
Combinatorial algorithms enabling computational

science: tales from the front

Sanjukta Bhowmick1,4, Erik G. Boman2, Karen Devine2, Assefaw
Gebremedhin3, Bruce Hendrickson2, Paul Hovland1, Todd Munson1

and Alex Pothen3

1 Mathematics and Computer Science Division, Argonne National Laboratory
2 Discrete Algorithms and Math Department, Sandia National Laboratories
3 Computer Science Department, Old Dominion University
4 Department of Applied Physics and Applied Mathematics, Columbia University

E-mail: bah@sandia.gov

Abstract. Combinatorial algorithms have long played a crucial enabling role in scientific and
engineering computations. The importance of discrete algorithms continues to grow with the
demands of new applications and advanced architectures. This paper surveys some recent
developments in this rapidly changing and highly interdisciplinary field.

1. Introduction
Combinatorial scientific computing (CSC) refers to the development, analysis and application
of discrete algorithms in support of scientific and engineering computations. Although the CSC
name is of recent vintage, combinatorial algorithms have long been an important, albeit often
underappreciated part of scientific computing. For example, graph algorithms have been a key
aspect of sparse linear algebra since the 1960s [1]. Graph coloring algorithms for Jacobian and
Hessian evaluations in optimization were first proposed in the 1970s [2, 3].

Recent years have witnessed a blossoming of activity in CSC in a wide variety of areas within
scientific computing. Geometric algorithms play a critical role in unstructured mesh generation.
Graph, hypergraph and geometric partitioning algorithms are essential to the utilization of
parallel computers. Graph algorithms play an important role in computational chemistry and
biology. Genomic and proteomic analysis is rich in string algorithms. Graphs have long been a
key tool for statistical physics. The list goes on and on.

This paper will briefly introduce several recent results in CSC. The goal is not to provide
a detailed overview of the breadth of the field, or even to describe the included vignettes in
full detail. A more comprehensive introduction to CSC can be found in [4], and the examples
discussed below all contain citations to more detailed discussions. Rather, the goal of this paper
is to provide a quick introduction to some aspects of CSC, to showcase its deeply interdisciplinary
nature, and to highlight the broad enabling role that CSC plays in scientific computing.

2. Partitioning for parallel sparse matrix-vector multiplication
An important problem in parallel scientific computing is how to distribute work (load) among
processors. We wish to minimize the communication cost while maintaining approximate load

Institute of Physics Publishing Journal of Physics: Conference Series 46 (2006) 453–457
doi:10.1088/1742-6596/46/1/062 SciDAC 2006

453© 2006 IOP Publishing Ltd



balance. This problem is often modeled as graph (or hypergraph) partitioning, where the vertices
are computational tasks and edges represent data dependencies.

We focus on a common kernel in many numerical algorithms: multiplication of a sparse
matrix by a vector. For example, this operation is the most computationally expensive part of
iterative methods for linear systems and eigensystems. The question is how to distribute the
nonzero matrix entries (and the vector elements) among processors.

The most common matrix distribution is a one-dimensional (1D) decomposition of either
matrix rows or columns. The communication needed for matrix-vector multiplication with a 1D
distribution is shown in Figure 1. It has been shown [5] that this problem can be modeled as
hypergraph partitioning, which is a generalization of graph partitioning. The hypergraph model
is superior to the graph model because it more accurately represents communication volume.
The hypergraph model has another advantage in that it works for nonsymmetric matrices while
the graph model assumes symmetry.

Figure 1. 1D column distribution of
a sparse matrix for multiplication u =
Av. There are only two processors,
indicated by dark and light shading, and
communication between them is shown
with arrows.

Figure 2. A comparison of partition quality (cuts)
for Zoltan (hypergraph partitioning) and ParMETIS
(graph partitioning) on p = 1 to 64 processors.

The Zoltan toolkit was developed at Sandia National Labs and contains a wide range of
partitioning and load-balancing methods, including a parallel hypergraph partitioner [6]. We
show results from three different application areas: the Tramonto DFT code for nanoscale fluid
simulation (2DLipidFmat), circuit simulation (xyce680s), and DNA electrophoreses (cage14).
All produce structurally symmetric sparse matrices. We computed row partitions using graph
partitioning (ParMetis) and hypergraph partitioning (Zoltan). Figure 2 shows the estimated
communication volume in the applications. The reduction in communication volume (cuts)
depends on the matrix structure; up to a factor three in these tests. The actual run-time in
applications is also reduced, but less dramatically than the communication volume indicates.
The measured performance increase for the matrix-vector kernel in the Tramonto and Xyce
examples was 13% and 18%, respectively, compared to graph partitioning on a 64-processor
cluster.

