
Multithreaded Algorithms for Graph Coloring

Assefaw Gebremedhin ∗ Umit Catalyurek † John Feo ‡

Mahantesh Halappanavar § Alex Pothen ¶

Extended Abstract

We present a set of efficient multicore and massively multithreaded algorithms for a prototypical
graph problem, graph coloring. The algorithms are implemented—and shown to perform and scale
well—on a collection of platforms with varying degrees of multithreading capabilities. The platforms
considered include a 128-processor Cray XMT, a 16-core Sun Niagara 2, and an 8-core Intel Nehalem
system. We find that obtaining good performance on these machines involves designing algorithms
that pay careful attention to and take advantage of the programming abstractions and hardware
features the machines provide. The resultant algorithms are different from algorithms that do well
on earlier machines that support shared memory and distributed memory programming models.

Graph coloring is an abstraction for partitioning a set of binary-related objects into subsets of
independent objects. A need for such a partitioning arises in situations where there is a scarce
resource that needs to be utilized optimally. One example is in discovering concurrency in parallel
computing. Graph coloring is known to be NP-hard to solve optimally; in fact it is known to be
NP-hard to approximate to within O(n1−ε) for all ε > 0, where n is the number of vertices in the
graph [3]. Despite such inapproximability results, however, greedy coloring algorithms that employ
good ordering techniques yield near optimal solutions on graphs that arise in practice [2].

Graph algorithms have a number of well recognized features that make them particularly chal-
lenging to parallelize with emphasis on performance and scalability: Runtime is dominated by
memory latency rather than processor speed; there exist little computation to hide memory access
costs; data locality is poor; and available concurrency is low. For these reasons, there are few graph
algorithms that perform and scale well on distributed memory machines.

Researchers have had more success on shared-memory platforms, and interest in these platforms
is growing with the increasing abundance and popularity of multicore architectures. The primary
mechanism for tolerating memory latencies on most shared memory systems is the use of caches,
but caches have been found to be rather ineffective for many graph algorithms. A more effective
mechanism is multithreading. By maintaining multiple threads per core and switching among
them in the event of a long latency operation, a multithreaded processor uses parallelism to hide
latencies. Unlike caches, which “hide” only memory latencies, thread parallelism can hide both
memory and synchronization overheads. Thus, multithreaded, shared-memory systems are more
suitable platforms for graph algorithms than either distributed memory machines or single-threaded,
multicore shared-memory systems.
∗Department of Computer Science, Purdue University
†Departments of Biomedical Informatics and Electrical & Computer Engineering, The Ohio State University
‡Pacific Northwest National Laboratory
§Pacific Northwest National Laboratory
¶Department of Computer Science, Purdue University

1



In this presentation, we discuss primarily two different parallel distance-1 coloring algorithms
we developed for shared-memory, multithreaded systems. The first algorithm relies on speculation
and iteration, and is suitable for any shared-memory system, including multicore platforms. The
algorithm is derived from the parallelization framework for coloring on distributed-memory archi-
tectures developed in [1]. We benchmarked the algorithm on the Cray XMT, Intel Nehalem, and
Sun Niagara 2 systems mentioned earlier. These systems represent a broad spectrum of multi-
threading capabilities and memory structure: the Cray XMT has a flat, cache-less memory system
and utilizes massive multithreading (128 threads per processor) as the sole mechanism for tolerating
latencies in data access, the Intel Nehalem relies primarily on a cache-based hierarchical memory
system as a means for hiding latencies and supports only two threads per processor, and the Sun
Niagara 2 offers a middle path by utilizing a moderate number of hardware-threads along with a
hierarchical memory system. We found that the limited parallelism and coarse synchronization of
the iterative algorithm fit well with the limited multithreading capabilities of the Sun and Intel
processors.

The iterative algorithm ran equally well on the Cray XMT, but it does not take advantage
of the system’s massively multithreaded processor and hardware support for fast synchronization.
To better exploit the XMT’s unique hardware features, we developed a fine-grained, dataflow
algorithm requiring single word synchronization, which is the second algorithm we discuss in this
presentation. This XMT-tailored algorithm achieves shorter runtime and uses fewer colors than
(the generic) iterative algorithm when run on the XMT. The iterative algorithm has the attractive
feature of being portable on different architectures.

We assess the scalability and performance of both algorithms using a set of massive synthetic
graphs carefully designed to include instances that test-stress the algorithms. We show that the
dataflow algorithm scales well (nearly ideally for certain classes of graphs) on the XMT. The
iterative algorithm scales in a similar fashion on all three platforms considered, with increasing
relative performance on platforms with greater thread concurrency. Further, the number of colors
used by the parallel algorithms is fairly close to what the sequential algorithm uses. In turn, the
number of colors the sequential algorithm uses is only a small factor of the optimal (we were able
to determine the factory by computing an appropriate lower bound). Hence, there is negligible loss
in quality of solution due to parallelization.

In addition to the results on distance-1 coloring, we will briefly discuss results from ongoing
work on related topics: parallelization of ordering techniques for reducing the number of colors
required; and parallelization of algorithms for other coloring problems needed in the context of
automatic differentiation.

References

[1] Doruk Bozdağ, Assefaw Gebremedhin, Fredrik Manne, Erik Boman, and Umit Catalyurek. A
framework for scalable greedy coloring on distributed-memory parallel computers. Journal of
Parallel and Distributed Computing, 68(4):515–535, 2008.

[2] Assefaw Gebremedhin, Duc Nguyen, Alex Pothen, and Mostofa Patwary. ColPack: Graph
coloring software for derivative computation and beyond. Submitted to ACM TOMS, 2010.

[3] David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Computing, 3:103–128, 2007.

2


