
Nordic Journal of Computing 13(2006), 1–25.

PRO: A MODEL FOR THE DESIGN AND ANALYSIS OF

EFFICIENT AND SCALABLE PARALLEL ALGORITHMS

ASSEFAW HADISH GEBREMEDHIN

Old Dominion University, USA

assefaw@cs.odu.edu

MOHAMED ESSAÏDI

INRIA Sophia-Antipolis, France

essaidi@loria.fr

ISABELLE GUÉRIN LASSOUS

UFR Informatique / UCBL
LIP / ENS Lyon, France

Isabelle.Guerin-Lassous@ens-lyon.fr

JENS GUSTEDT

INRIA Lorraine & LORIA, France
Jens.Gustedt@loria.fr

JAN ARNE TELLE

University of Bergen, Norway

telle@ii.uib.no

Abstract. We present a new parallel computation model called the Parallel Resource-

Optimal computation model. PRO is a framework being proposed to enable the design

of efficient and scalable parallel algorithms in an architecture-independent manner, and

to simplify the analysis of such algorithms. A focus on three key features distinguishes

PRO from existing parallel computation models. First, the design and analysis of a parallel

algorithm in the PRO model is performed relative to the time and space complexity of a

sequential reference algorithm. Second, a PRO algorithm is required to be both time- and

space-optimal relative to the reference sequential algorithm. Third, the quality of a PRO

algorithm is measured by the maximum number of processors that can be employed while

optimality is maintained. Inspired by the Bulk Synchronous Parallel model, an algorithm in

the PROmodel is organized as a sequence of supersteps. Each superstep consists of distinct

computation and communication phases, but the supersteps are not required to be separated

by synchronization barriers. Both computation and communication costs are accounted for

in the runtime analysis of a PRO algorithm. Experimental results on parallel algorithms

designed using the PRO model—and implemented using its accompanying programming

environment SSCRAP—demonstrate that the model indeed delivers efficient and scalable

implementations on a wide range of platforms.

ACM CCS Categories and Subject Descriptors:

Key words: parallel computers, parallel computation models, parallel algorithms, com-

plexity analysis

1. Introduction

As Akl [1997] notes, a model of computation should ideally serve two major pur-

poses. First, it should describe a computer. In this role, a model should attempt to

capture the essential features of an existing or contemplated machine while ignor-

ing less important details of its implementation. Second, it should serve as a tool

for analyzing problems and expressing algorithms. In this sense, a model need not

Received September 22, 2006; accepted December 11, 2006.

2 GEBREMEDHIN ET AL.

necessarily be linked to a real computer but rather to an understanding of compu-

tation.

In the realm of sequential computation, the Random Access Machine (RAM)

has been a standard model for many years, successfully achieving both of these

purposes. It has served as an effective model for hardware designers, algorithm

developers, and programmers alike. Only recently has the focus on external mem-

ory and cache issues uncovered a need for more refined models. When it comes to

parallel computation, there has not been an analogous, universally accepted model

that has been as successful. This is in part due to the complex set of issues inherent

in parallel computation.

The performance of a sequential algorithm is adequately evaluated using its exe-

cution time, one of the reasons that made the RAM powerful enough for algorithm

analysis and design. On the other hand, the performance evaluation of a parallel al-

gorithm involves several metrics. Perhaps the most important metrics are speedup,

optimality (or efficiency), and scalability. To enjoy similar success as that of the
RAM, a parallel computation model should incorporate at least these metrics and

be simple to use at the same time. In order to simplify the design and analysis of

resource-optimal, scalable, and portable parallel algorithms, we propose the Par-

allel Resource-Optimal (PRO) computation model. The PRO model was briefly

introduced in the conference paper Gebremedhin et al. [2002]. Here we describe

the model in detail, and provide experimental results to help validate the model and

demonstrate its practical relevance.

The PRO model is inspired by the Bulk Synchronous Parallel (BSP) model in-

troduced by Valiant [1990] and the Coarse Grained Multicomputer (CGM) model

of Dehne et al. [1996]. In the BSP model a parallel algorithm is organized as a

sequence of supersteps with distinct computation and communication phases. The

emergence of the BSP model marked an important milestone in parallel compu-

tation. The model introduced a desirable structure to parallel programming, and

was accompanied by the definition and implementation of communication infras-

tructure libraries due to Bonorden et al. [1999] and Hill et al. [1998]. Recently,

Bisseling [2004] has written a textbook on scientific parallel computation using

the BSP model.

From an algorithmic (as opposed to a programming) point of view, we believe

that the relatively many and machine-specific parameters involved in the BSP

model make the design and analysis of algorithms somewhat cumbersome. The

CGM model partially addresses this limitation as it involves only two parameters,

the input size and the number of processors. The CGM model is a specialization

of the BSP model in that the communication phase of a superstep is required to

consist of single long messages rather than multiple short ones. A drawback of

the CGM model is the lack of an accurate performance measure; the number of

communication rounds (supersteps) is usually used as a quality measure, but as we

shall see later in this paper, this measure is sometimes inaccurate.

The PROmodel inherits the advantages offered by the BSP and the CGMmodels.

It also reflects a compromise between further theoretical and practical considera-

tions in the design of optimal and scalable parallel algorithms. The model focuses

on three key features, a fact that distinguishes PRO from existing parallel compu-

PARALLEL RESOURCE-OPTIMAL COMPUTATION 3

tation models. The foci of the model are: relativity, resource-optimality, and a new

quality measure referred to as granularity.

Relativity pertains to the fact that the design and analysis of a parallel algorithm

in PRO is done relative to the time and space complexity of a sequential reference

algorithm. As a consequence, the parameters involved in the analysis of a PRO-

algorithm are: the number of processors p, the input size n, and the time and

space complexity of the reference sequential algorithm A. Note that speedup and
optimality are metrics that are relative in nature as they are expressed with respect

to some sequential algorithm, and this forms the major reason for the focus on

relativity. The notion of relativity is also relevant from a practical point of view,

since a parallel algorithm is usually designed not from scratch, but rather starting

from a sequential algorithm.
A PRO-algorithm is required to be time- and space-optimal, hence resource-

optimal, with respect to the reference sequential algorithm. A parallel algorithm is

said to be time- (or work-) optimal if the overall computation and communication

cost involved in the algorithm is proportional to the time complexity of the sequen-

tial algorithm used as a reference. Similarly, it is said to be space-optimal if the

overall memory space used by the algorithm is of the same order as the memory us-

age of the underlying sequential version. As a consequence of its time-optimality,

a PRO-algorithm always yields linear speedup relative to the reference sequential

algorithm. In other words, the ratio between the sequential and the parallel run-

time is a linear function of the number of processors p. The resource optimality

requirement set in the PRO model enables one to concentrate only on practically

useful parallel algorithms. Here optimality is required only in an asymptotic sense,

which leaves enough slackness for easy design and analysis of algorithms.
Before turning to the quality measure of a PRO algorithm, we wish to underscore

the consequences of the novel notion of relativity. In PRO, instead of directly com-

paring algorithms that solve the same problem, a two-leveled approach is taken.

