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Chapter 1

Introduction

Let us say you are asked to help out a cartographer or a map-maker with her

map-coloring problem. She wants to color the countries on a map. It doesn’t

matter which color a country is assigned, as long as its color is different from

that of all bordering countries. If two countries meet only at a single point,

they do not count as sharing a border and hence can be made the same

color. The cartographer is poor and can’t afford many crayons, so the idea

is to use as few colors as possible.

In 1852 Francis Guthrie, while trying to color the map of countries of

England, noticed that four colors sufficed. Subsequently, he conjectured

that 4 colors are enough to color any map. Successive efforts made to prove

Guthrie’s 4-color conjecture led to the development of much of graph theory.

A graph is an abstract representation of relationships. Informally, it can

be defined as a diagram consisting of points, called vertices, some of which

are connected by lines, called edges. A vertex in a graph models some phys-

ical entity or abstract concept. An edge, which joins exactly two vertices,

represents the relationship or association between the respective entities or

concepts. The map of countries mentioned above can, for instance, be con-

verted into an equivalent graph by letting each country be a vertex and

connecting two vertices by an edge if the corresponding countries share a

border, where sharing a border is as specified above.

We introduce the graph coloring problem, a classical problem in graph

theory, using this informal definition of graph. In its simplest form, the

1
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graph coloring problem is to assign labels (called colors) to the vertices of

a graph in such a way that no two vertices connected by an edge share

the same label (color). The objective is to use the fewest number of colors

possible.

It is easy to observe that the map-coloring problem stated above can be

modeled as a graph coloring problem. Such a graph, one which corresponds

to some kind of map, is in fact called a planar graph. Today, it is a well

known fact that 4 colors are enough to color any planar graph [15].

The graph coloring problem has a central role in computer science. It

models many significant real-world problems, or arises as part of a solution

for other important problems. The next few paragraphs highlight some of

the major application areas.

Time Tabling and Scheduling Many scheduling problems involve al-

lowing for a number of pairwise restrictions on which jobs can be done

simultaneously. For instance, in attempting to schedule classes at a univer-

sity, two courses taught by the same instructor can not be scheduled for the

same time slot. Similarly, two courses that are required by the same group

of students should not be scheduled for the same time slot. The problem

of determining the minimum number of time slots needed subject to these

restrictions can be modeled by the graph coloring problem.

Frequency Assignment Another example is the problem of assigning

frequencies to mobile radios and other users of electromagnetic spectrum. In

the simplest case, two customers that are sufficiently close must be assigned

different frequencies, while those that are distant can share frequencies. The

problem of minimizing the number of frequencies has been modeled [7] as a

graph coloring problem.

Register Allocation One of the issues involved during program execution

is register allocation. The register allocation problem denotes the problem

of assigning variables to a limited number of hardware registers. Variables
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in registers can be accessed much quicker than those not in registers. Typ-

ically, however, there are far more variables than registers. This makes it

necessary to assign multiple variables to registers. However, variables that

are active in the same range of code cannot be placed in the same register.

Such variables are said to conflict with each other. The goal of the register

allocation problem is thus to assign non-conflicting variables to registers so

as to minimize the use of variables not stored in registers. It has been shown

that [4] this problem can be reduced to the graph coloring problem.

Printed Circuit Testing This is an example in which graph coloring is

used to speed up the testing of printed circuit boards for unintended short

circuits caused by stray lines of solder [9].

Numerical Computation Graph coloring arises as part of the solution

for many problems in computational science [1]. It has also reported appli-

cations in optimization [5] and parallel numerical methods [16].

Given its importance, one is interested in solving the graph coloring

problem in a fastest and cost effective way possible. This goal is particularly

important when one deals with graphs of very large size. The need for

faster solutions and for solving larger-size problems arises in many other

applications also. At present, technology has reached a stage where the

fastest cycle time of a processor in a computer seems to be approaching

fundamental physical limitations beyond which no improvement is possible.

This, coupled with a steady decline in hardware cost, has led to the use

of multiprocessor parallel computers for achieving increased computational

speed.

Currently, commercially available multiprocessor parallel computers are

based on distributed-memory, shared-memory, or distributed-shared-memory

architectures. The target computer of this study, the Cray Origin 2000, is

an example of the last type. An on-line description of the architecture of

the Origin 2000 installed at Parallab [26] states the following. “In effect,

distributed-shared-memory architecture means that the memory is physi-
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cally distributed and resides on the processors. However, for operational

purposes, the system behaves as a shared memory computer with the op-

erating system taking care of maintaining memory consistency. Thus any

processor can use the total amount of memory.”

The Cray Origin 2000 can be programmed both using shared memory

and message passing programming (MPP) models. Generally MPP yields

scalable applications but requires more programming incentive. The diffi-

culty in MPP lies in the fact that it requires the program’s data structures

to be explicitly partitioned. This means the entire application must be par-

allelized in order to work with the partitioned data structures. Moreover,

in MPP, there is no incremental path to parallelizing an existing sequential

application. Shared memory programming (SMP), on the other hand, does

not require explicit partitioning of data structures and allows incremental

parallelization of sequential applications. In general, however, SMP does

not yield applications as scalable as MPP based applications.

A portable, fork-join parallel model for SMP, called OpenMP has now

emerged [25]. OpenMP supports two basic flavors of parallelism: coarse-

grained and fine-grained. An OpenMP application program interface is

available on our target computer.

In spite of the general scalable performance of MPP based applications,

existing parallel graph coloring algorithms are not scalable. The main reason

for their usage so far has been the fact that they give access to more memory.

The availability of distributed-shared memory architecture based parallel

machines makes this argument not relevant any longer.

This work is a study on how the graph coloring problem can be solved

faster by decomposing it into several subproblems and solving the subprob-

lems concurrently on a multiprocessor parallel computer. Specifically our

task has been

• to study existing parallel graph coloring algorithms,

• to develop and analyze new parallel graph coloring algorithms, and
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• to implement the new algorithms on Origin 2000 using SMP.

Including this introductory chapter, this thesis consists of 7 chapters.

The first three chapters present preliminary material required for the dis-

cussions in the main body of this thesis, Chapters 4 through 7.

In the remaining sections of this chapter, we introduce the graph no-

tations used in this thesis and give a brief introduction to the theory of

NP-complete problems. In Chapter 2, different methods that can be used

in dealing with NP-complete problems in general are discussed. Chapter 3

discusses briefly theoretical as well as practical matters regarding multipro-

cessor parallel computation in general.

Chapter 4 is aimed at addressing our first task. It is a review of known

sequential and parallel graph coloring algorithms. The chapter begins by a

review of sequential coloring algorithms as they are the basis for the parallel

ones. The sequential algorithms are classified into two categories: greedy

and local improvement methods. These methods are introduced in Chapter

2.

Chapter 5 deals with the second task. It presents the parallel coloring

algorithms developed in this work. In this chapter, we present effective ways

of decomposing the graph coloring problem into subproblems such that the

subproblems can be solved concurrently. Analytical, performance analyses

of the algorithms are provided. We also present a method of obtaining

improved quality coloring using a two-phase coloring strategy.

Chapter 6 relates to our third task. The chapter includes a discussion on

the data structures used, a brief introduction to OpenMP, and a discussion

on performance improvement using data distribution.

Finally in Chapter 7 we present experimental results that demonstrate

the performance of the algorithms presented in Chapter 5. The experi-

mental results indicate that the algorithms behave as they are theoretically

expected. We also provide some concluding remarks and point out possible

directions for further research.
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1.1 Graph Theoretic Definitions and Notations

A graph G is a pair (V,E) of a set of vertices V and a set of edges E. The

edges are unordered pairs of the form (i, j) where i, j ∈ V . Two vertices

i and j are said to be adjacent if and only if (i, j) ∈ E and non-adjacent

otherwise.

The degree of a vertex v is the number of vertices adjacent to v and is

denoted by deg(v). The maximum, minimum, and average degree in a graph

G are denoted by ∆, δ, and δ respectively.

An induced subgraph of G = (V,E) is a graph G′ = (V ′, E′) where

V ′ ⊂ V and E′ = {(i, j) such that (i, j) ∈ E, and i, j ∈ V ′ }.
An independent set in a graph is a set of vertices that are mutually non-

adjacent. This means that there is no edge between any pair of vertices in

an independent set.

A partition of a non-empty set A is a subset Π of 2A such that

1. ∅ is not an element of Π and

2. each element of A is in one and only one set in Π.

Given a graph G = (V,E) two vertices u and v are said to be connected

if u = v or there exists a path P = (u = x1, x2, . . . , xk = v), such that

(xi, xi+1) ∈ E , where 1 ≤ i ≤ k − 1. This relation is an equivalence1

relation on V , and hence partitions V into equivalence classes V1, V2, . . . , Vt.

The subgraphs Gj = (Vj, Ej), where Ej = {(x, y) ∈ E such that x, y ∈ Vj },
are called the connected components of G.

1.2 Problem Definition

In this section, we give a formal definition of the graph coloring problem and

introduce two related problems that we encounter in our solution methods

for the graph coloring problem.

1A relation that is reflexive, symmetric, and transitive is called an equivalence rela-

tion
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The graph coloring problem A vertex coloring of a graph, or simply

coloring for short, is an assignment of colors to the vertices such that no two

adjacent vertices are assigned the same color. Alternatively, a coloring is a

partition of the vertex set into a collection of vertex-disjoint independent

sets. Each independent set in such a partition is called a color class. The

graph coloring problem is then to find a vertex coloring for a graph using

the minimum number of colors possible.

A k-coloring of a graph G is a coloring of G using k colors. The minimum

possible value for k is called the chromatic number of G, denoted as χ(G).

A coloring with the fewest possible number of colors (a χ-coloring) is called

an optimal coloring.

Related Problems The independent set problem is to find an indepen-

dent vertex set of maximum cardinality. A simpler problem is finding a

maximal independent set, an independent set that can not be extended fur-

ther.

The graph partitioning problem is to partition the vertices of a graph in

p roughly equal parts such that the number of edges connecting vertices in

different parts is minimized.

1.3 NP-complete Problems

In our context, a problem can be posed either in a decision or an optimization

form. A decision problem is one that has a yes/no answer. If a decision

problem asks about the existence of a structure with a certain value, then

the corresponding problem of finding a structure with the best value is an

optimization problem. For example, the graph coloring problem can be

posed in its decision form as: given a graph G and an integer k, can the

graph be k-colored? The corresponding optimization problem is: given a

graph G, color the graph with the fewest number of colors possible.

If the input of a decision problem is encoded as a string, the decision

problem can alternatively be viewed as a language recognition problem where



CHAPTER 1. INTRODUCTION 8

the term language is defined as any set of strings over a given alphabet.

Using this alternative view the graph coloring problem can be presented as

a question of deciding membership in the language COLOR defined below.

Let 〈G, k〉 denote the encoding of the inputs graph G and integer k as a

string.

COLOR ={〈G, k〉| G can be k-colored }
The Turing machine (TM) is known to be a powerful computational

model used for language recognition and computation of functions. We will

not give a formal definition of the TM model here but instead use some

general statements about it. A Turing Machine can either be deterministic

or nondeterministic in its operation. According to the Church-Turing thesis

[28], the TM model is equivalent to the concept of algorithm. Therefore an

f(n)-time deterministic TM is another way of expressing an algorithm of

time complexity f(n).

A language is said to be decidable if some TM decides it. Languages

(decision problems) are classified into different classes according to the time

required to decide them. The class P consists of languages that are decid-

able in polynomial time on a deterministic TM. The class NP consists of

languages that are decidable in polynomial time on a nondeterministic TM.

The power of a nondetrminstic TM lies in its ability to “guess” the right

branch in its computation tree that leads to a solution.

The question of whether P = NP is one of the greatest unsolved prob-

lems in theoretical computer science and contemporary mathematics. Most

researchers believe that the two classes are not equal. One important ad-

vance on the P versus NP question is the discovery of problems in NP whose

individual complexity is related to that of the entire class. If a polynomial

time algorithm exists for any one of these problems, all problems in NP

would be polynomial time solvable. These problems are called NP-complete.

A formal definition for an NP-complete problem requires us introduce

the concept of polynomial time reducibility. Language A is polynomial time

reducible to language B if a polynomial time computable function f exists,
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where for every w , w ∈ A ⇐⇒ f(w) ∈ B.

A language B is said to be NP-complete if it satisfies the following two

conditions:

1. B is in NP, and

2. every A in NP is polynomial time reducible to B.

A problem is called NP-hard if all problems in NP are polynomial time

reducible to it, even though it may not be in NP itself. NP-completeness is

only defined for decision problems. If a decision problem is NP-complete,

then the corresponding optimization problem is NP-hard.

The problem we are addressing in this thesis, the graph coloring problem,

as well as the two related problems we have introduced, the independent

set and graph partitioning problems, are all known to be NP-complete [8].

Moreover, the determination of the chromatic number of a graph is known

to be NP-hard.



Chapter 2

Coping with
NP-Completeness

The graph coloring problem in its decision form is known to be NP-complete.

This means that the problem has no polynomial time algorithm in sight and

it is highly unlikely that it can have one. Nevertheless, stating this will

not make the problem go away. What is there then to be done if one has

to color a graph anyway? More generally, how does one solve NP-complete

problems? In this chapter, we shall briefly discuss the most useful maneuvers

employed in dealing with NP-completeness in general. One of the objectives

of this chapter is to define the concepts that may be referred to later in this

thesis.

2.1 Special Cases

Once a problem has been proved to be NP-complete, the first question to ask

is the following. Do we really need to solve this problem in full generality in

which it was formulated and proved NP-complete? Perhaps what we really

need to solve is a more tractable special case of the problem.