3. Coloring in Parallel Processing and Automatic Differentiation
Coloring is an abstraction for partitioning a set of objects into few “independent sets”. The
notion of independence and the associated coloring rules vary from context to context. In
the simplest case, adjacent vertices in a graph are required to receive different colors (distance-1
coloring). In parallel scientific computing, a distance-1 coloring is used to identify computational
subtasks that can be performed concurrently. The goal is to use a small number of colors in
order to reduce execution time. A greedy coloring algorithm is suitable for such a purpose.

454



Recently, Boman et al. [7] have developed an efficient scheme for parallelizing greedy coloring
algorithms on distributed-memory computers.

The scheme has the following three key ingredients: (A) Partitioning. A graph is
evenly partitioned among available processors. Each processor is responsible for coloring its
assigned vertices. (B) Speculative coloring. Conflicts are tentatively tolerated—to maximize
concurrency—and then detected and resolved. The scheme involves a few such iterations.
(C) Coarse-grained communication. To reduce communication cost, a processor communicates
only after coloring a group of vertices using current local information. Several variants of the
scheme have been implemented using MPI. The codes are integrated with the Zoltan toolkit.
Computational results on a PC cluster show that the scheme yields near-linear speedup. The
goal is to use this work as a stepping-stone to develop coloring algorithms for petascale machines.

Another application area of graph coloring is automatic differentiation (AD). One efficient
way of computing sparse Jacobians and Hessians relies on a partitioning of columns into a small
number of groups. The idea is to reduce the AD computational effort by calculating sums of
columns at a time, instead of calculating each column separately. The specific criterion used to
partition columns depends on whether the nonzero entries of a matrix are to be retrieved from
its compressed representation directly or indirectly, via substitution. Partitioning criteria for
direct methods are stricter than those for substitution methods. Thus the latter require fewer
groups and typically result in more efficient overall computation.

Structural orthogonality is a basic partitioning criterion used for direct methods. Two
columns are structurally orthogonal if they do not have a nonzero at the same raw position.
Gebremedhin et al. [8] showed that a structurally orthogonal partition of the columns of a
Jacobian or a Hessian can be modeled using a distance-2 coloring of an appropriate graph—a
bipartite graph for a Jacobian and an adjacency graph for a Hessian.

Symmetry exploitation in Hessian computation gives rise to less restrictive coloring variants:
star coloring (direct method) and acyclic coloring (substitution method). A star coloring is a
distance-1 coloring in which every path on four vertices uses at least three colors. An acyclic
coloring is a distance-1 coloring in which every cycle uses at least three colors. The names
here are due to the structure of two-colored induced subgraphs: in the first case the structure
is a collection of stars, in the latter it is a forest. Gebremedhin et al. [9] have exploited these
structures to design effective heuristic algorithms. Their algorithm for acyclic coloring is the first
practical solution known for the problem. For some sparsity structures, computing a Jacobian by
partitioning both columns and rows is more effective than a computation based on unidirectional
partitioning. Bidirectional computation furnishes yet other coloring variants: star and acyclic
bicoloring. These require colors for row-vertices to be disjoint from colors for column-vertices.
For a comprehensive review of the role of coloring in derivative computation, see [8].

4. Performance improvements in a mesh quality optimization application
FeasNewt [10] is a mesh quality optimization application. Optimizing the quality of a mesh
can significantly improve the performance of PDE simulations. We are using combinatorial
techniques to improve the performance of FeasNewt itself. FeasNewt uses inexact Newton to
optimize the average element quality of a mesh. To improve the performance of this code,
we have applied several techniques: using a block sparse matrix data structure to store the
Hessian to reduce memory bandwidth requirements, reordering the problem data to improve
cache performance, and preconditioning the iterative method. These techniques can significantly
reduce the computational time, especially for large problem instances.

Modern microprocessors are highly sensitive to the spatial and temporal locality of data sets.
Therefore, reordering the vertices and elements in a mesh can have a significant impact on
performance. We have developed metrics and models for mesh reordering and have investigated
the performance of several reordering algorithms [11]. Modeling the mesh as a hypergraph is

455



rand10k turtle honey8 airfoil duct foam

Datasets

0
0.

2
0.

4
0.

6
0.

8
1

N
or

m
al

iz
ed

 E
xe

c 
T

im
e

NONE
CPACK
BFS_hyper
BFS_edge
Gpart

Mesh Quality Improvement Application on Opteron 242

Figure 3. Effects of data reordering applied to the mesh quality optimization application.
Arrows indicate the reordering heuristic with best predicted performance according to our
metrics.

critical and can lead to performance improvements of nearly 50 percent. Figure 3 shows the
effects of the data-reordering algorithms on execution time.

We compute the gradient and Hessian required for the inexact Newton algorithm using
automatic differentiation techniques. Exploiting symmetry can reduce the cost of computing
the Hessian by nearly half. However, to exploit this symmetry we must detect symmetry in
the directed acyclic graph (DAG) used to represent a computation in automatic differentiation
algorithms. This requires matching the vertices and edges with their duals and identifying
duplicate mirror operations. By performing only one of these duplicate operations we can
greatly reduce the computation costs.

