsity detection step and the recovery step for Indirect method have
high coefficient of variation, which explains the high coefficients of variation of the
overall timing results for Direct and Indirect methods on F4. In contrast, the
results show that the LTIVARH algorithm and the LIVARHACC algorithm are more robust
to variations in sparsity structure.

C) Special sparsity structures Regarding F4, we also see that acyclic coloring (52 in
Indirect) takes extraordinarily long time. This is due to the special nature of this
structure vis-a-vis the intricacies of the acyclic coloring algorithm and its implementa-
tion. For the purpose of being general, the implementation of acyclic coloring involves
maintaining a disjoint-set data structure that keeps track of two-colored induced sub-
graphs (trees) [9]. The arrow-head matrix structure and the associated adjacency graph
make the acyclic coloring algorithm’s search and merge operations on this data struc-
ture especially intensive, which explains the large runtime needed. One can offer a
similar explanation for the high runtime cost of the sparsity detection routine for this
same testcase.

However, for this case, the sparsity pattern of the Hessian can in fact be directly
inferred from the expression of the function—thus entirely avoiding having to call the
sparsity detection routine in ADOL-C. Similarly, an acyclic coloring of an arrow-
head matrix can also be trivially obtained without having to call ColPack—just
assign each column/row in the dense column/row portion of the matrix a distinct
color, and then assign all remaining columns/rows a new color. This would in fact
give an optimal acyclic coloring (and the acyclic coloring results in Table 7 out-
put by ColPack do exactly match this). If the sparsity detection and coloring
for the function F4 were done as just described, then the overall runtime for the
compression-based methods would essentially be S3 plus S4, which would give
about 0.89 seconds for Indirect and 0.06 seconds for Direct, runtimes that
are a lot closer to those of LIVARH and LIVARHACC. The lesson therefore is that
one should avoid using generic sparsity pattern detection and coloring routines for
special cases, such as the arrow-head structure, for which solutions can be trivially
obtained.

D) Repeated Hessian computations In certain iterative optimization procedures, one
may need to repeatedly compute Hessians for a given input function. In such cases,
the sparsity structure detection and the graph coloring steps of the compression-based
approach for sparse Hessian computation need to be performed only once, since the
sparsity pattern remains the same throughout the iterations. Under such circumstances,
the compression-based methods (which would then have runtime equal to just S3 plus
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Table 8 Memory usage (in MB) of the different Hessian algorithms on the synthetic test functions

Func Direct (star) Indirect (acyclic) LIVARH LIVARHACC
Fl 19.63 25.70 25.09 25.13
F2 49.94 49.94 48.07 54.48
F3 27.27 40.56 33.37 34.47
F4 27.36 45.07 33.65 34.75

S4) could be faster than the LIVARH algorithm. In our synthetic test functions, we
see this to be the case in all functions except for F3, where the runtime needed for
only computing the compressed Hessian and then recovery (S3 plus S4) using the
Direct method is less than the runtime of LIVARH or LIVARHACC. For repeated
Hessian computation when the sparsity pattern remains the same, the compression-
based approach should be preferred over LIVARH or LIVARHACC.

E) Memory usage Another metric besides runtime we use to compare the various
algorithms is memory footprint. Using Valgrind 3.10.1 [25], we measured the
heap memory usage of the different algorithms. Table 8 gives the results obtained on
these same synthetic test functions. We omit the memory usage for the full Hessian
algorithm because it requires us to pre-allocate the whole Hessian matrix in memory,
in this case a 20,000 x 20,000 matrix, which would need at least 1.6GBytes. Clearly
this is inefficient and infeasible for larger cases. From the result, first we see that all the
four algorithms use only 20 to 50 Mbytes of memory. And for same function, the four
algorithms use roughly the same amount of memory. FullHess algorithm requires at
least 1.6 GBytes of memory for these problems and this is another reason that sparsity
should always be considered when the Hessian to be evaluated is sparse. Second,
the Tndirect algorithm uses more memory compared to the Direct algorithm
(expect for F2). This is due to the former using the acyclic coloring algorithm with
the additional book-keeping information this coloring entails, whereas the Direct
algorithm uses star coloring which requires maintaining less information [9]. Finally,
the extra memory usage of LIVARHACC compared to LIVARH can be explained by
Table 5. As can be seen there, our implementation of LIVARHACC works on a longer
SAC sequence, and therefore needs more memory.