The graph coloring problem, for instance, renders trivial if the graph is

restricted to be a tree. A tree is an undirected graph with no cycles. A

coloring algorithm for a tree takes advantage of the hierarchical structure

of trees. It is often useful in a tree to pick an arbitrary node and designate

it as the root. Once this has been done, each node u in the tree becomes

10
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itself the root of a subtree T (u), the set of all nodes v such that the (unique)

path from v to the root goes through u. Then the coloring problem can be

solved by a top-down, level-by-level, traversal of the tree starting from the

root. During this traversal, all the nodes in the same level on the tree are

assigned the same color (one of two alternating colors). Thus the tree can

be colored using only 2 colors in time proportional to the height of the tree.

2.2 Backtracking and Branch-and-Bound

After one makes sure that a special case is not what is desired to be solved

or the special case is also NP-complete, then efforts are made to find a us-

able algorithm for handling the problem. One approach in this direction is

the use of backtracking algorithms. Recall that all NP-complete problems

are, by definition, solvable by polynomial time nondeterministic Turing ma-

chines. Unfortunately, we only know of exponential methods to simulate

such machines. Backtracking algorithms try to improve on this exponential

behavior with clever, problem-dependent strategies. They often do better

than a straight forward exhaustive search.

Backtracking algorithms are of interest when solving a decision problem.

For optimization problems one often uses a variant of backtracking called

branch-and-bound. Branch-and-bound algorithms require good lower and/or

upper bounds of the optimum solution. The closer the bounds are to the

optimum value the faster the branch-and-bound algorithm terminates. The

need for good bounds makes branch-and-bound algorithms less attractive.

2.3 Heuristics

The other approach for solving NP-hard problems is the use of heuristics.

A heuristic is usually a polynomial time algorithm that applies some rules-

of-thumb to obtain an approximate solution to a problem. The goal of a

heuristic is not to find an optimal solution but rather to find a good solution

quickly.
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2.3.1 Categories of Heuristics

We distinguish between two categories of heuristics: greedy and local im-

provement.

Greedy Heuristics

A greedy heuristic makes the choice that seems best at the moment and

proceeds until it finds a local optimum. Its name indicates that it is free of

any backtracking. The main advantage of greedy heuristics is that they are

fast (low-degree polynomial) and simple.

Local Improvement Heuristics

Local improvement heuristics are heuristics that iteratively try to improve

the quality of a current solution for a problem. Two solutions are said to be

neighbors if a simple operation results in a transition from one solution to the

other. Such an operation could, for instance, be swapping a group of vertices

between distinct color classes in the graph coloring problem. This successive

transition from one solution to the other in search of an optimal solution is

called neighborhood search. The quality of the solution obtained and the

time required by a neighborhood search depend critically on the size of the

neighborhood (search space) used initially. The larger the neighborhood the

better the solution found but the longer the search takes. Local improvement

heuristics are heuristics that seek a favorable compromise in this trade-off.

Simulated annealing is one of the most widely used local improvement

heuristics. Another well-known method, that may be characterized as a

form of simulated annealing, is Tabu search. There exist several other re-

lated genres of local improvement methods, many of them based on some

loose analogy with physical or biological systems. Examples include genetic

algorithms and neural networks. Refer to Reeves [27] for a good coverage

of modern heuristic methods.
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2.3.2 Measuring Performance of Heuristics

Often, the performance of a heuristic is judged by running it on a benchmark

set of problem instances and comparing it with the performance of other

heuristics on the same benchmark. This empirical approach is good for

evaluating the comparative performance of heuristics within certain concrete

application areas. However, the benchmark set, being typically a small

sample, may not necessarily be a good representative of general problem

instances. Thus improvements in the quality of a solution as measured by the

benchmark set are not necessarily a good predictor of possible improvements

in general cases.

Another approach for measuring the performance of a heuristic is an

average case analysis of its behavior. Such a result shows how the heuristic

would “usually” behave. A disadvantage of such an analysis is that it as-

sumes certain fixed distributions of the input. Average case analysis is, in

general, complicated and only the simplest algorithms have been analyzed

successfully.

2.4 Approximation Algorithms

The need for a well-defined analysis of the performance of heuristics led

to the development of the formal concept of approximation algorithm. An

approximation algorithm for an NP-hard problem is necessarily polynomial

and the quality of its solution is measured by the worst case possible relative

error over all possible instances of the problem. The error is measured

against the optimal solution for the NP-hard problem. In the following

sections, we shall define the central terms within the theory of approximation

algorithms. The reason that we include these is to use the terms freely later

in this thesis.

2.4.1 Definition of Approximation Algorithm

Formally, a polynomial algorithm A is said to be a δ-approximation algo-

rithm if for every problem instance I with an optimal solution value OPT (I),
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A(I)
OPT (I) ≤ δ.

The ratio δ is referred to as the approximation ratio or performance

guarantee. Obviously, δ > 1 for a minimization problem and δ < 1 for a

maximization problem. The closer δ is to 1 the better.

2.4.2 Approximation Schemes

For some NP-hard problems, it is possible to invest more running time (still

polynomial) in order to get a better approximation ratio. Schemes that re-

veal such a trade-off are called approximation schemes. There are two kinds

of approximation schemes: polynomial and fully polynomial approximation

schemes.

Formally, a family of approximation algorithms for a problem P , {Aε}ε,

is called a polynomial approximation scheme, if algorithm Aε is a (1 + ε)-

approximation algorithm and its running time is polynomial in the size of

the input for a fixed ε. The family is called a fully polynomial approximation

scheme, if algorithm Aε is a (1+ε)-approximation algorithm and its running

time is polynomial in the size of the input and 1/ε.

2.4.3 Inapproximability

All NP-hard problems are not equally difficult to approximate. The prob-

lems are divided into different classes based on the approximation ratio that

is provably hard to achieve. These provably hard to achieve ratios are lower

bounds1 beyond which the approximation can not be improved any further.

Such results are called inapproximability results. Recent inapproximability

results [13] divide NP-hard problems into classes I, II, III and IV. The corre-

sponding hard to achieve approximation ratios are 1+ε for some fixed ε > 0,

Ω(log n), 2log1−γ n for every γ > 0, and nδ for some fixed δ > 0 respectively,

where n in all the cases is the input size.

1The NP-hard problem is assumed to be a minimization problem
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2.5 Randomized Algorithms

Randomized algorithms as such are not means of solving NP-hard problems

efficiently. However, once one has settled for an approximate solution for an

NP-hard problem, randomized computation is an alternative computational

paradigm to consider. A randomized algorithm is one that makes random

choices during its execution. Randomized algorithms are interesting be-

cause, for many problems, they are considerably simpler or faster than the

corresponding deterministic algorithms. There are two classes of random-

ized algorithms: Las Vegas and Monte Carlo. A randomized algorithm of

the Las Vegas type always generates the correct answer, whereas the Monte

Carlo type is allowed to make errors, but only with a “small” probability.

2.5.1 Measuring Performance of Randomized Algorithms

Since a randomized algorithm makes random choices during its execution, its

resource requirement is measured in probabilistic terms. One such measure

is the use of the expected value of the resource required. To indicate that

a resource bound is based on an expected value computation we use the

symbol E before the resource bound. For example, if the time complexity

of an algorithm is expected to be linear we write T = EO(n).

Generally, the expected value of a discrete random variable X is given

by

E[X] =
∑

x

xPr{X = x} (2.1)

where Pr{X = x} is the probability that X = x and the sum is over all pos-

sible values that can be assumed by X. For random variables X1, X2 . . .,Xk,

we have the following important linearity property of expectation:

E[
∑

i

Xi] =
∑

i

E[Xi] (2.2)

2.6 Other Methods

When dealing with NP-hard combinatorial optimization problems, one may

consider relaxation techniques such as Linear Programming relaxation and
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Lagrangean relaxation to arrive at easier optimization problems that could

either be solved exactly using a standard algorithm or heuristically. Quite

often such relaxation techniques are used for determination of lower bounds

to be used in branch-and-bound methods for solving NP-hard problems [27].



Chapter 3

Multiprocessor Parallel
Processing

The main objective of this study is to explore how the graph coloring prob-

lem can be solved in parallel. More specifically, our objective has been both

to study existing parallel graph coloring algorithms and also to develop and

implement new parallel algorithms for the graph coloring problem.

In this chapter we motivate the reason for the exploration of parallel

computation in general and discuss the important theoretical and practi-

cal considerations pertaining to parallel computation. The purpose of this

chapter is similar to that of Chapter 2. It is to lay the foundation for the

discussions in the coming chapters of this thesis.

Section 3.1 reasons as to why parallel processing is a favorable com-

putational paradigm. In Section 3.2 we consider theoretical issues such as

the parallel machine model used for our analyses, parallel complexity, and

the basic technique of parallelization applied in this work. In Section 3.3

we discuss parallel programming models and the various metrics used for

evaluating the performance of parallel algorithms.

3.1 Why Parallel Processing?

The main purpose of parallel processing is to achieve increased computa-

tional speed by using a number of processors concurrently. The pursuit of

this goal has had a significant influence on many activities related to com-

17
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puting. The need for faster solutions and for solving larger-size problems

arises in a wide range of applications. These include among others, fluid

dynamics, weather prediction, information processing and extraction, image

processing, artificial intelligence, and automated manufacturing.

The following three main factors have contributed to the current strong

trend in favor of parallel processing:

• The steady decline in hardware cost,

• Advances in hardware and software technology, and

• The physical limitation on the fastest cycle time of a single processor.

These factors have led researchers into exploring parallelism and its potential

use in important applications.

3.2 Theoretical Considerations

We start by specifying what we mean by a parallel computer. A parallel

computer is a collection of processors, typically of the same type, intercon-

nected in a certain fashion to allow the coordination of their activities and

the exchange of data. The processors are assumed to be located within

a small distance of one another, and are primarily used to solve a given

problem jointly.

3.2.1 Parallel Machine Model

The RAM (Random Access Machine) is a model used successfully to predict

the performance of programs on single processor (sequential) computers. A

natural extension of this model for parallel computers is the shared-memory

model [14]. This model consists of a number of processors, each of which

has its own local memory and can execute its own local program, and all

of which communicate by exchanging data through a shared memory unit,

also called global memory.

There are two basic modes of operation of a shared-memory model: syn-

chronous and asynchronous. In the first mode, all the processors operate
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synchronously under the control of a common clock, whereas in the second

mode each processor operates under a separate clock.

Since each processor can execute its own local program, the shared-

memory model is a multiple instruction multiple data (MIMD) type. That

is, each processor may execute an instruction or operate on data different

from those executed or operated on by any other processor during any given

time unit.

The synchronous shared-memory model is an idealized model used for

the development and analysis of parallel algorithms. A standard name for

this model is the parallel random access machine (PRAM) model.

Algorithms developed for the PRAM model have been of type single

instruction multiple data (SIMD). That is all processors execute the same

program such that, during each time unit, all the active processors are ex-

ecuting the same instruction, but with different data in general. However,

as the model stands, one can load different programs into the local memo-

ries of the processors, as long as the processors can operate synchronously.

Hence, different types of instructions can be executed within the time unit

allocated for a step. In other words, the PRAM model does not exclude the

development of MIMD algorithms.

There are several variations of the PRAM model based on the assump-

tions regarding the handling of simultaneous access of several processors to

the same location of the global memory. The exclusive read exclusive write

(EREW) PRAM does not allow any simultaneous access to a single memory

location. The concurrent read exclusive write (CREW) PRAM allows simul-

taneous access for a read instruction only. The concurrent read concurrent

concurrent write (CRCW) PRAM allows simultaneous access for both read

and write instructions. The CRCW PRAM is specialized into different vari-

eties depending on how ties are broken on simultaneous memory access for

a write instruction. The three PRAM models (EREW, CREW, CRCW) do

not differ substantially in their computational power. Computation made on

a p-processor, one variant of the PRAM model, can be simulated on another
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variant with a slowdown of a factor no larger than O(log p) [14].

3.2.2 Parallel Complexity

A parallel algorithm is considered efficient if it requires polylogarithmic par-

allel time ( O(logk n)), while the number of processors it uses is polynomial

in the size of the input (O(nk)). The class of problems that can be solved

by efficient parallel algorithms is called the class NC.

All problems in NC can be solved by sequential algorithms in polyno-

mial time. Thus, NP-complete and NP-hard problems cannot be solved by

efficient parallel algorithms, unless they can be solved polynomially by se-

quential algorithms. This shows the strength and inherent intractability of

NP-complete problems. Even with very fast sequential, or parallel comput-

ers, these problems still remain practically intractable.

3.2.3 Basic Parallelization Techniques

The task of designing parallel algorithms presents challenges that are con-

siderably more difficult than those encountered in the sequential domain.

The lack of a well-defined methodology is compensated by a collection of

techniques and paradigms that have been found effective in handling a wide

range of problems [14]. One of these techniques, which we have used in our

work, is a strategy called partitioning.

The partitioning strategy consists of (1) breaking up the given problem

into p independent subproblems of almost equal sizes, and then (2) solv-

ing the p subproblems concurrently, where p is the number of processors

available.

3.3 Practical Considerations

In this section, we address two practical issues, practical in the sense that

the issues are related to implementing a parallel algorithm on a given par-

allel computer. These are parallel programming model and metrics used for

evaluating the performance of parallel algorithms.
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3.3.1 Parallel Programming Models

The PRAM model is an idealized model of a parallel computer. Real par-

allel computers have a concrete architecture and mode of operation. We

identify two main architectural categories: distributed-memory architecture

and shared-memory architecture.

In distributed-memory architecture, processors are connected using a

message-passing interconnection network. Each processor has its own local

memory, accessible only to itself. Processors can interact only by passing

messages.

In shared-memory architecture, there is hardware support for read and

write access by all processors to a shared address space. Processors interact

by modifying data objects stored in the shared address space.

Message Passing Programming Model In this model, programmer’s

view their programs as a collection of processes with private local vari-

ables and the ability to send and receive data between processes by passing

messages. In this model, no variables are shared among processors. Each

processor uses its local variables, and occasionally sends or receives data

from other processors. The message passing programming style is naturally

suited to distributed-memory computers.

