
An Efficient Automatic Differentiation Algorithm for Hessians:

Working With Live Variables∗

Mu Wang Assefaw Gebremedhin Alex Pothen

Introduction. Gower and Mello [3] recently introduced a graph model for computing Hessians using

Automatic Differentiation (AD) [1, 2]. In the model, which is based solely on Reverse Mode AD, the compu-

tational graph of the input function is augmented with minimal information—additional edges correspond-

ing precisely with nonlinear interactions—and the symmetry available in Hessian computation is exploited.

Using the model, they developed an algorithm, called Edge Pushing, where edges representing nonlinear

interactions are ‘created’ and their contributions to descendants are ‘pushed’ as the algorithm proceeds. The

approach represents an important progress in AD for Hessians, but it unfortunately has several shortcomings.

First, the authors’ derivation of the algorithm is rather complicated and hard to understand. Second, their

implementation in ADOL-C relies on an indexing assumption not necessarily supported by ADOL-C so that

their code gives incorrect results in some cases. In this work, we provide a new, intuitive derivation of the

Edge Pushing algorithm from a completely different perspective and a robust implementation (built on top

of ADOL-C) that works correctly in all cases. At the heart of our approach lies this: we identify an invariant

in the first order incremental reverse mode of AD, which we arrive at by taking a data-flow perspective.

We obtain the Hessian algorithm by extending the invariant to second order. Additionally, we incorporate

preaccumulation in the Hessian algorithm to further enhance performance.

Reverse Mode AD. In data-flow analysis in compiler theory, a variable is said to be live if it holds a

value that might be read in the future. We find a similar notion useful in our context. Since in reverse mode

AD all information about the execution sequence of the objective function is recorded on an evaluation trace,

we can in fact work with a more restricted definition for a live variable. In particular, we say a variable is

live if it holds a value that will be read in the future. And we call the set made up of all live variables at

each step of the execution sequence a live variable set in that sequence.

Following the notations of Griewank and Walther [1], the first order incremental reverse mode of AD can

be written using a sequence of Single Assignment Code (SAC) as:

Algorithm: First Order Incremental Reverse Mode (FOIRM)

Initialization: v̄l = 1.0, v̄1−n = · · · = v̄0 = v̄1 = · · · = v̄l−1 = 0

for i = l, · · · , 1 do

for all vj ≺ vi do (≺ denotes precedence)

v̄j+ = ∂ϕi

∂vj
v̄i

We observe the following invariant in this mode of computing adjoints:

Observation 1 The set of adjoints computed in each step i of the FOIRM algorithm involve partial deriva-

tives with respect to only the current live variable set, not the entire set of variables.

Hessian Algorithm. We extend the invariant formulated in Observation 1 to second order derivatives.

Let S denote the set of live variables in a given step. Then, the first order derivatives (adjoints), denoted in

the code in FOIRM by v̄, for each v ∈ S, can be viewed as a mapping a : S → R, a(v) = v̄. Analogously, the

second order derivatives (Hessian) can be viewed as a symmetric mapping h : S × S → R, h(v, u) = h(u, v).

Our target algorithm is then precisely a prescription of how S, a(S) and h(S, S) should be changed as the

associated SAC is processed such that the invariant is maintained.

Let Ŝ, â(Ŝ) and ĥ(Ŝ, Ŝ) denote the live variable set, the adjoint mapping, and the Hessian mapping,

respectively, after a SAC vi = ϕi(vj)vj≺vi is processed. Because the sequence proceeds in the reverse order,

∗A full report on this work is being submitted elsewhere. Authors’ emails: {wang970, agebreme, apothen}@purdue.edu



we have Ŝ = {S \ {vi}} ∪ {vj |vj ≺ vi}. Considering the adjoints equation, and noting that ∂ϕi

∂vj
= 0 when

vj ⊀ vi, and a(vj) = 0 when vj /∈ S:

∀vj ∈ Ŝ, â(vj) = a(vj) +
∂ϕi

∂vj
a(vi).