First, a reference sequential algorithm A with a particular space and time com-

plexity is selected. Then, parallel algorithms that are resource-optimal with respect

toA are compared. The latter comparison, the quality of a PRO algorithm, is mea-
sured by the range of values the parameter p can assume while linear speedup is

maintained. It is captured by an attribute of the model called the granularity func-

tion Grain(n). In particular, a PRO-algorithm with granularity Grain(n) is required

to yield linear speedup for all values of p such that p = O(Grain(n)). In other

words, the algorithm is required to be fully scalable for p = O(Grain(n)). The

higher the function value Grain(n), the better the algorithm. The final evaluation

of a PRO-algorithm for a given problem must of course take into account both the

time and the space complexity of the reference sequential algorithm and the gran-

ularity function. A new result will typically be presented as follows: Problem Π

has a PRO-algorithm with Grain(n) = g(n) relative to a sequential algorithm A
with time complexity TA(n) and space complexity SA(n). This simply means that

for every number of processors p and input size n with p = O(g(n)), there is a

parallel algorithm in the PRO model for problem Π where the parallel runtime is

O(TA(n)/p) and each processor uses O(SA(n)/p) memory. The best PRO algo-
rithm is thus one that is relative to an optimal sequential algorithm and has high

4 GEBREMEDHIN ET AL.

granularity Grain(n), where the optimal granularity achievable is O
(√
SA(n)

)

as

shown in Observation 1 in Section 3.

In addition to describing—and arguing for the need for—the PRO model, a twin

goal of this paper is to provide experimental evidence to help validate the model.

To this end, we present results on parallel algorithms for the list ranking and sorting

problems designed using the PRO model. These algorithms are implemented using

SSCRAP, a C++ communication infrastructure library for implementing BSP-like

parallel algorithms, developed by Essaı̈di et al. [2002, 2004]. The experiments are

run on several platforms, including an SGI Origin 3000 parallel computer and a PC

cluster. The obtained results show that designing algorithms within the framework

of the PRO model indeed offers linear speedup and a high degree of scalability

across a variety of platforms.

The rest of the paper is organized as follows. In Section 2 we highlight the lim-

itations of a few relevant existing parallel computation models, to help justify the

need for the introduction of the new model PRO. In Section 3 the PRO model is

presented in detail, and in Section 4 it is systematically compared with a selec-

tion of existing parallel computation models. In Section 5 we illustrate how the

PRO model is used in the design and analysis of algorithms using three examples:

matrix multiplication, list ranking and sorting. The latter two algorithms are used

in our experiments, the setting and the results of which are discussed in Section 6.

We conclude the paper in Section 7 with some remarks.

2. Existing models and their limitations

There exists a plethora of parallel computation models in the literature. Our brief

discussion in this section focuses on just three of them, the Parallel RandomAccess

Machine (PRAM), the BSP, and the CGM; we will also in passing mention a few

other models. The PRAM is discussed not to reiterate its failure to capture real

machine characteristics but rather to point out its limitations even as a theoretical

model. The BSP and CGMmodels are discussed because the PROmodel is derived

from them. The models discussed in this section are in a loose sense divided into

two groups as ‘dedicated models’ (to either software or hardware) and ‘bridging

models’ (between software and hardware).

2.1 Dedicated models

2.1.1 The PRAM family of models

In its standard form, the PRAM model [Fortune and Wyllie 1978, Jájá 1992] con-

sists of an arbitrarily large number of processors and a shared memory of un-

bounded size that is uniformly accessible to all processors. In this model, proces-

sors share a common clock and operate in lock-step, but they may execute different

instructions in each cycle.

The PRAM is a model for fine-grain parallel computation as it supposes that the

number of processors can be arbitrarily large. Usually, it is assumed that the num-

ber of processors is polynomial in the input size. However, practical parallel com-

PARALLEL RESOURCE-OPTIMAL COMPUTATION 5

putation is typically coarse-grain. In particular, on most existing parallel machines,

the number of processors is several orders of magnitude less than the input size.

Moreover, the assumption that memory is uniformly accessible to all processors is

in obvious disagreement with the reality of practical parallel computers.

Despite its serious limitation of being an ‘idealized’ model for parallel compu-

tation, the standard PRAM model still serves as a theoretical framework for in-

vestigating the maximum possible computational parallelism available in a given

task. Specifically, on this model, the NC versus P-complete dichotomy [Greenlaw

et al. 1995] is used to reflect the ease/hardness of finding a parallel algorithm for

a problem.

Unfortunately, the NC versus P-complete dichotomy has several limitations.

First, P-completeness does not depict a full picture of non-parallelizability since

the runtime requirement for an NC parallel algorithm is so stringent that the clas-

sification is confined to the case where up to polynomial number of processors in

the input size is available. For example, there are P-complete problems for which

less ambitious, but still satisfactory, runtime can be obtained by parallelization in

PRAM, see for example Vitter and Simons [1986]. In a fine-grained setting, since

the number of processors p is a function of the input size n, it is customary to ex-

press speedup as a function of n. Thus the speedup obtained using an NC-algorithm

is sometimes referred to as exponential. In a coarse-grained setting, speedup is ex-

pressed as a function of only p and some recent results show that this approach

is practically relevant [Caceres et al. 1997, Dehne et al. 1996, Gebremedhin et al.

2003, Guérin Lassous et al. 2000].

Second, an NC-algorithm is not necessarily work-optimal (thus not resource-

optimal), considering runtime and memory space as resources one wants to use

efficiently.

Third, even if we consider only work-optimal NC-algorithms and apply the

scheduling principle due to Brent [1974], which says a parallel algorithm in theory

can be simulated on a machine with fewer processors by only a constant factor

more work, implementations of PRAM algorithms often do not reflect this op-

timality in practice, see for instance Dehne [1999]. This is mainly because the

PRAM model does not account for non-local memory access (communication),

and a Brent-type simulation relies heavily on cheap communication.

To overcome the defects of the PRAM related to its failure of capturing real

machine characteristics, the advocates of shared memory models propose several

modifications to the standard PRAM model. In particular, they enhance the stan-

dard PRAM model by taking practical machine features such as memory access,

synchronization, latency and bandwidth issues into account. Pointers to the PRAM

family of models can be found in [Maggs et al. 1995].

2.1.2 Distributed memory models

Critics of shared memory models argue that the PRAM family of models fails

to capture the nature of existing parallel computers with distributed memory ar-

chitectures. Examples of distributed memory computational models suggested as

alternatives include the Postal Model [Bar-Noy and Kipnis 1992] and the Block

6 GEBREMEDHIN ET AL.

DistributedMemory (BDM)model [JáJá and Ryu 1996]. Other categories of paral-

lel models such as low-level, hierarchical memory, and network models are briefly

reviewed in [Maggs et al. 1995].

These models are very close to the architecture considered and the associated

algorithms are often not portable from one architecture to another.

2.2 Bridging models

In a seminal work, Valiant [1990] underscored that a successful parallel computa-

tion model needs to act as an efficient ‘bridge’ between software and hardware. He

introduced the Bulk Synchronous Parallel model as a candidate bridging model,

and argued that it could serve as a standard model for parallel computation.

2.2.1 The Bulk Synchronous Parallel model

The BSP model consists of a collection of processor/memory modules connected

by a router that can deliver messages in a point-to-point fashion. An algorithm in

this model is divided into a sequence of supersteps separated by synchronization

barriers. A superstep has distinct computation and communication phases. In a

superstep, a processor may send (and receive) at most hmessages. Such a commu-

nication pattern is called an h-relation and the basic task of the router is to realize

arbitrary h-relations. The quantity h here is related to the total size of communi-

cated data during a superstep.

The BSP model uses the four parameters, n, p, L, and g. Parameter n is the prob-

lem size, p is the number of processors, L is the minimum time between successive

synchronization operations, and g is the ratio of overall system computational ca-

pacity per unit time divided by the overall system communication capacity per

unit time.

The introduction of the BSP model initiated several subsequent studies suggest-

ing various modifications. For example, Culler et al. [1993] proposed a model

that extends the BSP model by allowing asynchronous execution and by better ac-

counting for communication overhead. Their model is coined LogP, an acronym

for the four parameters (besides the problem size n) involved. Models such as

LogP involve many parameters making design and analysis of algorithms difficult.

Analysis using the BSP model is not as difficult, but still not as simple as it could

be. In fact, to simplify analysis while using the BSP model, one often neglects

the latency L for problems of large enough size. Ideally, for the design of portable

algorithms, it is important to abstract away specific architectural parameters. This

issue is well-captured in the PRO model.