F) Update count In our analyses in Sects. 3.4 and 4.2, we used the number of updates
on the Hessian mapping as a means to gauge the complexity of the algorithms LIVARH
and LTIVARHACC. Table 9 shows the observed number of Hessian-updates these algo-
rithms performed during their entire execution for each of the test functions. We can
see a substantial reduction in total number of updates due to preaccumulation in all
testcases except for F1. The reduction fairly accurately translated to the observed
performance (runtime) gain for LIVARHACC over LIVARH. Here, F1 is an exception
because of its extreme simplicity. In its implementation, each loop just contains one
line of code which sums up a local expression. So the global accumulation degener-
ates to simply copying things again. In this case, the performance gain of LIVARHACC

@ Springer



M. Wang et al.

Table 9 Number of updates performed in LIVARH and LIVARHACC on the synthetic test functions

Func LIVARH LIVARHACC

Total Ops Local Ops Global Ops Total Ops
Fl 199,990 199,990 59,997 259,987
F2 3,219,515 339,970 959,845 1,299,815
F3 1,279,872 49,995 249,975 299,970
F4 1,199,978 60,000 399,992 459,992

Table 10 Structural and runtime properties of the mesh optimization problems

Mesh n nnzinlower H ~ No. SACs (assign. ~ No. SACs (assign. ~ No. statements
opt. on) opt. off)

gear 2598 46,488 242,563 289,303 87,249

ductl2 11,597 253,029 1,492,730 1,781,061 538,217

duct8 39,579 828,129 5,088,836 6,072,449 1,836,073

comes from the fact that performing local updates is much more efficient than global
updates.

6.3 Mesh optimization, irregular structure

A) Problem setup We did an evaluation and analysis similar to what we have done
with the synthetic test functions in Sect. 6.2 on a mesh optimization problem as an
example of a real-world problem. The mesh optimization problem and the function
code are described in [21]. We have, however, made some small changes in using the
code. Specifically, in the original code, there are fixed nodes and non-fixed nodes, and
the code only computes the Hessian for the non-fixed nodes. To simplify the problem,
here we treat all nodes as non-fixed and compute the Hessian via AD through the
objective function directly.

In our experiments using this modified mesh optimization code, we consider three
meshes with different sizes: gear, duct12 and duct8. The number of independent
variables n for them is equal to 2598, 11,597 and 39,579 respectively. The lower
half of the three corresponding Hessian matrices contain number of nonzero entries
(nnz) equal to 46,488; 253,029 and 828,129, respectively. Table 10 summarizes these
numbers along with properties of the decompositions of the problems into SACs, again
with the basic assignment operator optimization in ADOL-C turned on or off. We can
see that these Hessians are denser than the Hessians of the synthetic functions we
considered in Sect. 6.2, but they are still sufficiently sparse (compare nnz with n”
in each case). In Fig. 9 we give a plot of the sparsity pattern of the Hessian matrix
of the smallest problem, gear where n = 2598. In contrast to the Hessians of the
synthetic function we saw earlier, we can see that the sparsity pattern of these Hessians
is irregular.
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Fig. 9 Sparsity structure of the Hessian of the smallest mesh problem (gear withn = 2598)

Table 11 Average runtimes (in sec) of 20 runs of the different Hessian algorithms on the mesh optimization
problems

Mesh FullHess Direct Indirect LIVARH LIVARHACC

gear 18.96 (0.39 %) 3.360 (1.01 %) 3.280 (1.41 %) 0.520 (0.36 %) 0.326 (0.92 %)
ductl2 >1h 34.47 (2.41 %) 28.49 (1.38 %) 3.548 (1.34 %) 2.230 (1.33 %)
duct8 >2h 119.3 (1.27 %) 108.5 (1.99 %) 12.75 (1.43 %) 7.960 (1.48 %)