Although testing symmetry of a general graph is an NP-complete problem, Hessian
computational graphs provide more information about the structure, such as the direction and
weight of the edges. Furthermore, we are interested only in the axis of symmetry perpendicular
to the direction of the edges. Taking this extra information into consideration, we have developed
a polynomial time, complexity O(V 2), symmetry detection algorithm for Hessian computational
graphs. The algorithm has two steps,

(i) Step 1: Group vertices such that for two vertices u and v are the same group if either of
the two conditions are true
• indegree(v)=indegree(u) AND outdegree(v)=outdegree(u)
• outdegree(v)=indegree(u) AND indegree(v)=outdegree(u)

It is easy to see that if vertices a and b are symmetric pairs, then they must be in the same
group.

(ii) Step 2: Subdivide each group further, based on edge weights and the neighbors of the
vertices until there are only two vertices left in each group. The vertices in each group
represent a symmetric pair of vertices.

5. Conclusions
The vignettes from the previous sections illustrate a few of the areas in which combinatorial
algorithms are impacting and enabling scientific computing. For several reasons, we believe that
the influence of CSC will continue to grow in both breadth and depth.

• High performance computers continue to grow in complexity with more processors and
more complex memory hierarchies. Combinatorial tools are already crucial for obtaining
high performance, and new and refined tools will continue to be needed.

456



• High fidelity scientific and engineering simulations require advanced algorithms and data
structures for unstructured meshes, adaptive methods or advanced numerics. Discrete
algorithms play important roles in enabling these kinds of capabilities. The enormous
data sets produced by emerging applications will also require combinatorial sophistication
in data management and analysis.

• Although not discussed in this paper, discrete algorithms are particularly pervasive in
biology and information science. As these fields grow in importance, CSC will grow with
them.

Like any interdisciplinary field, CSC faces challenging questions about publication venues,
reward structures and (most importantly) education. But it is often the case that the most
significant breakthroughs occur at boundaries between established scientific domains. We believe
that CSC lies upon one of these rich interfaces, where theoretical insights are turned into practical
advances.

Acknowledgments
Sandia is a multiprogram laboratory operated by Sandia Corporation, a LockheedMartin
Company, for the United States Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000. The work at Argonne was supported
by the Mathematical, Information, and Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research, U.S. Department of Energy under Contract
W-31-109-Eng-38.

References
[1] Seymour V. Parter. The use of linear graphs in Gaussian elimination. SIAM Review, 3:119–130, 1961.
[2] A. R. Curtis, M. J. D. Powell, and J. K. Reid. On the estimation of sparse Jacobian matrices. J. Inst. Math.

Appl., 13:117–119, 1974.
[3] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph coloring problems. SIAM

J. Numer. Anal., 20(1):187–209, February 1983.
[4] B. Hendrickson and A. Pothen. Combinatorial scientific computing: The enabling power of discrete

algorithms in computational science. In 7th Intl. Mtg. High Perf. Comput. for Computational Sci.
(VECPAR’06), Lecture Notes in Computer Science. Springer-Verlag, 2006. Invited paper, to appear.

[5] Ü. Çatalyürek and C. Aykanat. Hypergraph-partitioning based decomposition for parallel sparse-matrix
vector multiplication. IEEE Trans. Parallel Distrib. Syst., 10(7):673–693, 1999.

[6] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V. Catalyurek. Parallel hypergraph
partitioning for scientific computing. In Proc. IPDPS’06. IEEE, 2006.

[7] E.G. Boman, D. Bozdağ, U. Catalyurek, A.H. Gebremedhin, and F. Manne. A scalable parallel graph
coloring algorithm for distributed memory computers. In Proc. of Euro-Par 2005, volume 3648 of Lecture
Notes in Computer Science, Springer, pages 241–251. Springer, 2005.

[8] A.H. Gebremedhin, F. Manne, and A. Pothen. What color is your Jacobian? Graph coloring for computing
derivatives. SIAM Review, 47(4):629–705, 2005.

[9] A.H. Gebremedhin, A. Tarafdar, F. Manne, and A. Pothen. New acyclic and star coloring algorithms with
application to computing Hessians. Technical report, Old Dominion University, 2006. Submitted to SIAM
J. Sci. Comput.

[10] T. S. Munson. Mesh shape-quality optimization using the inverse mean-ratio metric. Preprint ANL/MCS-
P1136-0304, Argonne National Laboratory, Argonne, Illinois, 2004.

[11] Michelle Mills Strout and Paul D. Hovland. Metrics and models for reordering transformations. In
Proceedings of the Second ACM SIGPLAN Workshop on Memory System Performance (MSP), pages
23–34, June 2004.

457