2.2.2 The Coarse-Grained Multicomputer model

The CGMmodel [Caceres et al. 1997, Dehne et al. 1996] was proposed in an effort

to retain the advantages of the BSP model while simultaneously aiming at simplic-

ity. The CGM model consists of p processors, each with O(n/p) local memory,
interconnected by a router that can deliver messages in a point-to-point fashion.

PARALLEL RESOURCE-OPTIMAL COMPUTATION 7

Here again n is the problem size. A CGM algorithm consists of an alternating se-

quence of computation rounds and communication rounds separated by synchroni-

zation barriers. A computation round is equivalent to the computation phase of a

superstep in the BSP model. A communication round usually consists of a single

h-relation with

h ≈ n/p. (1)

An important advantage of the CGM model compared to BSP is that all the infor-

mation sent from one processor to another in one communication round is packed

into one long message, striving to minimize communication overhead and latency.

Thus, the only parameters involved in the CGM model are p and n, a fact that

simplifies design and analysis of algorithms.

The assumption captured by Equation (1) has interesting implications on the

design and analysis of algorithms. To make these implications more apparent,

we first distinguish between parallel algorithms where the communication time to

computation time ratio is a constant and those algorithms where the ratio is some

function of the input size.

Suppose we have a CGM algorithm where the communication time to compu-

tation time ratio is a constant. Suppose also that Equation (1) holds. Then, since

each superstep has a complexity of Θ(h) = Θ(n/p), the only parameter of the
model that distinguishes one algorithm from another is the number of supersteps.

This direction was followed for instance by Caceres et al. [1997] where a long list

of algorithms that are designed under these assumptions is given.

However, there exists a large class of problems for which there are no known

CGM algorithms with constant communication time to computation time ratio.

Problems with super-linear time sequential algorithms, such as sorting and matrix

multiplication, belong to this class. For such problems and their corresponding par-

allel algorithms, communication alone cannot be a complexity measure and hence

one needs to consider computation as well. Furthermore, even for problems whose

algorithms are such that the stated ratio is constant, the assumption in Equation (1)

turns out to be quite restrictive. We shall illustrate this in Section 5.2 using the list

ranking problem as an example. In particular, we will show that the CGM model

fails to identify competitive algorithms when using the number of supersteps as a

quality measure.

3. The PRO model definition

The PRO model is an algorithm design and analysis tool used to deliver a practical,

optimal, and scalable parallel algorithm relative to a sequential reference algorithm

whenever this is possible. Let TA(n) and SA(n) denote the time and space com-

plexity of a sequential reference algorithm A for a given problem with input size

n. Let Grain(n) be a function of n. The PRO model is defined to have the attributes

given in Table I. In the following we will argue for each of these attributes turn

by turn.

It follows from attribute A that optimality is a relative notion. Thus in PRO we

could speak of an “optimal” parallel algorithm even in the case where the refer-

8 GEBREMEDHIN ET AL.

T I: Attributes of the PRO Model.

A. Relativity:

The time and space requirements of a PRO-algorithm for a problem (of input size

n) are measured relative to the time and space requirements TA(n) and SA(n) of a

sequential reference algorithmA that solves the same problem.

B. Machine Model:

The underlying machine is assumed to consist of p processors each of which has

a private memory of size M = O(
SA(n)

p
). The processors are assumed to be inter-

connected by some communication device (such as an interconnection network or a

shared memory) that can deliver messages in a point-to-point fashion. A message

can consist of several machine words.

C. Coarseness Assumption:

The size of the local memory of each processor is assumed to be big enough to store

p words. That is, the relationship p ≤ M is assumed to hold.

D. Execution Model:

A PRO algorithm is organized as a sequence of supersteps, each consisting of a

local computation phase and an interprocessor communication phase. In particular,

in each superstep, each processor

D.1. sends at most one message to every other processor,

D.2. sends and receives at most M words in total, and

D.3. performs local computation.

E. Runtime Analysis:

Both computation and communication are accounted for in the runtime analysis of a

PRO algorithm. In particular,

E.1. a processor is charged a unit of time per operation performed locally, and

E.2. a processor is charged a unit of time per machine word sent or received.

F. Optimality Requirement:

For every value p = O(Grain(n)), a PRO algorithm is required to have

F.1. a number of supersteps Steps(n, p) = O(TA(n)
p2
), and

F.2. a parallel runtime T(n, p) = O(TA(n)
p
).

G. Quality Measure:

The granularity function Grain(n) measures the quality of the algorithm.

ence sequential algorithm used is not of optimal complexity. Such an alternative

is useful, for instance, when the optimal sequential complexity is unknown, when

a sequential algorithm with the optimal complexity is impractical, or there exists a

tradeoff between sequential time and space complexity. We will illustrate this point

in Section 5 using the matrix multiplication problem as an example. An implication

of attribute A is that PRO does not define a complexity class.

PARALLEL RESOURCE-OPTIMAL COMPUTATION 9

As discussed in the LogP paper by Culler et al. [1993], technological factors are

forcing parallel systems to converge towards systems formed by a collection of es-

sentially complete computers connected by a robust communication network. The

machinemodel assumption of PRO (attribute B) is consistent with this convergence

and maps well on several existing parallel computer architectures. The memory

requirement M = O(
SA(n)
p
) ensures that the space utilized by the underlying se-

quential algorithm is uniformly distributed among the p processors. Since we may,

without loss of generality, assume that SA(n) = Ω(n), the implication is that the pri-

vate memory of each processor is large enough to store its ‘share’ of the input and

any additional space the sequential algorithm might require. When SA(n) = Θ(n),

the input data needs to be uniformly distributed among the p processors. In this

case the machine model assumption of PRO is similar to the assumption in the

CGM model of Dehne et al. [1996].

The coarseness assumption p ≤ M (attribute C) is consistent with the structure

of existing parallel machines and those to be built in the foreseeable future. The

assumption is required to simplify the implementation of gathering messages on or

broadcasting messages from a single processor.

In terms of execution, a PRO-algorithm consists of a sequence of supersteps (see

attribute D). A superstep has distinct local computation and inter-processor com-

munication phases. The length of a superstep on each processor is determined by

the sum of the time used for communication and the time used for local computa-

tion (see attributes E1 and E2). The length of a superstep in the parallel algorithm

seen as a whole is the maximum over the lengths of the superstep on all proces-

sors. The parallel runtime T(n, p) of the algorithm is the sum of the lengths of all
the supersteps.

Conceptually, we can think of the supersteps as being synchronized by a barrier

set at the end of the longest superstep across the processors. In reality, however,

PRO does not require the processors to be synchronized at the end of each su-

perstep. The assumption made instead is that prior to a computation phase of a

superstep, all the messages a processor awaits for has been completely received.

This way the processors are ‘soft synchronized’ via communication, and proces-

sors may thus differ in a maximum of two supersteps. Hence the hypothetical bar-

riers introduce only a multiplicative factor of two in comparison with an analysis

that does not assume the barriers.

In PRO, since a processor sends at most one message to every other processor

in each superstep (attribute D1), each processor is involved in at most 2(p − 1)
messages per superstep. Hence the total amount of messages that a PRO-algorithm

will be involved in is at most 2(p − 1) · Steps(n, p). The overall contribution of
latency is thus at most 2k(p − 1) · Steps(n, p), where k is an appropriate constant
capturing the network latency.