The corresponding CV values of the 20 runs are shown in parentheses

B) Runtime results Table 11 shows the overall runtime (in seconds) results of the
various Hessian algorithms on these problems, and Table 12 shows the runtime break-
down for Direct and Indirect. A few comments are in order. First, we can see
that LIVARH is around six to eight times faster than both Direct and Indirect,
and LIVARHACC gives further performance improvement, in most cases more than
30 % over LIVARH. Second, unlike the results we saw in the synthetic case, here
the algorithm Indirect (based on acyclic coloring) is found to be comparable to
Direct (based on star coloring). This is because of the irregularity of the spar-
sity pattern and the associated difference in colors versus recovery-cost tradeoff.
Finally, we see that sparsity pattern detection is the costliest step (of the four steps
in a compression-based method) in both of these algorithms. A symbolic live vari-
able approach could be used to speed up this step, and this is the scope of future
work.

C) Memory usage Table 13 lists results on memory usage of the various algorithms on
these problems. The results show that LIVARH uses less memory than both Direct
and Indirect. The results also show that LIVARHACC requires more memory than
LIVARH, again because more SACs are stored for LIVARHACC. For example, for the
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Table 12 Breakdown of runtimes (in sec) and number of colors needed on the mesh problems

Mesh No. colors S1 S2 S3 S4

Indirect (acyclic)

gear 54 2.897 (1.16 %) 0.064 (0.43 %) 0.396 (0.43 %) 0.002 (2.51 %)

ductl2 62 19.40 (2.21 %) 0.396 (0.30 %) 14.66 (4.54 %) 0.012 (3.59 %)

duct8 65 69.02 (1.69 %) 1.350 (1.02 %) 48.86 (1.40 %) 0.049 (4.26 %)
Indirect (acyclic)

gear 31 2.893 (1.63 %) 0.049 (2.34 %) 0.232 (1.42%) 0.106 (0.69 %)

ductl2 30 19.57 (1.86 %) 0.302 (0.67 %) 6.993 (2.39 %) 1.627 (0.18 %)

duct8 31 69.11 (1.90 %) 1.094 (0.56 %) 23.69 (8.06 %) 14.59 (0.20 %)

The CV values are shown in parentheses

Table 13 Memory usage (in MB) of the different Hessian algorithms on the mesh problems

Mesh Direct (star) Indirect (acyclic) LIVARH LIVARHACC
gear 67.1 67.1 27.7 30.2
ductl2 380.5 380.5 135.3 150.8
duct8 1253.0 1253.0 444 .4 497.1

Table 14 Number of updates performed in LIVARH and LIVARHACC for the mesh problems

Mesh LIVARH LIVARHACC

Total Ops Local Ops Global Ops Total Ops
gear 3,134,934 136,658 1,917,115 2,053,773
ductl2 19,558,132 845,318 12,018,204 12,863,522
duct8 66,631,857 2,881,914 40,949,715 43,831,629

largest problem (mesh duct8 with n = 39,579), we can see from Table 10 that
LivARHACC works with over one million more SACs than the other algorithms.

D) Updates count Table 14 gives the number of observed updates on the Hessian map-
pings involved in LIVARH and LIVARHACC. In all cases, we can see that LIVARHACC
reduces the total number of operations by a third over LIVARH. This, again, corrobo-
rates with the performance results shown in Table 11.

7 Conclusions

We showed that Hessians in AD can and should be computed directly using the reverse
mode. Recognizing the role of live variables in incremental reverse mode AD, we
identified a key invariant that serves as a foundation for the proposed framework
for Hessian algorithms. We also showed that preaccumulation is beneficial in this
framework.
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We implemented the Hessian algorithms we developed, LIVARH and LIVARHACC,
within the operator overloading paradigm. The reader can see that the algorithms
“map” naturally to an operator overloading implementation. There is, meanwhile,
nothing inherent in the algorithms that precludes an implementation (of appropriate
variants of the algorithms) within the source code transformation paradigm as well.
The required adaptation, however, is likely to present a formidable challenge.

There are several worthwhile directions for extending this work. We mention exam-
ples of avenues we intend to pursue.