For the second order rule, noting that h(vj , vk) = 0 when vj /∈ S or vk /∈ S, and applying the chain rule of

calculus, analogous to the adjoint case, we have ∀vj , vk ∈ Ŝ:

ĥ(vj , vk) = h(vj , vk) +
∂ϕi

∂vj
h(vi, vk) +

∂ϕi

∂vk
h(vi, vj) +

∂ϕi

∂vj

∂ϕi

∂vk
h(vi, vi)

+ a(vi)
∂2ϕi

∂vj∂vk
. (1)

Equation (1) corresponds to the Edge Pushing algorithm of [3], in which the last three terms on the

first line represent the pushing part, and the sole term in the second line represents the creating part in the

component-wise form of their algorithm.

Implementation and Evaluation. We implemented this data flow-based Hessian algorithm in ADOL-C.

We observe that in order to take advantage of the symmetry available in Hessian computation, the result

variables in the SAC sequence need to have monotonic indices. However, the location scheme for variables

currently used in ADOL-C does not satisfy this property, which is one reason why the Gower-Mello imple-

mentation of the Edge Pushing algorithm fails. We implemented a fix in ADOL-C where we appropriately

translate indices of variables before starting the reverse Hessian algorithm.

To further improve efficiency, we incorporate a statement-level preaccumulation technique to the Hessian

algorithm. Preaccumulation splits the reverse Hessian algorithm into a local and a global level. In the local

level, each SAC is processed to compute the first and second order derivatives of local functions defined

by assign-statements in the execution path. In the global level, the derivatives of each local function is

accumulated to compute the entire Hessian of the objective function.
The table below shows sample results comparing the runtime (sec.) of the new approach (EPwithPreacc

and EPwithoutPreacc) with two related approaches: (i) a full Hessian algorithm in which sparsity is
not exploited (Full-Hessian) and (ii) two compression-based sparse Hessian algorithms involving spar-
sity structure detection, graph coloring, compressed evaluation and recovery (SparseHess-direct and
SparseHess-indirect). Results are shown for synthetic test functions from [5] and mesh optimization
problems in the FeasNewt benchmark [4]. Details will be discussed in the upcoming full report.

Synthetic Mesh Optimization

Matrix order n: 10, 000 10, 000 10, 000 10, 000 2, 598 11, 597 39, 579
Number of nonzeros: 19, 999 59, 985 44, 997 59, 985 46, 488 253, 029 828, 129

Full-Hessian 31.78 573.16 28.91 33.83 129.36 > 2 hours > 2 hours
SparseHess-direct† 0.04 0.30 0.12 16.05 5.17 37.35 129.35
SparseHess-indirect† 0.20 0.31 0.33 25.72 4.14 28.94 111.97
EPwithoutPreacc 0.05 0.27 0.12 0.12 0.53 3.63 12.80
EPwithPreacc 0.06 0.23 0.08 0.10 0.48 3.27 11.10

† The times are a total of the four steps, whose contributions vary greatly. As an example, the breakdown for the largest mesh

optimization problem (nnz=828,129) is:

Pattern Coloring Compressed H. Recovery

SparseHess-direct 54.1% 1.02% 44.8% 0.03%
SparseHess-indirec 61.1% 0.96% 24.8% 13.1%

References
[1] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.

2nd Edition, SIAM, 2008.
[2] U. Naumann. The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation.

SIAM, 2012.
[3] R. M. Gower and M. P. Mello. A New Framework for The Computation of Hessians. Optimization Methods and

Software, Volume 27, Issue 2, pp 251–273, 2012.
[4] T. S. Munson and P. D. Hovland. The FeasNewt Benchmark. IEEE International Symposium on Workload Char-

acterization (IISWC), 2005.
[5] L. Luksan, C. Matonoha and J. Vlcek: Sparse Test Problems for Unconstrained Optimization. Tech. Rep. V-1064,

ICS AS CR, January 2010.