Therefore the requirement that the number of supersteps be bounded by O(
TA(n)

p2
)

(attribute F1) implies that the overall time paid per processor for network latency is

O(TA(n)/p) and hence within the same bound as the parallel runtime O(TA(n)/p)
we would like to achieve. Note that in the case where the number of supersteps

10 GEBREMEDHIN ET AL.

assumes its extreme value, i.e., where

Steps(n, p) = Θ(
TA(n)

p2
), (2)

network latency could be the practically dominant term in the overall parallel run-

time expression. Since latency is a parameter primarily determined by physical

restrictions such as the speed of light—and hence unlikely to improve as other ar-

chitectural features—an algorithm with such a number of supersteps may no longer

be portable across architectures.

The bandwidth of an architecture, on the other hand, is not subject to such physi-

cal restrictions. Computation and communication contribute to the overall runtime

in fairly similar ways as far as bandwidth is concerned. To account for bandwidth

restrictions of an architecture, in PRO, each processor is charged a unit of time per

word sent and received (attribute E2). This assumption is fairly realistic since the

network throughput on modern architectures such as high performance clusters is

quite close to the CPU frequency and to the CPU/memory bandwidth.

These properties imply that the BSP-cost of a PRO algorithm is proportional to

the following expression:

g · T(n, p) + L · Steps(n, p), (3)

where g and L are the BSP parameters defined in Section 2.2. In PRO, we assume

that a processor, whenever needed, uses an effective mechanism to send messages

to all other processors in each superstep. This in turn implies that we assume the

following relationship between the BSP parameter L and the number of proces-

sors p:

L = Θ(p). (4)

The condition T(n, p) = O(
TA(n)
p
) in attribute F2 of the PRO model requires

that a PRO-algorithm be optimal. That is to say a PRO-algorithm is required to

yield linear speedup relative to the sequential algorithm used as a reference. This

requirement ensures the potential practical use of the parallel algorithm. Except

for the extreme case represented by the expression (2), in general, the first term

of the expression (3) is the dominant term. Hence latency can be neglected in the

analysis of a PRO-algorithm.

The function Grain(n) is a quality measure for a PRO algorithm (attribute G).

In particular, for every number of processors p such that p = O(Grain(n)), a PRO

algorithm gives a linear speedup with respect to the reference sequential algorithm.

One of the objectives in designing a PRO algorithm is to make Grain(n) as high as

possible so as to increase scalability. As the following observation shows, there

is an upper bound on Grain(n) set by the complexity of the reference sequential

algorithm.

O 1. A PRO algorithm relative to a sequential algorithm A with time

complexity TA(n) and space complexity SA(n) has maximum granularity

Grain(n) = O
(√

SA(n)
)

.

A PRO algorithm that achieves this is said to have optimal grain.

PARALLEL RESOURCE-OPTIMAL COMPUTATION 11

P. One arrives at this result from two different sets of PRO-attributes. The

bound M = O(
SA(n)
p
) on the size of the private memory of each processor (attribute

B) and the coarseness assumption p ≤ M (attribute C) taken together imply the

bound p = O(
√
SA(n)). Further, the requirement Steps = O(TA(n)/p

2) on the

number of supersteps of a PRO-algorithm (attribute F1) gives the expression p =

O(
√

(TA(n)/Steps)) upon resolving, and since Steps ≥ 1 holds, the expression

reduces to p = O(
√
TA(n)). Moreover, since we may reasonably assume that all

memory is initialized, the inequality TA(n) ≥ SA(n) holds. Thus the bound p =
O(
√
SA(n)) set by attributes B and C is more restrictive and the result follows. !

Since a PRO-algorithm yields linear speedup for every p = O(Grain(n)), a result

like Brent’s scheduling principle (discussed in Section 2.1.1) is implicit for these

values of p. But Observation 1 shows that we cannot start with an arbitrary number

of processors and efficiently simulate on fewer processors. So Brent’s scheduling

principle does not hold with full generality in the PRO model, which is in accor-

dance with practical observations.

The design of a PRO-algorithm may sometimes involve subroutines for which

no natural sequential counterparts exist. Examples of such tasks include commu-

nication primitives such as broadcasting, data (re)-distribution routines, and load

balancing routines. Such routines are often required in various parallel algorithms.

With a slight abuse of terminology, we call a parallel algorithm for one of such

routines a PRO-algorithm if the overall computation and communication cost is

linear in the input size to the routine.

4. Comparison with other models

In this section we compare the PRO model with the PRAM, BSP, LogP, CGM,

and the Queuing Shared Memory (QSM, Gibbons et al. [1999]) models. The QSM

model is interesting since it is a shared memory model based on some BSP prin-

ciples. Our tabular format for comparison is inspired by a similar presentation in

[Gibbons et al. 1999]. The columns of Table II are labeled with names of models

and some relevant features of a model are listed along the rows.

T II: Comparison of parallel computational models.

PRAM QSM BSP LogP CGM PRO

synch. lock-step bulk-

synch.

bulk-

synch.

asynch. asynch. asynch.

memory sh. sh. dist. dist. priv. priv.

commun. SM SM MP MP MP/SM MP/SM

parameters n p, g, n p, g, L, n p, g, l, o, n p, n p, n,A
granularity fi ne fi ne coarse fi ne coarse Grain(n)

speedup NA NA NA NA NA Θ(p)

optimal NA NA NA NA NA rel. A
quality time time time time rounds Grain(n)

12 GEBREMEDHIN ET AL.

The synchrony assumption of a model is indicated in the row labeled synch.

Lock-step indicates that processors are fully synchronized at each step (of a uni-

versal clock), without accounting for synchronization. Bulk-synchrony indicates

that there can be asynchronous operations between synchronization barriers.

The row labeled memory shows how a model views the memory of the parallel

computer: ‘sh.’ indicates globally accessible shared memory, ‘dist.’ stands for

distributed memory and ‘priv.’ is an abstraction for the case where the only as-

sumption is that each processor has access to private (local) memory. In the last

variant the whole memory could be either distributed or shared.

The row labeled commun. shows the type of interprocessor communication as-

sumed by a model. Shared memory (SM) indicates that communication is effected

by reading from and writing to a globally accessible shared memory. Message-

passing (MP) denotes the situation where processors communicate by explicitly

exchanging messages in a point-to-point fashion. The MP abstraction hides the

details of how the message is routed through the interprocessor communication

network.

The parameters involved in a model are indicated in the row labeled parameters.

The number of processors is denoted by p, n is the input size, A is the reference

sequential algorithm, l is the communication cost (latency), L is a single parameter

that accounts for the sum of latency (l) and the cost for a barrier synchroniza-

tion, i.e. the minimum time between successive synchronization operations, g is

the bandwidth gap, and o is the overhead associated with sending or receiving a

message. Note that the machine characteristics l and o are taken into account in

PRO, even though they are not explicitly used as parameters. Latency is taken into

consideration since the length of a superstep is determined by the sum of the com-

putational and communication costs. Communication overhead is hidden by the

PRO-requirement that number of supersteps is bounded by O(
TA(n)

p2
).

The row labeled granularity indicates whether a model is fine-grained, is coarse-

grained, or uses a more precise measure. A model is coarse-grained if it applies

to the case where n & p. A model is fine-grained if it relies on using up to a

polynomial number of processors in the input size. In PRO, granularity is a quality

measure, captured by the model attribute Grain(n).

The rows labeled speedup and optimal indicate the speedup and resource opti-

mality requirements imposed by a model. Whenever these issues are not directly

addressed by the model or are not applicable, the word ‘NA’ is used. Note that

these requirements are ‘hard-wired’ in the model in the case of PRO. The label

‘rel.A’ means that the parallel algorithm is optimal relative to the time and space
complexity of the sequential algorithmA. We point out that the goal in the design
of algorithms using the CGMmodel—such as in the works of Caceres et al. [1997]

and Dehne et al. [1996]—is often stated as that of achieving optimal algorithms,

but the model per se does not impose an optimality requirement.