Shared Memory Programming Model In this model, programmer’s

view their programs as a collection of processes accessing a central pool of

shared variables. The shared memory programming style is naturally suited

to shared-memory computers. A parallel program on a shared-memory com-

puter shares data by storing it in globally accessible memory. Each proces-

sor accesses the shared data by reading from or writing to shared variables.

However, more than one processor might access the same shared variable at

a time. This might cause problem. Shared-memory programming languages

must provide primitives to resolve such mutual-exclusion problems.
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3.3.2 Performance Metrics for Parallel Systems

We use the term parallel system to signify the combination of a parallel

algorithm and the parallel architecture on which it is implemented. Different

metrics [19] are used to evaluate the performance of parallel systems. In this

section, we shall define the most important ones.

Parallel Run Time The serial run time of a program is the time elapsed

between the beginning and the end of its execution on a sequential computer.

The parallel run time is the time that elapses from the moment that a

parallel computation starts to the moment that the last processor finishes

execution.

Speedup Speedup is a measure that captures the relative benefit of solving

a problem in parallel. Formally, the speedup S is the ratio of the serial run

time of the best sequential algorithm for solving a problem to the time taken

by the parallel algorithm to solve the same problem on p processors. The p

processors used by the parallel algorithm are assumed to be identical to the

one used by the sequential algorithm. If the fastest sequential algorithm to

solve a problem is not known, the fastest known algorithm that would be

a practical choice for a serial computer is taken. In this thesis, speedup is

calculated using the run time of the parallel algorithm using only 1 processor

as a basis. That is the speedup obtained using p processors is Sp = T1

Tp
, where

T1 and Tp are the run times using 1 and p processors respectively.

Efficiency Ideally, one would like to design parallel systems that achieve

S ≈ p, where p is the number of processors used. In reality, there are several

sources of overhead in parallel systems that hinder the achievement of this

ideal goal. The major sources of overhead are interprocessor communication,

load imbalance, and extra computation incurred due to parallelization. A

performance measure that reveals part of this issue is efficiency. Efficiency

E is defined as the ratio of speedup to the number of processors (E = S
p ).
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It is a measure of the fraction of time for which the processor is usefully

employed.

Scalability The scalability of a parallel system is a measure of its capacity

to increase speedup in proportion to the number of processors.



Chapter 4

Review of Graph Coloring
Heuristics

In this chapter, we review some existing graph coloring heuristics, both

sequential and parallel. The chapter is divided into three sections. In Section

4.1, we briefly state the currently known theoretical results regarding the

graph coloring problem. This is done to provide a framework within which

any graph coloring heuristic is to be considered. Section 4.2 is devoted to the

discussion of sequential graph coloring heuristics and Section 4.3 discusses

parallel graph coloring heuristics. We try to treat the heuristics under a

systematic classification by grouping heuristics with a commom feature into

one category.

4.1 Theoretical Results

The graph coloring problem is NP-complete. Solving the problem sub-

optimaly can, however, be done in polynomial time. The number of colors

used by a sub-optimal coloring algorithm is called its coloring number.

Theoretically, designing an approximation algorithm for the graph color-

ing problem is highly desirable. We recall from Section 2.4 that the quality

of an approximation algorithm is measured primarily by its approximation

ratio. The approximation ratio of a graph coloring algorithm is the maxi-

mum ratio, taken over all inputs, of the coloring number of the algorithm

to the chromatic number. The current best known approximation ratio

24
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for the graph coloring problem is O(n (log log n)2

(log n)3
) [24]. This result is due to

Halldórsson [12]. Such a result in which one gives an upper bound for the

worst case relative error of an approximation algorithm is termed as an ap-

proximability (or positive) result. An inapproximability (or negative) result

is a result where one provides a lower bound below which the approximation

ratio can not be improved any further. Currently, the graph coloring prob-

lem is known to be not approximable within n1/7−ε for any ε > 0 [24]. This

result is due to Bellare et al. [2]. No polynomial approximation scheme (see

Section 2.4) is known to exist for the graph coloring problem.

Based on the above positive and negative results, and using the taxonomy

of Section 2.4, the graph coloring problem belongs to class IV.

4.2 Sequential Graph Coloring Heuristics

In Section 2.3, we identified two general heuristic approaches towards solving

NP-hard problems. These approaches were classified as greedy and local

improvement methods. In this section, we shall see how these methods are

applied in solving the graph coloring problem.

4.2.1 Greedy Coloring Heuristics

In light of the theoretical results of Section 4.1, it is surprising that, for

certain classes of graphs, there exist a number of greedy sequential coloring

heuristics that are very effective in practice. For graphs arising from a

number of applications, it has been demonstrated that these heuristics are

often able to find colorings that are within small additive constants of the

optimal coloring [5, 16].

Greedy coloring heuristics build a coloring by repeatedly extending a

partial coloring of the graph. A graph is said to be partially colored if a

subset of its vertices is validly colored. Greedy coloring heuristics concen-

trate on carefully picking the next vertex to color and the color for that

vertex. In these heuristics, once a vertex is colored, its color never changes.
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Algorithm 4.1

FirstF it(G)
begin

for i = 1 to n do
assign smallest legal color to vi

end-for
end

Figure 4.1: First Fit Coloring Algorithm

First Fit

First Fit is the easiest and fastest of all greedy coloring heuristics. The

algorithm is outlined in Figure 4.1. We first give some remarks about the

presentation of coloring algorithms throughout this thesis. The graph to be

colored, denoted by G, is given as a parameter to the heuristic. The number

of vertices and edges of the input graph are denoted by n and m respectively.

The steps in the algorithm are given in high level specification and enclosed

between begin and end.

The First Fit coloring algorithm is fed the set of vertices in some arbi-

trary order. The algorithm sequentially assigns each vertex the lowest legal

color. First Fit has the advantage of being very simple and very fast.

As for the quality of the coloring obtained, First Fit does not perform

well in the worst-case. For some special graphs, the approximation ratio can

be as high as n/4 [11].

On the average, however, it performs reasonably well. Grimmet and

McDiamid [10] have given an average case analysis of its performance for

the class of graphs known as random graphs. A random graph is a graph

in which the probability of finding an edge between any two vertices is 1/2.

They show that for random graphs, on the average, First Fit is expected to

use no more than 2χ(G) colors. This result is achieved asymptotically as

the graph gets large.

Each step i in Algorithm 4.1 has operations proportional to the degree
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Algorithm 4.2

Greedy(G)
begin

U = V
while U 6= ∅ do

choose a vertex vi ∈ U according to a selection criterion
assign smallest legal color to vi

U = U − {vi}
end-while

end

Figure 4.2: General Greedy Coloring Scheme

deg(vi) of vertex vi. Thus the total time complexity is proportional to
∑n

i=1 deg(vi). In other words, First Fit is an O(m)-time algorithm.

Degree based Ordering

A better strategy than simply picking the next vertex from an arbitrary

order is to use a certain selection criterion for choosing the vertex to be

colored among the currently uncolored vertices. Such a strategy, depending

on the nature of the selection criterion, has a potential for providing a better

coloring than First Fit . We outline a general scheme of this approach in

Figure 4.2, and call it a general greedy coloring scheme.

In Algorithm 4.2, U is the set of uncolored vertices in each iteration.

Initially it is set to be equal to V . A vertex v is selected using a certain

criterion and colored. This colored vertex is then removed from U . This

process of selecting, coloring and removing a vertex continues until the set

of uncolored vertices U becomes empty.

For graphs with low maximum degree, one can give an upper bound on

the number of colors used by Algorithm 4.2. If ∆ is the maximum degree of

the graph, then at each iteration of the while-loop, the vertex to be colored

can have no more than ∆ neighbors. Hence, it must be possible to color this

vertex with one of the colors 1, 2, . . . ,∆ + 1. Therefore, the greedy scheme
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uses at most ∆+1 colors. Note that First Fit belongs to this general scheme;

it just selects the next vertex from some arbitrary ordering of the vertices.

Hence, it also uses at most ∆ + 1 colors.

Many strategies for selecting the next vertex to be colored have been

proposed so far. Depending on the selection criterion used, we get a variety

of coloring heuristics. In the following paragraphs we discuss some of the

well-known, effective selection strategies.

Largest Degree Ordering (LDO) Ordering the vertices by decreas-

ing degree, proposed by Welsh & Powel [29], was one of the earliest or-

dering strategies. This ordering works as follows. Suppose the vertices

v1, v2, . . . vi−1 have been chosen and colored. Vertex vi is chosen to be the

vertex with the maximum degree among the set of uncolored vertices.

Intuitively, LDO provides a better coloring than First Fit since during

each iteration it chooses a vertex with the highest number of neighbors

which potentially produces the highest color. Note that this heuristic can

be implemented to run in O(m) time.

Saturation Degree Ordering (SDO) SDO was proposed by Brelaz [3]

and is defined as follows. Suppose that vertices v1, v2, . . . vi−1 have been

chosen and colored. Then at step i, vertex vi with the maximum saturation

degree is selected. The saturation degree of a vertex is defined as the number

of differently colored vertices the vertex is adjacent to. For example, if a

vertex v has degree equal to 4 where one of its neighbors is uncolored, two

of them are colored with color equal to 1, while the last one is colored with

color equal to 3, then v has saturation degree equal to 2.

While choosing a vertex of maximum saturation degree, ties are broken in

favor of the vertex with the largest degree. Intuitively, this heuristic provides

a better coloring than LDO since it first colors vertices most constrained by

previous color choices. The heuristic can be implemented to run in O(n2)

time [3].
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Incidence Degree Ordering (IDO) A modification of the SDO heuris-

tic is the incidence degree ordering introduced by Coleman and Moré [5].

This ordering is defined as follows. Suppose that vertices v1, v2, . . . , vi−1 have

been chosen and colored. Vertex vi is chosen to be a vertex whose degree is a

maximum in the subgraph of G induced by the vertex set {v1, . . . , vi−1}∪{vi}.
In other words, a vertex vi with the maximum incidence degree is chosen

at step i. The incidence degree of a vertex is defined as the number of its

adjacent colored vertices. Note that it is the number of adjacent colored

vertices and not the number of colors used by the vertices that is counted.

The vertex v in the example of the above subsection has incidence degree

equal to 3.

Tie-breaking in IDO is as in the case of SDO. The IDO vertex ordering

has the advantage that its running time is a linear function of the number

of edges [16]. In other words, IDO is an O(m)-time algorithm.

Independent Set Based Coloring Algorithms

The degree-based heuristics discussed so far are the most commonly used

sequential graph coloring heuristics. The reason for their common usage

is their simplicity and relative high speed. In this subsection we consider

greedy coloring heuristics based on finding an independent set. The ob-

servation in these heuristics is that vertices of an independent set can be

assigned the same color. This approach reveals the close relationship be-

tween the graph coloring and independent set problems. The independent

set problem and its related concepts have been introduced in Section 1.2.

An independent set based coloring heuristic is presented in Figure 4.3.

In this figure, IndependentSetAlgorithm is a routine that returns an inde-

pendent set when provided with an input graph. The main algorithm works

by repeatedly finding, coloring and removing an independent set. The set

of uncolored vertices is denoted by U and G′ is the graph induced by U .

Initially G = G′ and U = V . I is set to be the independent set returned by

IndependentSetAlgorithm with input G′. After the vertices in I are colored,
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Algorithm 4.3

IndependentSetBasedColoring(G)
begin

U = V
G′ = G
while G′ 6= ∅ do

I = IndependentSetAlgorithm(G′)
color the vertices in I with a new color
U = U − I
G′ = graph induced by U

end-while
end

Figure 4.3: Coloring by removing independent sets

I is removed from U . The process is repeated on the graph G′ induced by

U and continues until G′ becomes empty.

We note that the principle of successively extending a partial coloring is

applied in Algorithm 4.3. Moreover, the coloring obtained is not iteratively

improved. Hence we have classified this coloring heuristic under the category

of greedy coloring heuristics.

Both the quality and time complexity of Algorithm 4.3 is determined by

the routine used for determining the independent set.

The following paragraphs discuss some simple independent set finding

heuristics. The heuristics find a maximal (and not a maximum) independent

set in a graph. Finding a maximum independent set is NP-complete. (See

Sections 1.2 and 1.3.)

Greedy Independent Set The easiest method of finding a maximal in-

dependent set in a graph is the heuristic outlined in Figure 4.4. In Algorithm

4.4, U denotes the set of vertices under consideration and G′ denotes the

graph induced by U . The heuristic returns the independent set denoted by

I. Initially U = V , I = ∅ and G′ = G. A vertex v is then chosen arbitrarily

from U and augmented into the independent set I. Then the set X, which

is the union of v and its neighbors N(v), is removed from U . This process
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Algorithm 4.4

GreedyIndependentSet(G)
begin

I = ∅
U = V
G′ = G
while (G′ 6= ∅) do

choose a vertex v arbitrarily from U
I = I ∪ {v}
X = {v} ∪N(v)
U = U −X
G′ = graph induced by U

end-while
return I

end

Figure 4.4: Greedy Independent Set

is repeated until the vertex set U becomes empty.

Algorithm 4.4 performs (in terms of quality) badly in the worst case. On

the average, however, it performs reasonably well [11].

Greedy independent set is specially useful for graphs with low maximum

degree. If the degree of each vertex is at most ∆, then each step in Algorithm

4.4 will decrease the graph by no more than ∆ + 1 vertices. Hence, the

method will find an independent set of size at least d n
∆+1e.