— The key invariants we observed in this work can be naturally extended to orders
higher than two. For example, extending the invariant to third order would mean
maintaining a mapping 7 from every unordered triplet (u, v, w) in S to a real
value 7 (u, v, w). The third order derivative tensor can thus be represented by
the mapping 7 after each step. Gower and Gower [13] have recently extended
their Edge Pushing algorithm to third-order. Their approach gives the directional
derivatives for the Hessian, which is a slice of the third-order tensor, and hence it
is similar to a forward-over-reverse mode which gives the directional derivatives
for the adjoints.

— As we have discussed, the sparsity pattern detection step in the compression-based
approach has the highest memory usage. A “symbolic” variant of LIVARH which
merely computes the sparsity pattern of the Hessian would use less memory than
the numeric LIVARH. We will consider using a symbolic version of LIVARH as
the sparsity pattern routine in our compression-based methods; Gower and Mello
[12] have demonstrated that a symbolic version of their Edge Pushing algorithm is
suitable for compression-based methods. Compression-based methods are advan-
tageous for cases where a Hessian matrix with the same sparsity pattern needs
to be repeatedly evaluated within an iterative optimization procedure (or nonlin-
ear equation solver), or when it is preferable to compute Hessian-vector products
rather than the full Hessian at once.

— It would be interesting to find ways in which LIVARH and LIVARHACC can be
parallelized on multicore and manycore architectures.
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Appendix

We provide here details that we left out from the discussions in Sects. 2 through 6. In
Sect. 1 we give an alternative, more abstract derivation of the Egs. (6) and (8) from
Sect. 3 on adjoints and Hessians, respectively. In Sect. 1 we analyze the complexity of
processing one statement in LIVARH and LIVARHACC, and then we establish a sufficient
condition under which LIVARHACC necessarily reduces the total number of updates
needed. In Sect. 1 we give a listing of the mathematical expressions describing the test
functions F1, F2, F3 and F4 used in Sect. 6.2.
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Derivation of the Hessian invariant equation

Suppose we are about to process a SAC v; = ¢; (v)y i=<v; - Following the notations from
Sect. 2, the current live variable set is S;;+1 and the objective function is equivalent
to Fir1(Si+1). After the SAC is processed, the live variable set will be S; and the
objective function will be equivalent to F;(S;). The relation between Fj1(S;+1) and
F;i(S;) is that v; is considered an independent variable in Fji1(S;4+1) whereas it is
viewed as the implicit function v; = (p(vj)v_/.<v[ in Fi(S;). Thus:

Fit1(Si+1) = Fia(Sipi\{vi}, vi)
= Fit1(Sit1\{vi}, vi = @i (vj)v;<v;)
= Fi(Sit1\{vi} U{vjlv; <vi})
=Fi(S).

Let us introduce a notational short-hand at this point. Namely, to distinguish the
partial derivative operation applied on Fj;1(S;+1) from that applied on F;(S;), we use

% to denote the operation on Fj;+1(S;+1) and % to denote the operation on F;j(S;).
Then we have:

OFi(S) _ OFi(Six1\(vi} U (v)lv; < vi))

dv dv
~ OFi (S \vi} v = 0i () v; <)
- av
0Fi+1(Si+1) | 99 0Fi11(Si+1)
=y
ov dv av;

This is the same as the adjoints Eq. (6). Viewed in terms of operators, the relationship
is:

o 9 O 9
5 v dv v

Now we wish to extend this relation to second order. To simplify notation, let
f = Fit1(Si+1) and f = F;(S;). Then by applying the first order operator relation
twice, we have:

/\2/\ A A A A )
a2 f B w}a[£+%£}

vy 0v 0v;

évjévk v 5vk évj
)

SN AR Py

~

évj _avk 3Uj dvg dv;
_ 20 'ﬂ]+%i[%}+%i[%}
ov; | dvg 3vk8vj dv; dv; v vy
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[ AT el e ]
v dvj dv; | dug  dvg | dv; dv; dv; ov;
AR ERIE
ov; | dv;  dv; dv; | [ dwg
9 f dpi 9 f dpi 9% f dpi dp; O f f e
o dvjdvy  dvj dv;dux  dvg dvjdv;  dvg dvj dv;dv;  Jv; dvjduk
9*f dpi O f dpi O*f dgi 0p; % f ;i of
dvjodvy  dvj dv;dvg  Jvg dv;dv; v dvg dv; Ay, o0v;jovg v

This is an alternate, from first-principles derivation of the Hessian Eq. (8).