The last row indicates the quality measure of an algorithm designed using the

different models. For every model except CGM and PRO, the quality measure is

runtime. In CGM, the number of supersteps (rounds) is usually presented as a

quality measure. In PRO the quality measure is granularity, one of the features that

PARALLEL RESOURCE-OPTIMAL COMPUTATION 13

makes PRO fundamentally different from all existing parallel computation models.

5. Algorithm design in PRO

In this section, using three examples, we illustrate how the PRO model is used to

design efficient parallel algorithms. In each example, we refer to a sequential time

and space complexity, and then design and analyze a parallel algorithm relative to

these.

Our first example is the standard matrix multiplication algorithm with three

nested for-loops. This example is chosen for two reasons: its simplicity and its

suitability to emphasize the importance of explicitly stating the sequential time

and space complexity against which a parallel algorithm is compared. The com-

plexity of an optimal sequential matrix multiplication algorithm is still unknown,

and many algorithms that are theoretically known to be faster than the standard

cubic-time algorithm are impractical.

Our second example is list ranking, a basic routine used in many parallel graph

algorithms. List ranking is an interesting example in our context as a CGM-analysis

of one of its parallel algorithms suggests inefficiency, despite the fact that the al-

gorithm is efficient in practice. The third example is sorting. This example has a

known BSP algorithm that also satisfies all of the requirements of the PRO-model.

The parallel list ranking and sorting algorithms discussed here will be used in the

experimental study reported in the next section.

5.1 Matrix multiplication

Consider the problem of computing the product C of two m × m matrices A and B
(input size n = m2). We want to design a PRO-algorithm relative to the standard

sequential matrix multiplication algorithm M3 which has TM3(n) = O(n
3

2) and

SM3(n) = O(n).

We assume that the input matrices A and B are distributed among the p processors

P0, ..., Pp−1 so that processor Pi stores rows
m
p
· i + 1 to m

p
· (i + 1) of the matrix

A and a similar chunk of columns of the matrix B. The output matrix C will be

row-partitioned among the p processors in a similar fashion. Note that with this

data distribution, each processor can compute a block of m2

p2
of the m2

p
entries of

C expected to reside on it without any communication. In order to compute the

next block of m2

p2
entries, processor Pi needs the columns of matrix B that reside

on processor Pi+1. Therefore, in each superstep of the PRO algorithm, processors

exchange columns in a round-robin fashion and then each processor computes a

new block of results. Note that each column exchanged in a superstep constitutes

one single message. Note also that the initial distribution of the rows of matrix A

remains unchanged. The sequence of computation and communication steps we

have sketched is outlined in Algorithm 1 in a manner that meets the requirements

of the PRO model.

Algorithm 1 has p supersteps (Steps = p). In each superstep, the time spent in

locally computing each of the m2/p2 entries is Θ(m) resulting in local comput-

14 GEBREMEDHIN ET AL.

Algorithm 1: Matrix multiplication

Input: Two m × m matrices A and B. The rows of A and the columns of B are
divided into m/p contiguous blocks, and stored on processors
P0, P1, . . . Pp−1.

Output: The product matrix C where the rows are stored in contiguous blocks

across the p processors.

for superstep s = 1 to p do

foreach processor Pi do
Pi computes a local sub-matrix, a product involving the rows that

belong to Pi and a current block of columns on Pi;

P(i+1) mod p sends its current block of columns to Pi;

Pi receives a new block of columns from P(i+1) mod p;

ing time of Θ(m3/p2) = Θ(n
3

2 /p2) per superstep. Likewise, the total size of data
(words) exchanged per processor in a superstep is Θ(m2/p) = Θ(n/p). Thus, the

length of a superstep σ is Tσ(n, p) = Θ(n
3

2 /p2 + n/p). Note that for p = O(
√
n),

Tσ(n, p) = Θ(n
3

2 /p2). Hence, for p = O(
√
n), the overall parallel runtime of the

algorithm is

T(n, p) =
∑

Steps

Θ(n
3

2 /p2) = Θ(n
3

2 /p) = Θ(T(n)/p). (5)

Since S(n) = Θ(n), the memory restriction of the PRO model is respected. That

is, each processor has enough memory to handle the transactions. In order to be

able to neglect communication overhead, the condition F1 on the number of super-

steps, which in this case is just p, should be met. In other words, we need to choose

p such that p = O(TA(n)/p
2) = O(n

3

2 /p2), which is true for p = O(
√
n). The opti-

mality requirement F2 is satisfied as we have already shown in Equation (5). Thus

the granularity function of the PRO-algorithm is Grain(n) = O(
√
n). Note that

the sequential reference algorithmM3 used in our analysis can be replaced by any

other algorithm A that has the same complexity bounds. The following lemma

summarizes this result.

L 1. Multiplication of two
√
n ×

√
n matrices has a PRO-algorithm with

Grain(n) = O(
√
n) relative to a sequential algorithm A with TA(n) = O((

√
n)3)

and SA(n) = O(n).

From Observation 1 we note that Algorithm 1 has optimal grain. On a more re-

laxed model, where the assumption that p ≤ M is not present, the strong regularity

of matrix multiplication and the exact knowledge of the communication pattern al-

low for algorithms that have an even larger granularity than O(
√
n). For example, a

systolic matrix multiplication algorithm has a granularity of O(n). However, PRO

is intended to be applicable for general problems (including those with irregular

communication pattern) and practically relevant parallel systems, hence the result

in Lemma 1.

PARALLEL RESOURCE-OPTIMAL COMPUTATION 15

Algorithm 2: List Ranking using Pointer Jumping

Input: A set S of elements; and vectors next[1..n] and length[1..n] with
indices/elements distributed evenly among p processors.

Output: Vector length[1..n] with length[e] equal to the sum of lengths from
element e to the end of the list next.

for phase s = 1 to log n do

foreach processor Pi do

foreach element e that belongs to P j do
length[e]← length[e] + length[next[e]];
next[e]← next[next[e]];

5.2 List ranking

In the list ranking problem (LR) we are given a vector next[1..n] representing
a linked list of n elements, and a vector length[1..n] where length[e] stores the
‘length’ of the link from element e to element next[e]. For each element e, the goal

is to compute the sum of the lengths of all the links from element e to the end of

the list. There is a trivial linear time sequential algorithm for this problem, and

designing a good parallel algorithm for it has been a classical question since the

early days of parallel computing; see for example Cole and Vishkin [1989], Guérin

Lassous and Gustedt [2002], and Sibeyn [1999].

One of the known parallel algorithms for LR uses the technique of pointer jump-

ing. This algorithm has log n phases and is based on the simple observation that in

a directed graph where each node (element) e has a single outgoing arc next[e], the

diameter of the graph can be halved in a single phase via ‘pointer jumping’—by

setting next[e] ← next[next[e]] in parallel for all nodes. Algorithm 2 outlines this

approach.

Algorithm 2 can easily be translated into a CGM or a PRO algorithm. Here each

phase corresponds to a superstep in which processors exchange their respective

values length[next[e]] and next[next[e]]. There are of course some details in do-

ing this: Each processor needs to send a request to those processors that store the

next[e] indices it needs, receive similar requests for values from other processors,

send the values requested from it, and finally receive the values it requested. The

number of supersteps in this algorithm is O(log n), or O(log p) after some refine-

ment. In any case, the number of supersteps reflects a super-linear computation

cost for the entire algorithm, which captures very well the fact that this algorithm

is not efficient.

There exist other, more sophisticated parallel algorithms for LR that are effi-

cient when compared to the linear-time sequential algorithm. One class of such

algorithms relies on computing independent sets, and another relies on computing

dominating sets. The analysis of these classes of algorithms in terms of CGM or

PRO is similar. Here we will briefly present an independent set-based algorithm,

which we outline in Algorithm 3.