Minimum Degree Independent Set In Algorithm 4.4, instead of pick-

ing an arbitrary vertex, it intuitively makes sense to choose a vertex of low

degree in the graph G′. This is because a minimum degree vertex entails a

minimum size set of vertices to be removed (the set X is minimized). This

enables the independent set finding process to continue longer resulting in

a larger size independent set.
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4.2.2 Local Improvement Coloring Heuristics

Local improvement coloring heuristics start with some naive coloring of the

graph. The vertices are then moved around between color classes iteratively

with the hope of finding a better coloring. The iterative improvement stops

when the algorithm decides no better coloring can be achieved. Thus, unlike

in greedy coloring heuristics, a vertex may change its color several times

during the course of a local improvement coloring algorithm.

Local improvement coloring heuristics concentrate on two issues: finding

a good objective function that accurately measures the quality of the current

solution and finding a selection criterion for determining which vertices to

move. Moves are, in general, considered to be good if they make progress

towards a reduction in the number of colors used.

There are various local improvement coloring heuristics in the literature.

Examples include variants of Simulated annealing [20, 23] and Tabu search

[6, 20].

In this section we present a local improvement coloring heuristic the idea

of which has motivated one of our coloring algorithms discussed in Section

5.4. The coloring heuristic is called Iterated First Fit1 and was proposed by

Culberson [6].

Iterated First Fit

Given a graph G = (V,E), let V = {v1, . . . .vn} and π be a permutation

of {1, . . . , n}. In Iterated First Fit, First Fit is applied iteratively where

the ordering in each iteration is determined by a previous coloring. In other

words, information obtained in a previous coloring is used to produce an im-

proved coloring. The following result states that if we take any permutation

in which the vertices of each color class are adjacent in the permutation,

then applying First Fit once more will produce a coloring at least as good

as what we had previously.

1Culberson calls it Iterated Greedy.
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Lemma (Culberson) 4.1 Let C be a k-coloring of a graph G, and π

a permutation of the vertices such that if C(vπ(i)) = C(vπ(m)) = c, then

C(vπ(j)) = c for i < j < m. Then, applying the First Fit algorithm to the

permutation π will produce a coloring C using k or fewer colors.

Proof [6]: The proof is a simple induction showing that the first i color

classes listed in the permutation will be colored with i or fewer colors.

Clearly, the first color class listed will be colored with color 1. Suppose

some element of the ith class requires color i + 1. This means that it must

be adjacent to a vertex of color i. But by induction the vertices in the 1st to

i− 1th classes used no more than i− 1 colors. Thus, the conflict has to be

with a member of its own color class, but this contradicts the assumption

that C is a valid coloring.

2

Clearly, the order of the vertices within the color classes cannot affect the

next coloring, because the color classes are independent sets. It can easily

be seen that if the permutation is such that the k color classes generated

by a previous iteration of the algorithm are listed in order of increasing

color, then applying the First Fit algorithm again will produce an identical

coloring. Culberson suggests a number of heuristics by which the color

classes can be reordered, satisfying the condition of Lemma 4.1.

Being a local improvement heuristic, Iterated First Fit needs a mecha-

nism for measuring progress between successive iterations. Clearly, coloring

number could be used as a direct and accurate measure. It is easy to see that

progress has been made whenever the coloring number is reduced. However,

the algorithm may require hundreds or thousands of iterations on larger

graphs before changes in coloring number are observed. To circumvent this,

Culberson suggests the sum of the color values (remember the color of a

vertex is just an integer) assigned to the vertices as an alternative measure

of progress.
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Algorithm 4.5

ParallelColoring(G)
begin

U = V
G′ = G
while G′ 6= ∅ do in parallel

I = IndependentSetAlgorithm(G′)
color the vertices in I
U = U − I
G′ = graph induced by U

end-while
end

Figure 4.5: A Parallel Coloring Heuristic

4.3 Parallel Graph Coloring Heuristics

Developing a parallel algorithm, among other things, requires identification

of operations that can be performed concurrently. One observes that the

effective, ordering-based, greedy sequential coloring heuristics discussed so

far are essentially breadth-first searches of the graph and, as such, do not

lead to scalable, parallel heuristics.

Independent set based coloring heuristics, on the other hand, are better

suited for parallelization, since any independent set of vertices can be colored

in parallel. Thus, a heuristic for determining an independent set in parallel

could be adapted to a parallel coloring heuristic. A parallel independent set

based coloring heuristic is given in Figure 4.5. In Algorithm 4.5, each of

the stages within the while loop are executed in parallel in a synchronous

fashion.

Depending on how the independent set is chosen and colored, Algorithm

4.5 results in a number of variants, some of which are presented in the

following sections.
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4.3.1 Parallel Maximal Independent Set (MIS)

The problem of determining an independent set in parallel has been the

focus of much theoretical research. One approach, that has been successfully

analyzed by Luby [21], is to determine an independent set I based on a

Monte Carlo rule as follows.

1. For each vertex v ∈ U determine a distinct, random number ρ(v)

2. v ∈ I ⇔ ρ(v) > ρ(ω),∀ω ∈ adj(v)

In Luby’s algorithm (Algorithm 4.6), this initial independent set is aug-

mented to obtain a maximal independent set. In this algorithm, after the

initial independent set is found, the set of vertices adjacent to a vertex in I,

the neighbor set N(I), is determined. The union of these two sets is deleted

from U , the subgraph induced by this smaller set is constructed, and the

Monte Carlo step is used to choose an augmenting independent set. This

process is repeated until the candidate vertex set is empty and a maximal

independent set (MIS) is obtained.

Luby has described a parallel version of his algorithm. He has shown that

an upper bound for the expected time to compute an MIS by this algorithm

on a CRCW PRAM is EO((∆ + 1) log(n)), where ∆ is maximum degree of

G and n is the number of vertices.

Luby’s algorithm can be adapted to a graph coloring heuristic by using

it to determine a sequence of distinct maximal independent sets and color-

ing each MIS with a different color. We call this coloring method Parallel

MIS coloring. Parallel MIS will color a graph with maximum degree ∆ in

expected time EO((∆ + 1)log(n)).

4.3.2 Jones-Plassmann

Jones and Plassmann [16] state the following. “One major deficiency of the

parallel MIS coloring approach on distributed memory parallel computers is

that each new choice of random numbers in the MIS algorithm requires a

global synchronization of the processors. A second problem is that each new
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Algorithm 4.6

Luby −MIS(G)
begin

I = ∅
U = V
G′ = G
while (G′ 6= ∅) do

Choose an independent set I ′ in G′

using the Monte Carlo rule described
I = I ∪ I ′

X = I ′ ∪N(I ′)
U = U −X
G′ = graph induced by U

end-while
end

Figure 4.6: Luby’s Monte Carlo algorithm for determining a MIS

choice of random numbers incurs a great deal of computational overhead,

because the data structures associated with the random numbers must be

recomputed.”

They propose an asynchronous parallel heuristic for a distributed mem-

ory parallel computer that avoids both of these drawbacks. Their heuristic

is based on a message-passing model.

According to them, the first drawback, global synchronization, is elimi-

nated by choosing the independent random numbers only at the beginning

of the heuristic. With this modification, the interprocessor communication

can proceed asynchronously once these numbers are determined. The second

drawback, computational overhead, is alleviated because with this heuristic,

once a processor knows the values of the random numbers of the vertices

to which it is adjacent, the number of messages it needs to wait for can

be computed and stored. Likewise, each processor computes only once the

processors to which it needs to send a message once one of its vertices is

colored.

To make comparison with the parallel MIS algorithm easier, we present



CHAPTER 4. REVIEW OF GRAPH COLORING HEURISTICS 37

Algorithm 4.7

Jones− P lassmann(G)
begin
U = V
while(|U | > 0) do

for all vertices v ∈ U do in parallel
I = {v such that w(v) > w(u)∀ neighbors u ∈ U }
for all vertices v′ ∈ I do in parallel

assign the smallest legal color to v ′

end-for
end-for
U = U − I

end-while
end

Figure 4.7: High-level, Jones-Plassmann coloring algorithm

the Jones-Plassmann algorithm at a higher level (Figure 4.7). This presenta-

tion does not assume any specific parallel programming model. In Algorithm

4.7, w(v) denotes the random number (weight) assigned to vertex v at the

beginning of the heuristic. We see that the algorithm proceeds very much

like the parallel MIS algorithm, except that it does not find a maximal in-

dependent set at each step. It just finds an independent set in parallel using

Luby’s Monte Carlo rule, choosing vertices whose weights are local maxima.

The other difference is that the vertices in the independent set found are

not assigned the same new color, as they are in the MIS algorithm. Instead,

the vertices are colored individually using the smallest consistent color, the

smallest color that has not already been assigned to a neighboring vertex.

This procedure is repeated using the coloring method of Figure 4.5 until the

entire graph is colored.

In choosing vertices with local maximum weight, Jones-Plassmann algo-

rithm uses the unique vertex number to tie-break in the unlikely event of

neighboring vertices getting the same random number.

Jones and Plassmann provide an analysis of the expected running time
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of their heuristic for bounded degree graphs (graphs with maximum degree

∆) under the PRAM computational model. By this analysis, for fixed ∆,

they improve Luby’s bound of EO(log(n)) to EO(log(n)/ log log(n)).

They have also described how their asynchronous parallel coloring heuris-

tic can be combined with effective sequential heuristics on distributed mem-

ory parallel computers. They achieve this by first partitioning the vertices

of the input graph across p processors in a distributed memory parallel com-

puter. The combined approach consists of two phases: an initial, parallel

phase as described by Algorithm 4.7, followed by a local phase that uses

some good sequential coloring heuristic. We shall elaborate this combined

approach in Chapter 5.

4.3.3 Largest Degree First (LDF)

The Largest Degree First [1] algorithm is basically very similar to the Jones-

Plassmann algorithm. The only difference is that instead of using random

weights to create the independent sets, each weight is chosen to be the de-

gree of the vertex in the graph induced by the uncolored vertices. Random

numbers are only used to resolve conflicts between neighboring vertices hav-

ing the same degree. Vertices are thus not colored in random order, but

rather in order of decreasing degree.

LDF aims to use fewer colors than the Jones-Plassmann algorithm. This

is so because a vertex with i colored neighbors requires at most color i + 1

and the LDF algorithm aims to keep the maximum value of i as small as

possible throughout the computation. Therefore, LDF has a tendency of

using smaller number of colors than Jones-Plassmann.



Chapter 5

New Parallel Graph Coloring
Heuristics

5.1 Introduction

In their work entitled “A comparison of parallel graph coloring algorithms”,

Allwright et al. [1] have experimentally demonstrated the performance of the

parallel coloring algorithms presented in the previous chapter. They have

implemented Parallel MIS, Jones-Plassmann and LDF coloring algorithms

on both SIMD and MIMD parallel architectures. Their findings indicate that

LDF and Jones-Plassmann use almost the same coloring time and are gen-

erally faster than Parallel MIS. In terms of quality of coloring, their results

indicate that LDF uses fewer number of colors than Jones-Plassmann and

Jones-Plassmann uses fewer colors than Parallel MIS. However, Allwright

et. al report that they did not get any speedup for all the algorithms. More-

over, they could not experiment on graphs of very large size due to memory

limitation.

Jones and Plassmann [16] do not report on obtaining speedup either.

They state that “the running time of the heuristic is only a slowly increasing

function of the number of processors used”, where the heuristic referred to

is a combination of their asynchronous parallel heuristic and local sequential

coloring heuristics. Moreover, this combined coloring heuristic of Jones and

Plassmann is based on a distributed-memory architecture.

39
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Therefore, developing parallel, shared-memory programming based graph

coloring heuristics that yield good speedup is interesting. The main reason

for choosing shared-memory programming is to utilize effective sequential

coloring heuristics and incrementally parallelize them without incurring huge

computational overhead.

This chapter presents the parallel graph coloring algorithms developed

in this work. The basic parallelization technique applied is partitioning.

Partitioning, as a parallelization strategy, consists of (1) breaking up the

given problem into p independent subproblems of almost equal sizes, and

then (2) solving the p subproblems concurrently using p processors. We

use the parallel machine model PRAM, discussed in Section 3.2.1, for the

analyses of the algorithms. In the analyses of some of the algorithms, we

use the probabilistic concept expected value, defined in Section 2.5.1.

Our emphasis is more on speed than quality of coloring. Therefore, First

Fit is the coloring heuristic the reader encounters often in this chapter. First

Fit and other greedy sequential coloring heuristics were discussed in Section

4.2.1.

In this work, partitioning as a parallelization technique has been ap-

plied in two different ways to the graph coloring problem. This chapter is

organized based on these two ways of applying the partitioning technique.

Section 5.2 shows the application of the graph partitioning problem in

breaking the graph coloring problem into a number of independent subprob-

lems.

In Section 5.3 we show how simple block partitioning can be used in

breaking the graph coloring problem into several, not necessarily indepen-

dent, subproblems. We show that inconsistencies that result due to the

interdependence of the subproblems can be resolved later using a “conflict-

resolving” stage.

In Section 5.4 we show how the quality of coloring obtained using block

partitioning can be improved. The improvement method is based on a two-

phase coloring strategy. Each of the coloring phases is performed in parallel
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using block partitioning. We show that the second phase, in addition to

improving the quality of coloring, results in fewer “conflicts”.

Section 5.5 discusses how the two partitioning approaches can be com-

bined to yield a cumulative improved result.

5.2 Graph Partitioning Approach

Our first approach of breaking the graph coloring problem into several sub-

problems is using the graph partitioning problem. The objective of the graph

partitioning problem is to partition the vertices of a graph in p roughly equal

parts such that the number of edges connecting vertices in different parts is

minimized. For our purpose the partitioning is done across the p processors

available. If the graph partitioning problem is solved effectively, that is,

with nearly equal number of vertices per processor and only very few edges

connecting vertices in different processors, then the graph coloring problems

defined by the local vertices of each processor can be solved concurrently

and the potential for good speedup is clear. In this section we look in to

this idea more closely and present the first parallel coloring heuristic.