Analysis of LIVARHACC

We follow the assumption in Sect. 4.2 that every operator is either unary or binary.
Suppose a statement is represented by k SACS, ¢; —_k+1, - - -, ®i—1, @i, meaning v; is the
left hand side variable of the statement. This statement defines a local computational
graph that is embedded in the global computational graph. (See Fig. 7b, d for an
illustration.) The embedded local computational graph has the following properties:

1. The local computational graph is almost a tree. The root node of the tree is v;,
the “leaf” nodes are variables that appear in the right hand side of the state-
ment, and the intermediate nodes are v; 41, ..., vi—1. Only the root node and
the “leaf” nodes are explicitly declared variables in the code. The intermediate
nodes v;_+1, - - ., vj—1 are implicitly generated by the complier at run-time.

2. The local computational graph differs from a tree in that only the “leaf” nodes
in the local computational graph can have out-degree more than one (the local
subgraph looks like an inverted funnel).

These two properties hold true primarily because of two basic assumptions we
make. First, we assume that there is no implicit assignment in AD, since it is not safe.
The evaluation order might be different from what is expected for intrinsic floating-
point types. Second, for overloaded-operators, a compiler does not eliminate common
sub-expressions (or at least cannot safely do it for free).

From the aforementioned two properties, the following claim follows.

Lemma 1 Using the notations and assumptions established earlier, in LIVARH, let
d;_ j denote the number of nonzeros in the row v; _j when processing ¢; —j, 0 < j < k.
Then, d; < d,'_j.

Proof At the beginning of processing ¢;, the other ends of the nonlinear interaction
are explicit variables. For all ¢;_;, 0 < j < k, the result variable v;_; is an implicit
variable, as stated in Property (1). Therefore, there will be no merge of nonlinear
interactions. In other words, the variable v; _; gets all nonzero entries from its parent,
as illustrated in Fig. 7a, b. So the statement follows immediately. O
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From the discussion in Sect. 4.2, we know that in LIVARH, an upper bound on
the total number of updates needed in the Hessian mapping to process the SACs

Qi—k+1s - - -» Pi—1, @; can be given by:

k—1
U= (di—jpimj + Pici(picj + D) (13)
J

Il
=}

In LivARHACC (Fig. 6), we have the following property to bound the size of a live
variable set during local accumulation:

Lemma 2 During local accumulation, the size of the local live variable set when
processing @;—; is at most j + 1.

Thus, in LIVARHACC, an upper bound on the total number of updates needed to
preaccumulate the same SACs locally can be given by:

>~

-1
U= (ipi-j + pi-j(pi-j + ). (14)
J

Il
S

There is an important difference between Eqs. (14) and (13). In Eq. (14), we take
into consideration that the case in Fig. 5a) and the case in Fig. 5b) are exclusive. In
contrast, in Eq. (13) [as well as in Eqs. (10) and (15)], the exclusiveness is ignored to
simplify the equation.

Assume there are p “leaf” nodes in the local computational graph. Then an upper
bound on the number of operations needed to globally accumulate the derivatives can
be given by:

Ug =dip+ p(p+1). (15)

Finally, under the assumption that all operators are unary or binary (which implies
pi—j <2,0 < j < k), the following two lemmas are easy to prove.

Lemma 3 For an assignment and associated computational graph defined by
Qi—k+1s -+ - Qi, the relationship ZI;-;(I) pi—j = k+ p — 1 holds. Equality holds if
and only if every variable on the left-hand-side is unique.

Proof Assume there are g occurrences of explicitly declared variables in the
assignment, where multiple occurrences of the same variable count independently.
Obviously, ¢ > p, and equality holds if and only if every variable on the left-hand-
side is unique.