Algorithm 3 is recursive and starts by computing a large independent set I of

16 GEBREMEDHIN ET AL.

Algorithm 3: Recursive List Ranking

Input: A set S of elements, and vectors next and length as in Algorithm 2.

Output: The vector next as in Algorithm 2.

if input list size is small then solve by Pointer Jumping;

else
Find a maximal independent set I in the input list;

foreach element e ∈ S do
Compute nextI[e], the closest successor of e in I;

Compute lengthI[e], the sum of lengths from e to nextI[e];

RecursiveListRanking(I, nextI , lengthI);
Propagate the partial solution for I to elements in the set S \ I;

nodes (having the property that if i ∈ I then next[i] ! I), for example by a variant of
a so-called random mating algorithm. This set can be guaranteed to be maximal, of

size εn, for 1
3
≤ ε ≤ 1

2
. For each element i in the set I, the algorithm then computes

i’s closest successor in the linked list, the value nextI[i] ∈ I, and the accumulated
distance from i to that element, lengthI[i]. When coming back from the recursion

with a solution for this intermediate list I, the obtained information can easily be

propagated to the elements that are not in I.

The translation of this algorithm to CGM is straightforward and the analysis

with CGM is simple. Obviously, the recursion introduces a logarithmic number

of supersteps and hence the total processing cost in terms of the CGM model is

super-linear.

However, the overall work in each recursion level can be made linear in the actual

size of the list; hence the work load decreases with every step of the recursion.

Since the auxiliary list for the recursion is substantially smaller than the original list

(εn), a geometric series argument can be applied to show that the overall resource
utilization is linear. Hence, contrary to what a CGM-analysis suggests, this second

family of algorithms is in fact efficient. Thus the LR example exhibits a case where

a CGM-analysis is not able to distinguish between a “bad” algorithm (Algorithm 2)

and a “good” one (Algorithm 3).

The PRO model provides a different view of Algorithm 3. Assuming that the

chosen independent set at each recursion level is well balanced among the proces-

sors, it is easy to show that T(n, p) = Θ(n/p) = Θ(TA(n)/p). In order to be able to
neglect communication overhead, we need to meet the condition F1 on the number

of supersteps log n. This means we need log n = O(n
p2
), which upon resolving gives

p = O(
√

n
log n

). With SA(n) = Θ(n), the PRO memory restriction is respected. The

following lemma summarizes these results.

L 2. List ranking on n elements has a PRO-algorithm with Grain(n) =

O(
√

n
log n

) relative to a sequential algorithm A with TA(n) = O(n) and SA(n) =

O(n).

Note that the granularity function in this PRO-algorithm is less than O(
√
n) and

PARALLEL RESOURCE-OPTIMAL COMPUTATION 17

thus the granularity is not optimal. This non-optimality is directly related to the

fact that the algorithm has a number of supersteps that is not constant.

5.3 Sorting

Like list ranking, sorting problems occur frequently in sequential as well as dis-

tributed computing. For our experimental studies, we chose the randomized and

distributed sorting algorithm described in [Gerbessiotis and Valiant 1994] in the

context of the BSP model. The algorithm is based on an over-sampling technique,

and is outlined in Algorithm 4.

Algorithm 4 starts by computing a small random sample of the items that are

to be sorted (phase Φ1). Then, the random sample is used to determine p − 1
splitters that are approximately equidistant in the set of sorted items (phase Φ2).

The computation of the splitters can be seen as a generalization of the computation

of a p-median. In fact, for p = 2 the (unique) splitter is expected to be close to a

median value. The splitters are then used by the processors to partition their values

into p different buckets (phase Φ3), and to redistribute them to appropriate target

Algorithm 4: Parallel Sorting

Input: A number 0 ≤ ρ < p identifying this processor, and a distributed array
A of some values; Aρ denotes the local sub-array on this processor.

Output: The array A is globally sorted.

begin
Φ1 Randomly extract a sample Eρ of k values from Aρ;

Send the sample Eρ to Processor P0;

if ρ = 0 then
E ←

⋃

0≤i<p Ei;

Φ2 LocalSort(E);

Let S be an array (of size p) of splitters.

Initialize S : S [0]← −∞ and S [p]← +∞;
foreach i = 1, . . . , p − 1 do S [i]← E[i · k];
Broadcast S to all other processors;

Receive the splitters S from Processor P0;

Let M be an array (of size p) of messages.

Initialize M: for 0 ≤ i < p, Mi ← ∅ ;
Φ3 foreach value v ∈ Aρ do

Find $ with S [$] ≤ v < S [$ + 1];
M# ← M# ∪ {v};

Φ4 foreach i = 0, . . . , p − 1 do
Send local message Mi to Processor Pi;

Gather messages from relevant processors into M′
i
;

Φ5 Aρ ←
⋃

0≤i<p M
′
i
;

LocalSort(Aρ);

end

18 GEBREMEDHIN ET AL.

processors (phase Φ4). The algorithm terminates with a parallel local sorting on all

processors (phase Φ5).

The performance of Algorithm 4 depends on the choice of a value k for the size

of the local sample that is computed in phase Φ1. The choice of k has to ensure

that the overall sample is a good representative of the input array such that the final

share of data for each processor that is to be received in phase Φ4 and to be sorted

in phase Φ5 is not too large.

To simplify analysis, we choose k = n/p2. For more subtle discussions on
the requirements for the choice of k that guarantee a good expected behavior, see

Gerbessiotis and Valiant [1994] or Gerbessiotis and Siniolakis [2001].

We will now look at the complexity of each of the five phases in Algorithm 4.

Φ1: This phase can be done in O(m) time, where m = n/p.

Φ2: Since the sample size that processor P0 has to handle is pk = n/p = m, the

computation cost of this phase is at most O(TA(m)).

Φ3: Using binary search to determine the bucket for each element, this phase can

be done in O(m log p) time.

Φ4: This phase is by far the most expensive task in terms of communication: the

initial global array A of size n is completely redistributed through the inter-

connection network. So this phase accounts for O(m) time.

Φ5: Assuming that the first three phases provide a balanced redistribution of the

initial array (Θ(m) values per processor), the computation cost of this phase

is again O(TA(m)).

Thus the overall computation cost of Algorithm 4 is O(TA(m) + m log p), and be-
cause of the lower bound Ω(n log n) on comparison-based sorting, the expression

reduces to O(TA(m)). Since we may also assume that TA(n) is a concave-upwards
function, we have TA(m) = O(TA(n)/p) and thus the speedup relative toA isΩ(p).
The overall communication volume required by the algorithm is bounded by O(n).

Since the number of supersteps of the algorithm is also bounded by a constant,

this algorithm fulfills all of the PRO-requirements and in fact has optimal granu-

larity.

L 3. Sorting of n elements has a PRO-algorithm with Grain(n) = O(
√
n)

relative to any comparison-based sequential algorithmA with TA(n) = Θ(n log n)

and SA(n) = O(n).

6. Experimental validation

The aim of this section is to provide experimental evidence to help validate the

PRO model. We use the list ranking and sorting problem as test-cases, and report

results on their corresponding PRO-algorithms discussed in the previous section

(Algorithms 3 and 4, respectively). We chose the list ranking and sorting problems

for our experiments since they are good representatives of two different classes of

PARALLEL RESOURCE-OPTIMAL COMPUTATION 19

problems: list ranking uses a highly irregular data structure (linked list) and sorting

uses a highly regular data structure (array). In general, the relative communication

cost associated with irregular data structures is higher than that associated with

regular data structures.

6.1 Experimental setup

Both the list ranking and the sorting algorithms were implemented using

the programming environment SSCRAP developed by Essaı̈di et al. [2002, 2004].