5.2.1 Definitions and Notations

Assume that the vertices of the graph G = (V,E) are partitioned into p sets

as {V1, . . . , Vp}. Let the function π : V → {1, . . . , p} return the number of

the partition to which each vertex belongs.

We define the set of shared edges ES to be the edge set ES ⊆ E where

edge (v, w) ∈ ES ⇔ π(v) 6= π(w) and the set of shared vertices to be the

vertex set V S , where a vertex is in this set if and only if the vertex is an

endpoint for some edge in ES .

Let the set of local vertices, denoted by V L, be the set V − V S , and let

Vi
L denote the vertex set V L ∩ Vi. Thus,

⋃
Vi

L = V L.

Let Gi and GL denote the graphs induced by the vertex sets Vi
L and V L

respectively and let GS be the graph obtained by deleting all the edges (but

NOT the vertices) of GL from G.
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5.2.2 The Algorithm

We make the following two crucial observations. The coloring algorithm

follows directly from these results.

Lemma 5.2.1 Let σi be a coloring for Gi. A coloring σ for the graph GL

can be obtained by letting σ(v) = σi(v) where v ∈ Vi
L, for each i = 1, . . . , p.

Proof : By definition, the vertex sets V1
L, . . . , Vp

L are equivalent classes of

the vertex set VL. Hence, the subgraphs Gi (for i = 1, . . . , p) are connected

components of GL. This implies that colorings of the subgraphs Gi (for

i = 1, . . . , p) can be pieced together as-they-are to provide a coloring for

GL.

2

Lemma 5.2.2 A coloring for GL is a partial coloring for GS and can be

extended to a coloring for G.

Proof : The vertices in the graph GS are of two kinds: those that belong to

V L and those that belong to V S . The vertices from V L are already colored.

Coloring the vertices in V S , consistent with the colors assigned to vertices

in V L, provides a coloring for graph G.

2

Lemmas 5.2.1 and 5.2.2 immediately suggest a parallel coloring scheme

that works in two phases. During the first phase, the p local graphs are col-

ored in parallel by p processors, each processor using any sequential coloring

algorithm. In the second phase, GS , the graph that remains when all the

edges of the local graphs are removed, is colored using any parallel coloring

heuristic. The coloring scheme based on this principle is outlined in Figure

5.1.

Scheme 5.1 yields a parallel coloring algorithm by specifying the algo-

rithms to be used in Phases 1 and 2 . One combination of choices could for
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Scheme 5.1

GraphPartitionBasedColoring(G, p)
begin

1. Partition G into p parts and determine Vi
L, V S and Gi

for i = 1 to p do in parallel
Color Gi using some sequential coloring algorithm

end-for
2. Color the remaining vertices in V S consistently using

some parallel coloring heuristic
end

Figure 5.1: Graph Partition Based Coloring Scheme

instance be using First Fit in Phase 1 and the Jones-Plassmann algorithm

(Algorithm 4.7) in Phase 2. In fact the basic idea in Scheme 5.1 is inspired

by the work of Jones and Plassmann [16]. They have shown that the asyn-

chronous parallel coloring heuristic, Algorithm 4.7, can be combined with

local sequential coloring heuristics using the same idea of graph partitioning.

The difference between their method and ours lies in the order in which the

two phases are performed. They show that coloring of the shared graph GS

can be done before coloring of the local graphs. Our method is better for the

following two reasons. Firstly it is more suitable for SMP and secondly it

fits very well into the general parallel coloring method of Algorithm 4.5. In

Scheme 5.1, since the Gi’s are connected components of GL, if we consider

each graph Gi as a “node”, the set composed of these nodes is an indepen-

dent set in G. Scheme 5.1 is thus equivalent to a one-iteration variant of

Algorithm 4.5, where an “independent set” is found, colored, removed from

the graph and finally the vertices that remain after such removal are colored.

The performance, both in terms of speed and quality, of Scheme 5.1

is highly dependent on the partitioning step. Graph partitioning is a well

studied and important problem by itself. The problem is known to be NP-

complete. The study of this problem is out of the scope of this work.
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For some sparse graphs1, the partitioning step in Scheme 5.1 yields a

partition in which |ES | � |E| (the percentage of edges whose end points are

in different parts is low). For such graphs, Scheme 5.1 is effective and Phase

2 can even be done sequentially without producing significant increase in

the overall time required.

We finally comment on how our use of partitioning as a parallelization

technique in Scheme 5.1 differs from the standard partitioning strategy. In

the standard case, the union of the independent subproblems is equal to the

original whole problem. In our case, this is not so. The difference between

the whole problem and the union of the subproblems is the problem defined

by GS . By trying to minimize the size of ES in the partitioning step, our

parallelization technique is made as close to the standard as possible.

5.3 Block Partitioning Approach

The partitioning strategy of Scheme 5.1 calls for the solution of another NP-

complete problem. Moreover, all graphs can not be partitioned effectively.

For some graphs the size of ES can be as big as E itself. In this section we

propose an alternative partitioning method, called simple block partitioning.

By block partitioning is meant dividing the vertex set (given in an arbitrary

order) into p successive blocks of equal size. No effort is made to minimize

the number of edges whose end points belong to different blocks. Such

edges, the end points of which belong to different blocks, are said to be

crossing edges. Obviously, because of the existence of crossing edges, the

coloring subproblems defined by the blocks in a block partitioning are not

independent. That is to say, coloring the vertices of one block can not

necessarily be done concurrently with coloring of the vertices of another

block without resulting in inconsistency.

1Sparse graphs are graphs where the number of edges is much smaller than the square

of the number of vertices, more on this in Chapter 6
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Algorithm 5.2

BlockPartitionBasedColoring(G, p)
begin
1. Partition V into p equal blocks b1 . . . bp, where |bi| = |V |/p = n/p

for i = 1 to p do in parallel
for j = 1 to n/p do

assign the smallest legal color to vertex vj ∈ bi

end-for
end-for

2. for i = 1 to p do in parallel
for j = 1 to n/p do

for each neighbor u of vj ∈ bi do
if color(vj) = color(u) then

store min {u, vj} in an array A
end-if

end-for
end-for

end-for
Color the vertices in A sequentially

end

Figure 5.2: Block Partition Based Coloring Algorithm
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5.3.1 The Algorithm

Our strategy in this second approach of partitioning is to solve the original

problem in two phases. In the first phase, the input vertex set is divided into

p blocks of equal size and the vertices in each block are colored in parallel

using p processors. The p processors operate in a synchronous fashion.

That is, at each time unit tj, each processor colors vertex vj in its respective

block. In doing so, two processors may simultaneously be attempting to

color vertices that are adjacent to each other. This may result in an invalid

coloring. In the second phase, the vertex set is block partitioned as in Phase

1 and each processor checks whether its vertices are legally colored. If a

conflict is discovered, one of the endpoints of the edge in conflict is stored

in a table. Finally the vertices in this table are colored sequentially. The

details of the parallel coloring algorithm based on this strategy are given in

Figure 5.2.

5.3.2 Results

In this section we present some results regarding Algorithm 5.2. We call the

coloring obtained at the end of Phase 1 in Algorithm 5.2 a pseudo coloring

to indicate that it may contain conflicts. The input graph G = (V,E) in

Algorithm 5.2 has n vertices, m edges, and a maximum degree of ∆. The

algorithm uses p processors.

Our first result shows that Phase 1 in Algorithm 5.2 provides a nearly

linear speedup.

Lemma 5.3.1 Phase 1 of Algorithm 5.2 pseudo colors the input graph in

O(∆n/p) time using O(m) operations on the CREW PRAM.

Proof : In coloring the vertices of the blocks in parallel, the end points

of some crossing edges may be colored concurrently. Such vertices may end

up getting the same color. Thus, at the end of Phase 1 some vertices may

be illegally colored and it follows that the graph is pseudo colored. More-

over, two vertices being colored concurrently by two processors may have
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a common neighbor, the color of which has to be accessed simultaneously.

Thus, the PRAM model required is CREW. We now turn to the complexity

bounds. We first take the parallel time bound. Phase 1 of Algorithm 5.2

consists of n/p parallel steps. The number of operations in each parallel

step is proportional to the degree of the vertex under investigation. The

degree of each vertex is bounded from above by ∆. Thus, T1, the parallel

time used by Phase 1, is T1 = O(∆n/p). As for the number of operations

the following holds. W1 =
∑p

i=1

∑n/p
j=1,vj∈bi

deg(vj) = O(m).

2

The second result gives an upper bound on the expected number of edges

whose end points are assigned the same color at the end of Phase 1 of

Algorithm 5.2. Such edges are said to be in conflict and the cardinality of

the set of edges in conflict is denoted by K. The result shows that K is

bounded from above by (δp) where δ is the average degree in the graph G.

Lemma 5.3.2 The expected number of conflicts at the end of Phase 1 of

Algorithm 5.2 is EO(δp).

Proof : Let e = (u, v) be an edge from E. Let Pr[X, tj ] denote the

probability that the set of vertices X, containing one or more vertices, is

colored at time unit tj , where 1 ≤ j ≤ n/p. Clearly, Pr[{u}, tj ] = 1
n/p = p/n.

Similarly, Pr[{v}, tj ] = p/n. The probability that u and v are colored at

time unit tj is therefore obtained as follows.

Pr[{u, v}, tj ] = Pr[{u}, tj ]× Pr[{v}, tj ] = p/n× p/n = p2/n2 (5.1)

The probability that u and v are colored at some same time unit is thus

n/p∑

j=1

p2/n2 = (n/p)(p2/n2) = p/n (5.2)

Let S denote the number of edges the end points of which are colored con-

currently. Using 2.1, the expected value of S is

E[S] =
∑

(u,v)∈E

p/n =
mp

n
= δp (5.3)
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The expression in Equation 5.3 is obviously an upper limit on the expected

number of conflicts. Thus,

E[K] = O(δp) (5.4)

2

The following is our final result about Algorithm 5.2. In this result, we

introduce a graph attribute called relative sparsity r, defined as r = n2

m .

The attribute r indicates how sparse the graph is, the higher the value of

r, the sparser the graph is. The following Lemma states that overall, for

some graphs, Algorithm 5.2 provides an almost linear speedup compared to

sequential First Fit coloring.

Lemma 5.3.3 If p = O(
√

r), then Algorithm 5.2 legally colors the graph in

EO(∆n/p) time on a CREW PRAM.

Proof : From Lemma 5.3.1, the time required by Phase 1 is T1 =

EO(∆n/p). Phase 2 has this time requirement plus the time it takes to se-

quentially color the conflicting vertices. That is, T2 = EO(∆n/p)+EO(∆K)

where K is the number of conflicts at the end of Phase 1. From Lemma 5.3.2

E[K] = O(δp). In other words, T2 = EO(∆n/p) + EO(∆δp). T2 is deter-

mined by how (n/p) compares with (δp). We investigate two cases.

Case 1 ((n/p) � (δp))

n/p � δp ⇐⇒ n/p � (m/n)p ⇐⇒ n2/m � p2 ⇐⇒ r � p2 ⇐⇒ p = O(
√

r)

(5.5)

Thus, if p = O(
√

r), then T2 = EO(∆n/p) and the overall time complexity

of Algorithm 5.2 is T = T1 + T2 = EO(∆n/p).

Case 2 ((n/p) � (δp))

Using similar derivations as in Case 1, if p = Ω(
√

r), then T2 = EO(∆δp)

and the overall time complexity of Algorithm 5.2 is T = T1+T2 = EO(∆δp).

Furthermore, Phase 2 resolves all the conflicts that are inherited from

Phase 1 and therefore the coloring at the end of Phase 2 is legal. Both Phase



CHAPTER 5. NEW PARALLEL GRAPH COLORING HEURISTICS 49

1 and 2 require concurrent read capability and thus the required PRAM is

CREW. This completes our proof.

2

5.4 Improved, Block Partition Based Coloring

In this section we improve on the performance of the block partitioning based

coloring of Algorithm 5.2. In doing so we achieve two results: reduction in

the number of conflicts that arise due to crossing edges and reduction in

the number of colors used. The improvement method is based on the idea

behind Culberson’s Iterated First Fit (Section 4.2.2). From Lemma 4.1, we

recall that if First Fit coloring is reapplied on a graph where the vertex

set is ordered in such a way that vertices belonging to one color class in a

previous coloring are listed consecutively, the new coloring is better or at

least as good as the previous coloring. There are many ways in which the

vertices of a graph can be arranged satisfying the condition of Lemma 4.1.

One such ordering is a reverse color class ordering [6]. In this ordering, the

vertices in the highest color class are listed first, followed by the vertices of

the next highest color class, and so on, and the vertices of color class 1 are

listed finally. This ordering has a good potential for an improved coloring

since the new coloring proceeds by first coloring vertices that have been

difficult to color in the previous coloring. By difficult to color we mean that

it was not possible to color the vertex with a low color value.

5.4.1 The Algorithm

Once again our improved coloring works in two phases. The first phase is

the same as Phase 1 of Algorithm 5.2. The vertex set is divided into p

successive blocks and the blocks are colored in parallel. As we have seen in

the previous section, this coloring may contain some conflicts and hence is

a pseudo coloring. Let the coloring number used by this phase be ColNum.

During the second phase, the pseudo coloring of the first phase is used to

get a reverse color class ordering of the vertices. The second phase consists
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Algorithm 5.3

ImprovedBlockPartitionBasedColoring(G, p)
begin
1. Partition V into p equal blocks b1 . . . bp, where |bi| = |V |/p = n/p

for i = 1 to p do in parallel
for j = 1 to n/p do

assign the smallest legal color to vertex vj ∈ bi

end-for
end-for
{ coloring number = ColNum }
{ At this point we have pseudo independent sets ColorClass(1) . . . ColorClass(ColNum) }

2. for k = ColNum down to 1 do
Partition ColorClass(k) into p equal blocks b′1 . . . b′p
for i = 1 to p do in parallel

for j = 1 to |ColorClass(k)|/p do
assign the smallest legal color to vertex vj ∈ b′i

end-for
end-for

end-for
Conflict removing step (as Phase 2 of Algorithm 5.2)

end

Figure 5.3: Improved, Block Partition Based Coloring Algorithm

of ColNum steps. In each step i, the vertices of color class ColNum− i− 1

are colored afresh in parallel. The parallel coloring is done using the same

method of block partitioning as in Phase 1. The algorithm using these two

phases is described in Figure 5.3.