During the evaluation of this assignment, each SAC ¢; 4 generates one variable
(temporary result) and consumes p;_j1 variables (operands). Initially, we have g
variables on the right-hand-side as operands, and finally we have one variable on the
left-hand-side as assignee. So we have le‘;(]) pi—j+1=q+k. Thatis, Z'};ﬁ) pi—j =

k + p — 1, and equality holds if and only if every variable on the left-hand-side is
unique. O
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Lemma 4 For an assignment and associated computational graph defined by
Qi—k+1, - - - » @i, the relationship k > p holds. Equality holds if and only if every
variable on the left-hand-side is unique, and every operator is binary except for the
assignment operator “="".

Proof Following the proof of Lemma 3, we know Z/;;(l) pi—j +1 = g + k. Further,
we have p; = 1 because ¢; is an assignment operator. Further p;_; < 2,1 <j <k
because we assume all operators are unary or binary. Thus we have p +k < g +k =
Z];;(l) pi—j +1 < 2k. That gives us k > p, and equality holds if and only if every
variable on the left-hand-side is unique, and every operator is binary except for the

assignment operator “=". O

Putting these results together, we prove Theorem 3 that we had stated in Sect. 4.2,
and which we redisplay here (for convenience) as Theorem 4.

Theorem 4 Given a statement defined by ¢; _y+1, - . ., ;, whend; (k—1) > 2k(k+1)
holds, we have Uy +Ug < U.

Proof First we consider the left-hand-side of the inequality.

k—1
UL+Uc =) (jpij+pi-j(pi-j+1)+dip+pp+1)
j=0
k—1 k—1
=dip+p(p+ D+ jpij+ D, pi-j(picj+ 1
j=0 j=0
k—1 k—1
<dip+pp+D+2D j+ > pioj(picj+1)  (since pij <?2)
=0 =0
k—1
<dip+p(p+D)+k+1)+D pij(pij+1)
j=0

(upper bound for the sum on k)
k—1
<2k(k+1D)+dip+ D pi—j(pi-j+1) (By Lemma4 k> p).
Jj=0

Now we provide a lower bound for the right-hand-side of the inequality.

k—1
U= (difjpifj + pi—j(pi-j + 1))
j=0
k—1 k—1
= difjpifj‘i‘zpifj(‘pifj‘i‘l)
j=0 j=0
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k—1 k—1
=d; D pi-j+ D pi-j(pi-j + 1)  (By Lemmal.d; <d;;)
j=0 j=0

k—1
=dik+p—1+2 pi—j(pi-j+1)  (By Lemma3)
j=0
k—1
=di(k = 1) +dip+ Y pivj(pij + 1.
j=0

Thus when d;(k — 1) > 2k(k + 1), we have Uy + Ug < U. O
Listing of the synthetic test functions F1, F2, F3 and F4
We list in Table 15 the mathematical definitions of the four synthetic test functions

F1, F2,F3 and F4 we used in the experiments discussed in Sect. 6. The functions are
called in [20] Problem 1, Problem 5, Problem 80, and Problem 41, respectively.

Table 15 Mathematical descriptions of the synthetic test functions used in the experiments

Chained Rosenbrock function (F1):

F(x) = X8 [1002 | — x)% + (x—1 — 1D?]
Generalized Broyden banded function (F2):

- 7

F(x) =>0Z1103 = 2x)x + Zje],» xj(1+x))|3

Ji ={jlmin(l,i = 5) < j < max(n,i + 1)}
Potra-Rheinboldt boundary value problem (F3):

F(x) =3 3521 [

Se(x) = 2x, — Xk—1 — Xk41 +h2(x]% +xp +0.0xp 40 —1.2) 1 <k <n/2

Se(x) = 2x — Xp—1 — Xj41 +h2(0.2xk_n/2 +x,§ +x;—06)n/2 <k<nh=1/(n/2+1)
Gomez-Ruggiero function (F4):

Fx) =3 3520 ;20

S = —2x% + 3xg + 21 + %4 — X3 — X2 +0.5x, | —xp + 1k =1

fe) = =202 +3xp — Xkt + 241 + 34 — Xp—3 — Xy +05x,_; —xp + 11 <k <n

Jr(x) = —2x/3 4+ 3x, —Xp—1 +3x—4 — X3 — X2 +05x,_1 —xp+1k=n
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