SSCRAP (Soft Synchronized Computing in Rounds for Adequate Parallelization)

is a C++ communication and synchronization library for implementing coarse-

grained parallel algorithms on different platforms, including clusters and paral-

lel machines. In addition to the PRO model, SSCRAP supports other variants of

coarse-grained models. By providing a high level of abstraction, SSCRAP makes

complex communication tasks transparent to the user and handles inter-processor

data exchanges and synchronizations efficiently. Due to its efficiency, low over-

head, and architecture-independence, SSCRAP can be used to carry out repro-

ducible experimental studies.

In our experiments we considered four variants of platforms. The main features

of these platforms are summarized in Table III. Starting with the leftmost column,

the table lists the platform name, the architecture type, the number of available

processors, the processor frequency, the total memory size, the interconnection

type, the communication bandwidth and the operating system used in each case.

We used two essentially different types of platforms: distributed-shared-memory

(DSM) parallel machines and clusters. For DSM, we used two different 64 bit ma-

chines. The first one is an SGI Origin 3000 and the second is a SunFire 6800. In

addition, we experimented with the SGI machine using two different sets of proces-

sors, the first of type R 12000 and the second of type R 16000. We refer to these

as R12M and R16M, respectively. Table III also presents two different clusters,

named Icluster and Albus. Icluster is a large PC cluster with about 200 common

desktops powered by PIII processors. Albus is a cluster composed of 8 biprocessor-

AMD Athlon MP SMP nodes. Albus has two different interconnections, a standard

T III: Platforms used in the experiments.

Platform Type Nr. Freq. Mem. Network BW OS

name Proc. (MHz) (GB) type (Mb/s)

SGI DSM 56 700 42 SGI IRIX

Origin3000 NUMA NUMA-Link

SunFire DSM 24 900 24 Sun Fireplane Solaris

6800 NUMA Interconnect

Icluster Cluster 200 733 51.2 Ethernet 100 Linux

Albus SMP 16 1333 8 Ethernet 100 Linux

Cluster Myrinet 4000

20 GEBREMEDHIN ET AL.

100 Mb/s switched ethernet and a high speed Myrinet.

To be reproducible, the experiments were carried out with exclusive access to the

various machines. Such exclusive access to all available processors was possible

for the SGI and SUN mainframes and for the Albus cluster. Since Icluster was

only a production system, we had access to only a small fraction of the processors

available on the system. Thus in our experiments on Icluster, we report results on

many fewer processors than the platform’s capacity shown in Table III.

6.2 Experimental results

6.2.1 Execution time

Figures 0(a) and 0(b) show execution time plots for the list ranking and sorting

algorithms, respectively. The plots are on log-log scale, where the horizontal axis

corresponds to number of processors and the vertical axis to normalized execution

times per number of items. The term “number of items” here is a generic descrip-

tion for the number of list elements in the list ranking algorithm or the number of

elements to be sorted in the sorting algorithm. The curves in Fig. 1 show results for

the largest number of items we were able to solve on the various platforms. To be

able to compare behaviors across different architectures, the execution times have

been normalized by the CPU frequency; thus the normalized quantities appear as

clock cycles of the underlying architecture. In some sense this normalization also

hides efficiency-differences across the platforms that would have appeared if pure

running times were to be used. Should the actual runtimes be of interest, they can

easily be obtained using the clock frequencies given in Table III.

For each four-tuple (algorithm, platform, number of items, number of proces-

sors), the result shown in Fig. 1 is an average of 10 runs. In these runs, the variance

was consistently observed to be very low. On the DSM machines, the execution

times on one processor correspond to the execution times of an optimized sequen-

tial implementation and not to those of the parallel algorithm run on a single pro-

cessor. Hence, the speedups observed on these machines are absolute, as opposed

to relative. On the clusters, problem instances of the sizes reported here could

not be solved on a single machine. Hence, sequential runtimes are not available

for comparison on these platforms (the corresponding curves in Fig. 1 start at a

number of processors larger than one).

The following observations can be made from Fig. 1.

◦ The curves are to a large extent close to straight lines, indicating that the
speedup is linear over a wide range of processors.

◦ A comparison between the execution time of the optimal sequential algorithm
(the case where p = 1) and the parallel runtime on two processors reveals that

the overhead for parallelization is small.

◦ The execution time curves are nearly parallel to each other.
◦ For both the list ranking and sorting algorithms, the behavior is remarkably
similar on the various platforms.

PARALLEL RESOURCE-OPTIMAL COMPUTATION 21

256

512

1024

2048

1 2 4 8 16 32

W
a
ll

c
lo

c
k
 p

e
r

it
e
m

 m
e
a
s
u
re

d
 i
n
 C

P
U

 c
y
c
le

s

number of processors

SGI R16M 5.12E+8 item
SunFire 5.12E+8 item

SGI R12M 5.12E+8 item
Albus 1.28E+8 item

Icluster 2.56E+7 item

(a) List Ranking

32

64

128

256

512

1024

1 2 4 8 16 32

W
a
ll

c
lo

c
k
 p

e
r

it
e
m

 m
e
a
s
u
re

d
 i
n
 C

P
U

 c
y
c
le

s

number of processors

SunFire 5.12E+8 double
SGI R12M 5.12E+8 double

Icluster 1.28E+7 double
Albus 2.56E+8 double

(b) Sorting

Fig. 1: Computational results on all platforms. Ideal speedups correspond to curves of slope −1.

22 GEBREMEDHIN ET AL.

6.2.2 Memory usage

Let Nseq be the maximum input size (for the list ranking or the sorting algorithm)

that can be computed sequentially in memory of size Mseq. The corresponding

PRO algorithms using p processors would then solve inputs of size Ω(p · Nseq) in

memory volume of Θ(p · Mseq).

To show that this behavior is observed in practice we present Fig. 2. The figure

shows the maximum input size that could be computed on the platform Icluster,

for both the list ranking and the sorting algorithms. Each node of the cluster has

256 MByte local memory and a sequential version of the list ranking algorithm

could only rank 5 million elements (resp. 10 million doubles for sorting). For

the parallel PRO algorithm, by employing more nodes, larger input sizes could

be computed. Fig. 2 shows that, disregarding irregularities due to discretization,

the maximum input sizes to the PRO algorithms scale linearly for a wide range

of processors. Fig. 2 also shows that sorting scales slightly better than list rank-

ing. This is due to the recursion involved in and the memory overhead associ-

ated with the independent set construction in the list ranking algorithm; both of

these aspects make the list ranking algorithm require more memory than the sorting

algorithm.

The experimental set up used here (the model PRO, the programming environ-

ment SSCRAP, and the various test platforms) has also been successfully applied on

a large variety of other algorithms, including algorithms for matrix multiplication

(using BLAS routines), combinatorial problems on trees and lists, and problems on

large cellular networks; see Essaı̈di [2004], Essaı̈di and Gustedt [2006] and Gustedt

et al. [2006] for more information.

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

5 10 15 20 25 30 35

m
a
x
im

a
l
n
u
m

b
e
r

o
f
c
o
m

p
u
te

d
 i
te

m
s

number of processors

Ranking

Sorting

Fig. 2: List Ranking and Sorting: Maximum input size computed on Icluster.

PARALLEL RESOURCE-OPTIMAL COMPUTATION 23

7. Conclusion

We have introduced a new parallel computation model (PRO) that enables the de-

velopment of efficient and scalable parallel algorithms and simplifies their com-

plexity analysis.

The distinguishing feature of the PRO model is the novel focus on relativity,

resource-optimality, and a new quality measure (granularity). The PRO model re-

quires a parallel algorithm to be both time- and space-optimal relative to an under-

lying sequential algorithm. Having optimality as a built-in requirement, the quality

of a PRO-algorithm is measured by the maximum number of processors that could

be used while the optimality of the algorithm is maintained.