Each color class at the end of Phase 1 is a pseudo independent set.

Hence block partitioning of the vertices of each color class results in only

a few crossing edges. In other words, the number of conflicts expected at

the end of Phase 2 (K2) is much smaller than the number of conflicts at the

end of Phase 1 (K1). Thus, in addition to improving the quality of coloring,

Phase 2 is expected to provide a significant reduction in the number of

conflicts. Note that a conflict removing step is included at the end of Phase

2 in Algorithm 5.3 to ensure that any remaining conflicts are removed.
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5.4.2 Results

The following result shows that Phase 2 reduces the number of conflicts from

Phase 1 by a factor of (∆δp/m). To get a feeling of this reduction factor,

consider an example where m = 2, 000, 000, ∆ = 100, δ = 40 and p = 20.

The reduction factor is 100 ∗ 40 ∗ 20/2, 000, 000 = 0.04.

Lemma 5.4.1 The expected number of conflicts at the end of Phase 2 of Al-

gorithm 5.3 is EO(K1∆δp/m), where K1 is the number of conflicts inherited

from Phase 1.

Proof : Consider a color class c from the coloring obtained at the end

of Phase 1 of Algorithm 5.3. Let the graph induced by the vertices of this

color class be G′ = (V ′, E′) with n′ = |V ′|,m′ = |E′|. Let e = (u, v) be

an edge from E ′. At the end of Phase 2, for u and v to be in conflict the

following two conditions should be met.

1. u and v were invalidly colored in Phase 1, and

2. u and v are colored concurrently in the block partitioning of color class

c.

Let Pr[condj ] be the probability that condition j is true. From Lemma

5.3.2, the expected number of conflicts at the end of Phase 1 is O(δp). The

total number of edges in the original graph is m. Therefore,

Pr[cond1] = O(δp/m) (5.6)

Similar arguments as in Lemma 5.3.2 can be applied to get the following.

Pr[cond2] =

n′/p∑

j=1

p2/n′2 = p/n′ (5.7)

Observe that the graph G′ is induced by a psuedo independent set. This

means that the average degree in G′, δ
′

= m′/n′ is much smaller than

δ = m/n. Thus, the expected number of conflicts in color class c at the end

of Phase 2 is given by

E[K ′] = O(
∑

(u,v)∈E′

(δp/m)(p/n′) (5.8)
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= O(
m′p2δ

mn′
) (5.9)

= O((δp)(δp/m)) (5.10)

= O(K1(δp/m)) (5.11)

= O(K2
1/m) (5.12)

Equation 5.11 expresses the expected number of conflicts in one color

class. There are at most ∆+1 color classes at the end of Phase 1. Therefore

the total number of conflicts at the end of Phase 2 is expected to be

E[K2] = O(
K1∆δp

m
) = O(K2

1∆/m) (5.13)

This completes our proof.

2

5.5 Hybrid

We have seen two basic methods of decomposing the the graph coloring

problem. These are the graph partitioning approach of Section 5.2 and the

block partitioning approaches of Section 5.3 and Section 5.4. The graph

partitioning approach has the advantages that

• for easily partitionable graphs, it has a good potential for speedup

• it can be effectively combined with good sequential coloring heuristics

• it is free of any conflict resolving phase

Its disadvantages are that

• it requires solving the NP-complete graph partitioning problem

• dense graphs can not be partitioned effectively

The block partitioning approach has the advantages that

• it is simple
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Algorithm 5.4

HybridColoring(G, p)
begin

1. Partition G into p parts and determine Vi
L, V S and Gi, GS

for i = 1 to p do in parallel
Color Gi using some sequential coloring algorithm

end-for
2. BlockPartitionBasedColoring(GS ,p)

end

Figure 5.4: Hybrid Coloring Algorithm

• it is fast

• it can be used for both sparse and dense graphs

Its disadvantages are that

• it requires a conflict resolving phase.

• it has more communication overhead

The two approaches can be combined to provide a cumulative improved

result. One combination is achieved by using Algorithm 5.2 in Phase 2 of

Scheme 5.1. In words, start with graph partitioning and color the resulting

local graphs in parallel. Then use block partitioning to color the remaining

shared graph in parallel in consistency with the coloring of the local graphs.

This algorithm is given in Figure 5.4. If a better quality coloring is desired,

step 2 of Algorithm 5.4 can be replaced by Algorithm 5.3.



Chapter 6

Implementation

We have implemented the algorithms presented in Chapter 5 in Fortran 90

on an SGI CRAY Origin 2000 parallel computer using SMP model. We used

OpenMP to obtain fine-grained parallelization.

In this chapter we discuss implementation details such as the data struc-

ture used to store a graph and the procedure used to determine the smallest

legal color for a vertex. A brief description of the Origin 2000 and an intro-

duction to OpenMP is also provided.

6.1 Graph Representation and Storage

A graph G = (V,E) with |V | = n, |E| = m can be represented in two basic

ways. The first representation is called an adjacency matrix representation.

The adjacency matrix of G is an n × n matrix A such that aij = 1 ⇔
(vi, vj) ∈ E. The ith row of the matrix is thus an array of size n which has 1

in the jth position if there is an edge leading from vi to vj , and 0 otherwise.

If the number of edges m is much smaller than n2, the graph is said to

be sparse, otherwise it is called dense. Most of the entries in the adjacency

matrix of a sparse graph will be 0s.

Instead of having an explicit representation for all the 0s, one can link the

actual number of 1s in a linked list. This is the second way of representing a

graph and is called the adjacency list representation. In this representation,

each vertex is associated with a linked list consisting of all the edges adjacent

54
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to this vertex. The whole graph is represented by an array of lists. Each

entry in the array includes the label of the vertex, and a pointer to the

beginning of its list of edges.

It is customary to store an n×n dense matrix in an n×n array. However,

if the matrix is sparse, storage is wasted because a majority of the matrix

elements are zero and need not be stored explicitly. For sparse matrices, it

is common practice to store only the nonzero entries and to keep track of

their locations in the matrix. A variety of storage schemes are used to store

and manipulate sparse matrices [19]. These specialized schemes not only

save storage but also yield computational savings.

In our implementation, the adjacency structure of the graph is stored

using the compressed storage format (CSR). CSR is a widely used scheme

for storing sparse graphs. In this format, the adjacency structure of a graph

is represented using two arrays vertexArray and edgeArray. For example,

consider a graph with n vertices and m edges. In the CSR format, this graph

is stored using the arrays vertexArray[n+1] and edgeArray[2m]. Note that

the reason edgeArray is of size 2m is because for each edge between vertices

v and u we actually store (v, u) as well as (u, v). The adjacency structure

of the graph is stored as follows. Assuming that vertex numbering starts

from 0 then the adjacency list of vertex i is stored in array edgeArray

starting at index vertexArray[i] and ending at (but not including) index

vertexArray[i + 1]. That is, for each vertex i, its adjacency list is stored in

consecutive locations in the array edgeArray, and the array vertexArray is

used to point to where it begins and where it ends.

6.2 Determination of Smallest Legal Color

In our implementations, the data structure used to store the colors assigned

to the vertices of a graph is an integer array. That is, color[i] stores the

color assigned to vertex i.

In determining the smallest legal color for a vertex, we use a working

array called used, of size k for a k-colorable graph. Let us say we want to
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assign the smallest legal color to vertex v. For each neighbor u of v, used[u]

is set to be equal to v. Then the array used is scanned from left to right,

starting at index equal to 1 up to the number of colors used so far, until the

first entry with value different from v is obtained. If such a search finds an

index less than or equal to the number of colors used so far, this index is

taken to be the color of vertex v. If no such index is found, a new color is

created and assigned to vertex v.

6.3 Graph Partitioning Program

In Chapter 5 an algorithm that requires an effective solution for the graph

partitioning problem was presented. One of the successful algorithms pro-

posed for the graph partitioning problem is the multi level graph partitioning

scheme [18]. In our implementation, we used Metis version 3.0.3, a graph

partitioning program based on this scheme [17], to partition a graph into p

parts.

6.4 OpenMP

OpenMP supports two basic flavors of parallelism: coarse-grained and fine-

grained. In the former case, the program is broken into segments (threads)

that can be executed in parallel and barriers are used to re-synchronize

execution at the end. In the latter case, the iterations of DO loops are

executed in parallel.

An OpenMP Fortran Application Program Interface (API) is available

on our target computer, the Origin 2000.

A program written with the OpenMP Fortran API begins executing as

a single process, called the master thread of execution. The master thread

executes sequentially until the first parallel construct is encountered. At this

point, the master thread creates a team of threads, and the master thread

becomes the master of the team. This is called forking. The statements

in the program that are enclosed by the parallel construct are executed

in parallel by the threads in the team. Upon completion of the parallel
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construct, the threads in the team synchronize and only the master thread

continues execution. We call this joining.

Parallel region construct. In the OpenMP Fortran API, the PAR-

ALLEL and END PARALLEL directive pair is the fundamental parallel

construct defining a parallel region. This directive pair has the following

format:

!$OMP PARALLEL [clause[[,] clause] . . . ]

block

!$OMP END PARALLEL

As the format depicts, different clauses might be added to the PARAL-

LEL directive. The most important ones are PRIVATE and SHARED, in

which variables are defined to be either private to a thread or shared among

threads in a team. The block denotes a structured block of Fortran state-

ments. It is illegal to branch into or out of the block. The END PARALLEL

directive denotes the end of the parallel region. There is an implicit barrier

at this point.

Work-sharing constructs A work-sharing construct divides the exe-

cution of the enclosed code region among the members of the team that

encounter it. It must be enclosed within a parallel region in order for the

directive to execute in parallel. A work-sharing directive does not launch

new threads, and there is no implied barrier on entry to a work-sharing

construct.

The DO and END DO directive pair is the most natural example of a

work-sharing construct. The DO directive specifies that the iterations of

the immediately following DO loop should be executed in parallel. The loop

that follows a DO directive cannot be a DO WHILE or a DO loop without

loop control. The iterations of the DO loop are distributed across threads

that already exist. The format of this directive is as follows.
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!$OMP DO [clause[[,] clause] . . . ]

do-loop

!$OMP END DO [NOWAIT]

If NOWAIT is specified, threads do not synchronize at the end of the parallel

loop. Threads that finish early proceed straight to the instructions following

the loop without waiting for the other members of the team to finish the

DO directive.

Combined parallel work-sharing constructs The PARALLEL DO

directive provides a shortcut form for specifying a parallel region that con-

tains a single DO directive. The format of this directive is:

!$OMP PARALLEL DO [clause[[,] clause] . . . ]

do-loop

!$OMP END PARALLEL DO

6.5 Origin 2000

The Cray Origin 2000 parallel machine we used consists of 128 MIPS R10000

processors interconnected as a hypercube. The machine provides cache-

coherent, non-uniform memory access. Each processor has 4 MB primary

cache and 192 MB local memory. Processors can read data only from pri-

mary cache. If the required data is not present in the primary cache, a

cache miss is said to have occurred. Therefore, references to locations in the

remote memory of another processor take substantially longer to complete

than references to locations in local memory. Cache misses adversely affect

program performance.

6.6 Data Distribution

To obtain good performance in parallel programs it is important to schedule

computation and to distribute the data across the underlying processors and

memory modules, ensuring that most cache misses are satisfied from local
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rather than from remote memory. If the misses are to data that is referenced

primarily by a single processor, then data placement may be able to convert

remote references to local references, thereby reducing the latency of the

miss. Explicit data distribution is one method for data placement. The

distribution can either be regular or reshaped.

The Power Fortran compiler we used provides a mechanism for data dis-

tribution through the directive DISTRIBUTE. This directive is not part of

OpenMP, but an extension provided by SGI. The !$SGI DISTRIBUTE di-

rective determines the data distribution for an array. It has the following

format.

!$SGI DISTRIBUTE array (dist1, dist2)

The name of the array is specified by array. The parameters dist1 and

dist2 specify the type of distribution for each dimension of the named array.

The number of dist arguments specified must be equal to the number of

array dimensions. A dist parameter can be one of the following:

a. BLOCK

b. CYCLIC

c. An asterisk (*), indicating that the dimension is not distributed.

Figure 6.1 demonstrates the difference between block and cyclic distri-

bution. A block ditribution is one that partitions the elements of the di-

mension of size N into p blocks (one per processor), with each block of size

B = dN/pe. A cyclic[K] distribution partitions the elements of the dimen-

sion into pieces of size K each and distributes them sequentially across the

processors.

The following is an example of the use of data distribution. Let A(x,y)

be a two dimensional integer array. Let us say that we want to increment

the contents of A by 1. The parallelized Fortran code for this is given in

Figure 6.2.

The parallel loop in Figure 6.2 benefits greatly from the distribution
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B B B B

P1 P2 P3 Pp

K K K K

P1 P2 Pp P1

Block Distribution

Cyclic Distribution

...

... ...

Figure 6.1: Data distribution

!$SGI DISTRIBUTE A(*,BLOCK)
!$OMP PARALLEL DO PRIVATE(i,j) SHARED(A)

do j = 1, y
do i = 1, x

A(i,j) = A(i,j) + 1
end do

end do
!$OMP END PARALLEL DO

Figure 6.2: An example of the use of data distribution
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!$SGI DISTRIBUTE A(*,BLOCK)

This is because the distribution places the data required by each processor

on the memory of that processor. If data distribution is not used, each pro-

cessor has to fetch its data from a remote memory which results in reduced

performance.

We used data distribution in all our implementations of the coloring

algorithms.



Chapter 7

Experimental Results and
Discussion

In this last chapter, we experimentally demonstrate the performance of the

algorithms developed in this work. The experiments are conducted on the

machine Cray Origin 2000 using SMP model. We have implemented all

the algorithms discussed in Chapter 5 and the sequential versions of First

Fit and IDO coloring. The last two are used as benchmarks for comparing

the coloring numbers of our parallel coloring heuristics. The algorithms

are implemented using the programming language Fortran 90 and OpenMP

Fortran API is used as a means for achieving SMP.

In Section 7.1 we introduce the test graphs used in this experiment. The

experimental results are presented in tabular forms towards the end of this

thesis. In Section 7.2 a description of each table, followed by a detailed

discussion is provided. In Section 7.3 we give a concise summary of the

algorithms developed in this work and in Section 7.4 we point out possible

avenues for further research.

Problem n m ∆ δ δ χFF χIDO

mrng1 257,000 505,048 4 2 3 5 5
mrng2 1,017,253 2,015,714 4 2 3 5 5
mrng3 4,039,160 8,016,848 4 2 3 5 5

Table 7.1: Problem Set I

62
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Problem n m ∆ δ δ χFF χIDO

598a 110,971 741,934 26 5 13 11 9
144 144,649 1,074,393 26 4 14 12 10

m14b 214,765 1,679,018 40 4 15 13 10
auto 448,695 3,314,611 37 4 14 13 11

Table 7.2: Problem Set II

Problem n m ∆ δ δ χFF χIDO

dense1 19,703 3,048,477 504 116 309 122 122
dense2 218,849 121,118,458 1,640 332 1,106 377 376

Table 7.3: Problem Set III

7.1 Test Graphs

The test graphs used in our experiments arise from practical applications.

They are divided into three categories as Problem Set I, II, and III. Problem

Sets I and II consist of graphs (matrices) that arise from finite element meth-

ods (ftp://ftp.cs.umn.edu/users/kumar/Graphs/). Problem Set III consists

of matrices that arise in eigenvalue computations [22].

Tables 7.1, 7.2, and 7.3 provide some statistics about the test graphs

and the number of colors required to color them using sequential First Fit

and IDO coloring (discussed in Section 4.2.1). The columns labeled n and

m list the number of vertices and edges of the graphs, and ∆, δ, and δ give

the maximum, minimum, and average degrees of the graphs respectively.

The last two columns χFF and χIDO provide the coloring numbers required

using sequential First Fit and IDO.

7.2 Results and Discussion

In this section we present and discuss the results obtained from experiments

conducted on the test graphs in Problem Sets I, II, and III using the two basic

decomposition methods, namely, graph partitioning and block partitioning.
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7.2.1 Graph Partitioning

Table 7.4 lists results of the graph partitioning based coloring method

(Scheme 5.1). The column labeled p shows the number of processors used.

The columns labeled ns and ms list the percentages of the shared vertices

and edges respectively. χlocal is the maximum coloring number used by the

local graphs. χtot gives the total coloring number, i.e, the coloring number

after the shared vertices are colored. This column is divided into two. The

first part (seq.) is the total coloring number when the shared vertices are

colored sequentially and the second part (par.) is the total coloring number

when the shared vertices are colored in parallel using Algorithm 5.2. The rest

of the columns provide the time in milliseconds used for coloring the local

and shared portions of the graph. The running time required for reading a

graph from a file, for partitioning the graph, and for placing the local colors

onto a global data structure, are excluded. We list only actual time spent

on coloring.

From Table 7.4, we observe that the percentage of shared vertices (edges)

increases as p increases. In general, the size of the shared vertices(edges)

remains very small (under 10%) for p up to 16. This is true for all graphs

from Problem Sets I and II. These graphs are sparse and easily partitionable.

For the graphs in Problem Set I and II, we see that coloring the shared

graphs in parallel does not help much. Sequentially coloring the shared

graphs requires less time than does parallel coloring (compare columns seq.

and par. under Tshared). However, if one insists on using parallel coloring

for the shared graphs, the results show that speedup can be achieved taking

the parallel run time using 1 processor as a reference.

From this table we also observe that the coloring number for the entire

graph is mainly determined by the coloring number of the local graphs. In

only few instances do we observe that the coloring of the shared graphs

require new colors to be created (compare values under χlocal and χtot).

Scheme 5.1 could not be applied for the graphs from Problem Set III.

We found out that graph partitioning on dense1 and dense2 yielded a par-
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titioning in which ALL the vertices(edges) turned out to be shared. These

graphs are examples of graphs which do not yield effective partitioning.

Table 7.5 lists speedup values calculated from the results of Table 7.4.

The column Slocal shows the speedup obtained considering the coloring of the

local graphs only. The column Sshared is the speedup obtained considering

the coloring of the shared vertices only. The shared vertices are colored in

parallel using Algorithm 5.2. The last column is divided in to two. The

first part (Sseq) is the overall speedup obtained when the shared vertices are

colored sequentially. The second part (Spar) is the overall speedup obtained

when the shared vertices are colored in parallel using Algorithm 5.2.

Generally, results under column Slocal indicate quite scalable perfor-

mance as far as coloring the local graphs is considered. At times we observe

superlinear speedup values. This is because as p increases the percentage

of the shared graph increases which means a decrease in the size of the lo-

cal graph on each processor. Thus as p increases the processors have less

work to do. Remember we are talking about the coloring of the local graphs

only. The column Sshared shows the speedup values obtained by coloring

the shared vertices in parallel using the simple block partitioning method

of Algorithm 5.2. The scalability of Algorithm 5.2, for a general graph, not

only for the vertices in the shared graph, will be discussed in the following

subsection. In Table 7.5, Sshared indicates the performance of Algorithm

5.2, when the input is the set of shared vertices V S . Generally, from column

Spar in Table 7.5, we observe some speedup.

7.2.2 Block Partitioning

Simple

Table 7.6 lists results obtained using the simple block partitioning based

coloring algorithm (Algorithm 5.2). The columns χ1 and χ2 are the coloring

numbers used in Phases 1 and 2 of Algorithm 5.2 respectively. In other

words, χ1 is the coloring number at the end of the psuedo coloring phase

and χ2 is the coloring number after conflicts from the psuedo coloring are
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resolved. The number of conflicts that arise in Phase 1 are listed under the

column labeled K. The column labeled δp gives the theoretically expected

upper bound for the number of conflicts as given by Equation 5.4. The time

in milliseconds required for psuedo coloring and conflict checking are listed

under T1 and Tcheck. The column Tseq lists the time used for sequentially

recoloring the vertices in conflict. The last column, Ttot, is the total time

required.

Table 7.6 shows that the block partitioning approach could be applied

on all test graphs from Problem Sets I, II, and III. This shows one of the

advantages of block partitioning compared to graph partitioning. It can be

applied to both sparse and dense graphs.

From Table 7.6, we observe that the coloring numbers required in Phases

1 and 2 of Algorithm 5.2 are generally the same. This means that the conflict

resolving phase did not need to create new colors. It only had to recolor the

vertices in conflict using already used colors.

The results under the column labeled K of Table 7.6 show that generally,

the actual number of conflicts that arise in Phase 1 is very small and grows

as a function of the number of blocks (or processors) p. These experimen-

tal results agree well with the theoretically expected result of Equation 5.4.

Equation 5.4 states that K is expected to be bounded from above by (δp).

From results under columns K and (δp) in Table 7.6, we see that the upper-

bound on K is quite loose. In other words, the actual number of conflicts is

much smaller than the worst case upper limit expected.

The parallel times listed under the columns labeled T1, Tcheck, and Ttot

demonstrate that Algorithm 5.2 performs as it is expected in accordance

with the results of Lemma 5.3.1 and 5.3.3. The claim in these Lemmas was

that Algorithm 5.2 yields an almost linear speedup for p = O(
√

r), where

r = n2/m. The experimental results demonstrate that the claim is valid for

the test graphs used. Particularly, the time required for recoloring illegaly

colored vertices is observed to be practically zero for all our test graphs. We

have listed all run-times values in millisecond to magnify differences. Even
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doing this, for many cases, the time required for conflict removing was only

a small fraction of a millisecond that we had to round it to zero. This is not

surprising as the value of K obtained is negligibly small compared to the

number of vertices in a given graph.

The column labeled Ssimple in Table 7.8 lists speedup values calculated

using data in Table 7.6. It shows the scalability of the simple block par-

titioning method used in Algorithm 5.2. Generally, we observe that the

speedup obtained is satisfactory.

We have explored a way by which the performance of simple block par-

titioning based coloring could possibly be improved. One idea was to utilize

the structure of the input graph somehow so that the number of crossing

edges is minimized. One thought along this line was to perform a breadth-

first traversal on the input graph as a preprocessing phase. The prepro-

cessing phase consists of a breadth-first traversal of the graph and ordering

the vertices according to the order determined by the traversal. Algorithm

5.2 is then applied using the reordered vertex set. The hope is that such

an ordering would cluster neighboring vertices close to each other so that a

block partitioning results in reduced number of crossing edges. We tested

this idea and found no improvement at all. In fact, for some graphs includ-

ing the preprocessing phase resulted in worse performance than excluding

the phase.

Improved

Table 7.7 lists results of the improved, block partition based coloring algo-

rithm (Algorithm 5.3). The coloring numbers at the end of the first phase

coloring are listed under χ1 and the improved coloring after the second phase

coloring are listed under χ2. The second phase coloring is not guaranteed

to be conflict-free. The column χ3 lists the coloring number after any re-

maining conflicts in the second phase are resolved. The number of conflicts

at the end of first and second phase colorings are listed under K1 and K2

respectively. The time elapsed (in milliseconds) at the various stages are
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given in columns T1,T2, Tcheck, Tseq, and Ttot. In both Tables 7.6 and 7.7,

time used for reading a graph from a file is not included.

In Section 5.4, we showed that Algorithm 5.3 is expected to reduce the

number of conflicts and improve the coloring obtained by Algorithm 5.2.

Experimental results in Table 7.7 indicate that Algorithm 5.3 does achieve

these two goals.

Results under the column labeled χ2 show that in Algorithm 5.3, recol-

oring in the second phase reduces the coloring number. This is especially

true for test graphs from Problem Sets II and III, which contain relatively

denser graphs than Problem Set I. It is interesting to compare the results

under column χ2 with the the results under column χIDO in Tables 7.1, 7.2,

and 7.3. We see that in general the quality of the coloring obtained using

Algorithm 5.3 is comparable with that of IDO coloring, which is one of the

most effective coloring heuristics.

The results under the column labeled K2 in Table 7.7 show that the

number of conflicts that remain after the second phase coloring in Algorithm

5.3 is zero for almost all the test graphs and all values of p. The only

occasions where we obtained a value other than zero for K2 were using

p = 12 and p = 16 for graphs dense1 and dense2. The experimental results

agree very well with the result in Equation 5.13.

The column labeled Simproved in Table 7.8 is calculated using the data

from Table 7.7. It shows the scalability of the improved, block partitioning

method used in Algorithm 5.3. From this table, we see that Algorithm 5.3

yields some speedup and observe that the speedup obtained is generally

lower than that of the simple version of Algorithm 5.2.

One common thing we have observed about the block partition based

parallel coloring heuristics was that running the programs at different times

yields different results. In other words, the algorithms behave in a nonde-

terministic manner. We think that the randomness in performance is due

to the fact that the processors involved in running our algorithms have dif-

ferent loads at different times. The load difference is due to the fact that
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the machine has many users at a time. We have tried to run the coloring

algorithms at similar times so that the results obtained are not influenced

by this fact. However, due to absence of exclusive access to the machine, we

could not run the algorithms within an ideal setup.

For the sake of comparison, we have included figures that show speedup

curves of the various algorithms on the same diagram for 3 representative

test graphs (one from each problem set). These are given in Figures 7.1 to

7.3. The key to the curves in these figures is summarized in the table below.

Curve Refers to

broken line Slocal in Table 7.5
dotted line Sshared in Table 7.5
with circle column seq. under Stot in Table 7.5

with plus sign column par. under Stot in table 7.5
with square Ssimple in Table 7.8
with asterics Simproved in Table 7.8

7.3 Summary

In this work, we showed two different methods by which a graph coloring

problem can be decomposed into several subproblems so that the subprob-

lems can be solved concurrently using a multiprocessor parallel computer.

The first method is based on graph partitioning and is effective for very

sparse, easily partitionable graphs. The partitioning takes the structure

of the whole graph into consideration. The subproblems defined by the

partitions of the graph are independent and hence solvable concurrently.

The second method is based on block partitioning of the set of vertices

in the graph without paying attention to the structure of the graph. This

method is simple and fast. Our probabilistic analyses show that the time

required to resolve inconsistencies that arise from coloring the vertices in

the partitions of the vertex set concurrently is very small compared to the

time required to color the vertices in the partitions and check for eventual

inconsistencies. The method is more general than the first method as it
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applies to both sparse and dense graphs.

We also showed a method for improving the performance of the block

partitioning approach. The method consists of a two-phase coloring. The

second phase coloring achieves a double goal. It results in a reduction in

the number of inconsistencies that arise in parallel coloring of the vertices

in the various parts and a reduction in the coloring number. The quality of

coloring obtained at the end of the second phase is comparable to that of

an IDO coloring, one of the most effective coloring methods.

We showed that the two basic methods of partitioning the graph coloring

problem can be combined to extract the advantages from each.

The results from experiments made on test graphs that arise in practical

applications demonstrate that our heuristics perform as they are predicted.

Shared memory programming does not generally give programs that

scale as well as programs using explicit message passing. In light of this, the

speedup we have obtained in our experiments is quite good.