The focus on relativity has theoretical as well as practical justifications. From a

theoretical point of view, the performance evaluation metrics of a parallel algorithm

include speedup and optimality, both of which are always expressed relative to

some sequential algorithm. In practice, a parallel algorithm is often developed

based on some known sequential algorithm. The fact that optimality is incorporated

as a requirement in the PRO model enables one to concentrate only on parallel

algorithms that are practically useful.

However, the PRO model is not just a collection of some ‘ideal’ features of par-

allel algorithms, it is also a means for achieving these. In particular, the attributes

of the model capture the salient characteristics of a parallel algorithm that make

its practical optimality and scalability highly likely. In this sense, it can also be

seen as a parallel algorithm design scheme. We believe the experimental results

reported in this paper go some distance in justifying this claim.

The bound set in the PRO model on the number of supersteps and on the commu-

nication volume within a superstep might in some cases be too restrictive, causing

a non-optimal granularity function. This rather conservative approach is taken to

ensure resource-optimality of an algorithm in a general sense, independent of the

specific nature of a computing platform.

Acknowledgments

We are grateful to the anonymous referees for their careful reading and valuable

comments. Their suggestions helped improve the quality of this paper.

We thank the computing centers at LERI in Reims, IMAG in Grenoble, and LO-

RIA in Nancy for generously allowing us to use their computing resources. This

research is financially supported by IS-AUR 02-34 of The Aurora Programme, a

France-Norway Collaboration Research Project of The Research Council of Nor-

way, The French Ministry of Foreign Affairs and The Ministry of Education, Re-

search and Technology; by the PRST Intelligence Logiciel of the Lorraine Re-

gion; by the ACI ARGE of the French Government; by the US National Science

Foundation grant ACI 0203722; and by the Office of Science of the US Depart-

ment of Energy through grant DEFC-0206-ER-25774 awarded to the CSCAPES

Institute.

24 GEBREMEDHIN ET AL.

References

A, S. G. 1997. Parallel Computation. Models and Methods.. Prentice Hall, New Jersey, USA.

B-N, A. K, S. 1992. Designing broadcasting algorithms in the Postal Model for message

passing systems. In The 4th annual ACM symposium on parallel algorithms and architectures,

13–22.

B, R. H. 2004. Parallel Scientifi c Computation: A structured approach using BSP and MPI .

Oxford.

B, O., J, B. H. H.,  O, I.,  R, I. 1999. The Paderborn University

BSP (PUB) Library—Design, Implementation and Performance. In 13th International Parallel

Processing Symposium & 10th Symposium on Parallel and Distributed Processing.

B, R. P. 1974. The parallel evaluation of generic arithmetic expressions. Journal of the ACM

21, 2, 201–206.

C, E., D, F., F, A., L, P., R, I., R, A., S, N., 

S, S. W. 1997. Efficient Parallel Graph Algorithms For Coarse Grained Multicomputers

and BSP. In The 24th International Colloquium on Automata Languages and Programming,

Volume 1256 of LNCS. Springer Verlag, 390–400.

C, R.  V, U. 1989. Faster optimal prefi x sums and list ranking. Information and Com-

putation 81, 3, 128–142.

C, D., K, R., P, D., S, A., S, K. E., S, E., S, R., 

 E, T. 1993. LogP: Towards a Realistic Model of Parallel Computation. In 4th ACM

SIGPLAN Symposium on principles and practice of parallel programming, San Diego, CA ,

1–12.

D, F. 1999. Guest Editor’s Introduction. Algorithmica 24 , 3/4, 173–176.

D, F., F, A.,  R-C, A. 1996. Scalable parallel computational geometry for coarse

grained multicomputers. Int. J. on Comp. Geom. 6 , 3, 379–400.

Eı̈, M. 2004. Echange de données pour le parallélisme à gros grain. PhD thesis, Université

Henri Poincaré.

Eı̈, M., G́ L, I.,  G, J. 2002. SSCRAP: An Environment for Coarse

Grained Algorithms. In Fourteenth IASTED International Conference on Parallel and Dis-

tributed Computing and Systems (PDCS 2002), 398–403.

Eı̈, M., G́ L, I.,  G, J. 2004. SSCRAP: Soft Synchronized Computing in

Rounds for Adequate Parallelization. Rapport de recherche, INRIA, http://www.inria.fr/

rrrt/rr-5184.html.

Eı̈, M.  G, J. 2006. An experimental validation of the PRO model for parallel and

distributed computation. In 14th Euromicro Conference on Parallel, Distributed and Network

based Processing. IEEE, The Institute of Electrical and Electronics Engineers, 449–456.

F, S. W, J. 1978. Parallelism in random access machines. In 10th ACM Symposium

on Theory of Computing, 114–118.

G, A. H., G́ L, I., G, J.,  T, J. A. 2002. PRO: a model for

Parallel Resource-Optimal computation. In 16th Annual International Symposium on High

Performance Computing Systems and Applications. IEEE, The Institute of Electrical and Elec-

tronics Engineers, 106–113.

G, A. H., G́ L, I., G, J.,  T, J. A. 2003. Graph Coloring on a

Coarse Grained Multiprocessor. Discrete Appl. Math. 131, 1, 179–198.

G, A. V.  S, C. J. 2001. A new randomized sorting algorithm on the

BSP model. Tech. report, New Jersey Institute of Technology, http://www.cs.njit.edu/
∼alexg/pubs/papers/rsort.ps.gz.

G, A. V.  V, L. G. 1994. Direct Bulk-Synchronous Parallel Algorithms. Journal

of Parallel and Distributed Computing 22 , 251–267.

G, P. B., M, Y.,  R, V. 1999. Can a Shared-Memory Model Serve as a

Bridging Model for Parallel Computation? Theory of Computing Systems 32 , 3, 327–359.

G, R., H, H.J.,  R, W. L. 1995. Limits to Parallel Computation: P-

Completeness Theory. Oxford University Press, New York.

G́ L, I. G, J. 2002. Portable List Ranking: an Experimental Study. ACM Jour-

nal of Experimental Algorithmics 7, 7, http://www.jea.acm.org/2002/GuerinRanking/.

PARALLEL RESOURCE-OPTIMAL COMPUTATION 25

G́ L, I., G, J.,  M, M. 2000. Handling Graphs According to a Coarse

Grained Approach: Experiments with MPI and PVM. In Recent Advances in Parallel Vir-

tual Machine and Message Passing Interface, 7th European PVM/MPI Users’ Group Meeting,

Volume 1908 of LNCS. Springer-Verlag, 72–79.

G, J., V, S.,  D V, A. 2006. parXXL: A Fine Grained Development Environment

on Coarse Grained Architectures. In Workshop on state-of-the-art in scientifi c and parallel

computing (PARA’06), http://www.hpc2n.umu.se/para06/papers/paper 48.pdf.

H, J. M. D., MC, B., S, D. C., G, M. W., L, K., R, S. B., S, T.,

T, T.,  B, R. 1998. BSPlib: The BSP programming library. Parallel Com-

puting 14 , 1947–1980.

J́́, J. 1992. An Introduction to Parallel Algorithms. Addison-Wesley.

J́J́, J.  R, K. W. 1996. The Block Distributed Memory Model. IEEE Transactions on Parallel

and Distributed Systems 8, 7, 830–840.

M, B. M., M, L. R.,  T, R. E. 1995. Models of parallel computation: A survey

and synthesis. In 28th HICSS, Volume 2, 61–70.

S, J. F. 1999. Ultimate Parallel List Ranking? In Proceedings of the 6th Conference on High

Performance Computing, 191–201.

V, L. G. 1990. A bridging model for parallel computation. Communications of the ACM 33,

8, 103–111.

V, J. S.  S, R. A. 1986. New classes for parallel complexity: A study of unifi cation

and other complete problems for P. IEEE Transactions on Computers C-35, 5, 403–418.