7.4 Further Research

Finally, we point out the following 3 possible avenues for improvement and

further research.

The upper bound given by Equation 5.4 on Page 48 for the number of

conflicts in Phase 1 of Algorithm 5.2 can be improved. This bound was

namely loose. The expression (δp) in Equation 5.4 denotes the expected

number of edges the end points of which are colored concurrently. All these

edges do not necessarily become “conflicting edges”. The end points of an

edge can be colored simultaneously and obtain different values and thus

be conflict-free. We believe that a probabilistic analysis which takes into

consideration the distribution of the vertices into different color classes could

be used to get a better (tighter) bound for the expected number of conflicts.

Scheme 5.1 allows various combinations of heuristics. Moreover, the

scheme suits well for combining message passing programming with shared

memory programming. The following is an interesting way of combining
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the two programming models. In Phase 1 of Scheme 5.1, the local graphs

defined by the partition could be assigned to p processors using explicit

message passing. Then each local graph can be seen as an independent

problem and the local graph by itself can be colored in parallel using shared

memory programming in one of the methods introduced in this work. In

Phase 2 it could be interesting to use a distributed memory based LDF

(discussed in Section 4.3.3) coloring.

We believe that the block partitioning method as a parallelization tech-

nique can be applied in solving other graph theoretic problems as well. The

basic idea in this method can be summarized in the following stages.

1. Block partition the input vertex set in to p parts

2. Solve subproblems defined by the p parts concurrently, ignoring pos-

sible inconsistencies

3. Resolve conflicts sequentially

As an example we point out that this basic method can be applied for

finding a maximal independent set (MIS) in a graph in parallel. A greedy

MIS finding heuristic that suits to this method of parallelization is Algorithm

4.4, presented on Page 31.
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Problem p ns(%) ms(%) χlocal χtot Tlocal Tshared Ttot

seq. par. seq. par. seq. par.

mrng1 2 1.31 1.86 5 5 5 42 8 59 50 101
mrng1 4 3.2 4.57 5 5 5 21 19 35 40 56
mrng1 6 3.85 5.51 5 5 5 14 12 23 26 37
mrng1 8 5 7.14 5 5 5 12 27 20 39 32
mrng1 10 5.16 7.4 5 5 5 8 24 18 32 26
mrng1 12 6.5 9.25 5 5 5 8 29 18 37 26

mrng2 2 0.94 1.35 5 5 5 234 25 870 259 1104
mrng2 4 1.92 2.74 5 5 5 93 73 340 166 433
mrng2 6 2.55 3.64 5 5 5 73 77 320 150 393
mrng2 8 3.07 4.38 5 5 5 45 115 200 160 245
mrng2 12 4.46 6.35 5 5 5 30 144 170 174 200
mrng2 16 5.18 7.36 5 5 5 26 170 150 196 176

mrng3 2 0.53 0.77 5 5 5 1040 50 1700 1090 2740
mrng3 4 1.24 1.8 5 5 5 520 130 1100 650 1620
mrng3 8 1.91 2.76 5 5 5 200 230 540 430 740
mrng3 12 2.8 4 5 5 5 140 300 380 440 520
mrng3 16 3.25 4.65 5 5 5 140 420 280 560 420

598a 2 1.2 1.65 11 11 12 36 6 56 42 92
598a 4 4.2 5.74 11 11 11 22 17 49 39 71
598a 8 8.8 12 11 11 12 18 32 26 50 44
598a 12 11 15 12 12 12 7 32 20 39 27
598a 16 14 19 11 11 12 6 20 30 26 36

144 2 2.4 3.18 12 12 12 46 15 89 61 135
144 4 6 8 12 12 12 20 28 74 48 94
144 8 9.8 12.7 12 12 12 17 52 45 69 62
144 12 12.8 16.5 12 12 12 8 61 31 69 39
144 16 14.3 18.36 12 12 12 50 70 20 120 70

m14b 2 0.92 1.2 13 13 13 66 8 107 74 167
m14b 4 3.16 4.11 13 13 13 40 27 100 67 140
m14b 8 6.17 8 13 13 13 17 58 47 75 64
m14b 12 9.3 12 13 14 14 29 68 40 97 69
m14b 16 11 14.2 13 14 14 156 62 49 218 64

auto 2 1.2 1.58 13 13 13 140 16 240 156 380
auto 4 3.45 4.47 12 13 13 78 63 150 141 228
auto 8 6 7.8 12 13 12 38 107 95 145 133
auto 12 8 10.3 12 12 13 40 143 80 183 120
auto 16 10 13 13 13 13 566 189 114 755 404

Table 7.4: Results of graph partition based coloring



CHAPTER 7. EXPERIMENTAL RESULTS AND DISCUSSION 73

Problem p Slocal Sshared Stot

seq. par.

mrng1 2 2 2 2 2
mrng1 4 4 3.4 2.5 3.6
mrng1 6 6 5 4 5.5
mrng1 8 7 6 2.5 6.3
mrng1 12 10.5 6.7 2.7 8

mrng2 2 2 2 2 2
mrng2 4 5 5 3 5
mrng2 6 6.4 5.4 3.5 5.6
mrng2 8 10.4 8.7 3.3 9
mrng2 12 15.6 10 3 11
mrng2 16 18 5.8 2.6 12.5

mrng3 2 2 2 2 2
mrng3 4 4 3.1 3.4 3.4
mrng3 8 10.4 6.3 5.1 7.4
mrng3 12 15 9 5 10.5
mrng3 16 15 12 4 13

598a 2 2 2 2 2
598a 4 3.3 2.3 2.2 2.6
598a 8 4 4.3 1.6 2.1
598a 12 10 5.6 2.2 7
598a 16 12 3.7 3.2 5

144 2 2 2 2 2
144 4 4.6 2.4 2.5 3
144 8 5.4 4 1.8 4.4
144 12 11.5 5.8 1.8 7
144 16 1.8 9 1 4

m14b 2 2 2 2 2
m14b 4 3.3 2.2 2.2 2.4
m14b 8 7.8 4.6 2 5.3
m14b 12 4.6 5.4 1.6 4.8
m14b 16 0.85 4.4 0.7 5.2

auto 2 2 2 2 2
auto 4 3.6 3.2 2.2 3.3
auto 8 7.4 5.1 2.2 5.7
auto 12 7 6 1.7 6.3
auto 16 0.5 4.2 0.4 2

Table 7.5: Speedup using graph partition based coloring
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Problem p χ1 χ2 K δp T1 Tcheck Tseq Ttot

mrng1 1 5 5 0 3 150 95 0 245
mrng1 2 5 5 4 6 80 30 0 110
mrng1 4 5 5 6 12 50 16 0 66
mrng1 8 5 5 14 24 30 9 0 39
mrng1 12 5 5 22 36 30 20 0 50

mrng2 1 5 5 0 3 1190 1010 0 2200
mrng2 2 5 5 0 6 1130 970 0 2100
mrng2 4 5 5 0 12 430 280 0 710
mrng2 8 5 5 8 24 260 200 0 460
mrng2 12 5 5 18 36 200 130 0 330

mrng3 1 5 5 0 3 4400 3400 0 7800
mrng3 2 5 5 2 6 2250 1600 0 3850
mrng3 4 5 5 4 12 1300 1000 0 2300
mrng3 8 5 5 0 24 630 800 0 1430
mrng3 12 5 5 12 36 430 480 0 910

598a 1 11 11 0 13 100 80 0 180
598a 2 12 12 4 26 55 40 0 95
598a 4 12 12 12 52 40 20 0 60
598a 8 12 12 36 104 28 15 0 43
598a 12 12 12 42 156 20 15 0 35

144 1 12 12 0 14 160 120 0 280
144 2 12 12 2 28 84 56 0 140
144 4 12 12 8 56 50 36 0 86
144 8 13 13 30 112 31 24 0 55
144 12 12 12 26 168 12 30 0 42

m14b 1 13 13 0 15 200 180 0 380
m14b 2 13 13 2 30 130 120 0 250
m14b 4 14 14 14 60 80 50 0 130
m14b 8 13 13 16 120 48 26 0 74
m14b 12 13 13 36 180 40 20 0 60

auto 1 13 13 0 14 470 440 0 910
auto 2 13 13 0 28 240 270 0 510
auto 4 12 12 2 56 240 210 0 450
auto 8 13 13 30 112 110 80 0 190
auto 12 13 13 34 168 270 170 0 440

dense1 1 122 122 0 309 200 290 0 490
dense1 2 142 142 30 618 110 140 0 250
dense1 4 137 137 94 1236 69 72 0 141
dense1 8 129 129 94 2472 53 44 1 97
dense1 12 121 124 78 3708 55 90 1 145

dense2 1 377 377 0 1106 9200 13200 0 22400
dense2 2 382 382 68 2212 5160 8040 3 13203
dense2 4 400 400 98 4424 2600 4080 4 6684
dense2 8 407 407 254 8848 1590 2280 11 3881
dense2 12 399 399 210 13,272 1090 1420 8 2518

Table 7.6: Results of simple block partition based coloring
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Problem p χ1 χ2 χ3 K1 K2 T1 T2 Tcheck Tseq Ttot

mrng1 1 5 5 5 0 0 130 240 66 0 436
mrng1 2 5 5 5 4 0 90 150 40 0 280
mrng1 4 5 5 5 12 0 70 110 40 0 220
mrng1 8 5 5 5 10 0 40 60 10 0 110
mrng1 12 5 5 5 10 0 50 80 10 0 140

mrng2 1 5 5 5 0 0 1050 1700 820 0 3570
mrng2 2 5 5 5 0 0 950 1350 650 0 2650
mrng2 4 5 5 5 2 0 470 840 310 0 1620
mrng2 8 5 5 5 16 0 300 500 200 0 1000
mrng2 12 5 5 5 12 0 250 400 170 0 820

mrng3 1 5 5 5 0 0 3700 9500 2600 0 15800
mrng3 2 5 5 5 0 0 1890 4100 1200 0 7190
mrng3 4 5 5 5 0 0 1100 2700 750 0 4550
mrng3 8 5 5 5 4 0 540 1800 450 0 2790
mrng3 12 5 5 5 24 0 450 1900 300 0 2650

598a 1 11 10 10 0 0 100 200 75 0 375
598a 2 12 10 10 14 0 65 105 37 0 207
598a 4 11 10 10 22 0 35 90 20 0 145
598a 8 12 11 11 40 0 30 99 25 0 154
598a 12 12 11 11 50 0 30 110 15 0 155

144 1 12 11 11 0 0 145 415 145 0 705
144 2 12 11 11 0 0 85 202 63 0 350
144 4 13 11 11 14 0 50 150 32 0 232
144 8 13 11 11 18 0 35 90 20 0 145
144 12 12 11 11 28 0 86 350 94 0 530

m14b 1 13 11 11 0 0 200 520 190 0 910
m14b 2 13 12 12 2 0 105 240 80 0 425
m14b 4 14 12 12 6 0 70 160 40 0 270
m14b 8 13 12 12 12 0 45 120 25 0 190
m14b 12 13 11 11 22 0 53 150 20 0 223

auto 1 13 11 11 0 0 550 1700 540 0 2790
auto 2 13 12 12 0 0 270 400 160 0 830
auto 4 13 11 11 8 0 140 400 110 0 650
auto 8 13 11 11 32 0 80 480 80 0 640
auto 12 14 12 12 22 0 130 900 50 0 1080

dense1 1 122 122 122 0 0 180 250 180 0 610
dense1 2 135 122 122 26 0 100 180 140 0 420
dense1 4 132 122 122 40 0 80 100 70 0 250
dense1 8 126 122 122 104 0 70 80 30 0 180
dense1 12 123 121 122 150 2 40 760 30 0 830
dense1 16 129 122 122 130 2 90 1042 30 0 1162

dense2 1 377 376 376 0 0 9920 13700 7500 0 31120
dense2 2 376 376 376 66 0 5200 6220 4200 0 15620
dense2 4 394 376 376 112 0 2700 3600 2100 0 8400
dense2 8 398 376 376 164 0 2000 2000 1800 0 5800
dense2 12 399 376 376 232 2 1100 1700 900 0 3700

Table 7.7: Results of improved, block partition based coloring
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Problem p Ssimple Simproved

mrng1 1 1 1
mrng1 2 2.3 1.6
mrng1 4 3.7 2
mrng1 8 6.3 4
mrng1 12 5 3

mrng2 1 1 1
mrng2 2 1.1 1.35
mrng2 4 3.1 2.2
mrng2 8 4.8 3.6
mrng2 12 6.7 4.4

mrng3 1 1 1
mrng3 2 2 2.2
mrng3 4 3.4 3.5
mrng3 8 5.5 5.6
mrng3 12 8.6 6

598a 1 1
598a 2 2 1.8
598a 4 3 2.6
598a 8 4.2 2.4
598a 12 5.2 2.4

144 1 1 1
144 2 2 2
144 4 3.3 3
144 8 5.1 5
144 12 6.7 1.3

m14b 1 1 1
m14b 2 1.5 2.1
m14b 4 3 3.4
m14b 8 5 4.8
m14b 12 6.4 4

auto 1 1 1
auto 2 1.8 3.4
auto 4 2 4.3
auto 8 4.8 4.4
auto 12 2 2.6

dense1 1 1 1
dense1 2 2 1.5
dense1 4 3.5 2.5
dense1 8 5 6 3.4
dense1 12 3.4 0.7

dense2 1 1 1
dense2 2 1.7 2
dense2 4 3.4 3.7
dense2 8 5.8 5.4
dense2 12 9 8.4

Table 7.8: Speedup using block partition based coloring
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Figure 7.1: Speedup comparison I
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Figure 7.2: Speedup comparison II
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[11] Magnús Már Halldórsson. Frugal Methods For The Independent Set

and Graph Coloring problems. PhD thesis, The State University of

New Jersey, New Brunswick, New Jersey, October 1991.
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