CptS 591: Elements of Network Science
Assefaw Gebremedhin
assefaw.gebremedhin@wsu.edu
http://www.eecs.wsu.edu/~assefaw
Spring 2021
About me

• Name: Assefaw Gebremedhin
• Email: assefaw.gebremedhin@wsu.edu
• Webpage: www.eecs.wsu.edu/~assefaw
• Research interests: data science & AI, network science, high performance computing, and applications in bioinformatics, energy systems, and cybersecurity
• Lab: Scalable Algorithms for Data Science Laboratory (https://scads.eecs.wsu.edu)
• NSF CAREER project: Fast and Scalable Combinatorial Algorithms for Data Analytics www.eecs.wsu.edu/~assefaw/fascada
• Teaching at WSU:
 • CptS 475/575: Data Science (Fall 2015--2020)
 • CptS 591: Elements of Network Science (Spring 2015--2020)
 • CptS 317: Automata and Formal Languages (Spring 2020, Spring 2021)
 • CptS/STAT 424: Data Analytics Capstone (Spring 2019)

• CptS 591, Spring 2021
 • Lectures: TuTh 9:10—10:25am (via Zoom)
 • Office Hour: Tuesdays 12:00--1pm (via Zoom)
What I know about the class so far

- 29 enrolled (23 MS students, 6 PhD students)
- Disciplines:
 - Computer Science (22)
 - Electrical Engineering (3)
 - Anthropology (1)
 - Economics (2)
 - Veterinary Science (1)
Big Picture
Who’s talking networks?
Complex *connectedness* is everywhere!

- The *social* interconnections we have
- The *information* we consume
- The *technological* systems we use
- The *economic* systems we live in
- The *political* systems we operate in
- The *organizations* we work at
- The *institutions* we belong to
- The *ecological* systems around us
- *Ourselves* (cell, brain)
- ….
Complex connectedness is everywhere (in pic)

(Pictures here and elsewhere, unless stated otherwise, are courtesy of Barabasi et al, Network Science Course, NEU, http://barabasilab.neu.edu/courses/phys5116/.)
An underlying feature:

Behind each such system there is an intricate wiring diagram, *network*, that encodes the interactions between the components.

And to understand the systems, we must understand the networks behind!
Networks: Social

The “Social Graph” behind Facebook
Networks: structure of an organization

- Red: departments
- Blue: consultants
- Green: external experts
Human Brain has between 10-100 billion neurons.
Networks: Financial

http://barabasilab.neu.edu/courses/phys5116/
Reasoning about networks

• Study aspects
 • Structure and Evolution
 • Behavior and Dynamics

• Full understanding requires synthesis of ideas from various disciplines, including
 • Computer science
 • Applied mathematics
 • Natural sciences
 • Statistics
 • Economics
 • Sociology
Networks, why now?

http://barabasilab.neu.edu/courses/phys5116/

Catalysts for emergence of network science

• Availability of network “maps”
 • The Internet, cheap digital storage, and computational technologies made it possible to collect, assemble, share, and analyze data pertaining to real networks

• Recurring similarity
 • Networks from science, nature, and technology are more similar than one would expect

• Confluence of ideas and tools
 • Newer ways of reasoning about interconnectedness are being born by integration of ideas and tools from various disciplines
Characteristics of Network Science

• **Interdisciplinary**
 • Common language for interaction
 • Cross-fertilization of ideas and tools

• **Empirical, data driven**
 • Focuses on data and utility

• **Quantitative and Mathematical**
 • Graph theory (to deal with graphs)
 • Statistical physics (to deal with randomness and universal organizing principles)
 • Engineering + control + information theory + statistics + data mining (to deal with extracting information from incomplete and noisy data)

• **Computational**
 • Size of networks and nature of data result in formidable computational challenges
 • Algorithms, database management, data mining
Impact of network science

- Economic
 - Web search
 - Social networking

- Health
 - Drug design
 - Metabolic engineering

- Security
 - Fighting terrorism (net-war)

- Epidemics
 - Epidemic prediction (biological, electronic viruses)
 - Halting spread

- Brain Science
 - In 2010 NIH initiated the Connectome project, aimed at developing a neuron-level map of mammalian brains

- Management
 - Uncovering the internal structure of an organization
Economic Impact

Google
Market Cap (2010 Jan 1):
$189 billion

Cisco Systems
networking gear Market
cap (Jan 1, 2919):
$112 billion

Facebook
market cap:
$50 billion

www.bizjournals.com/austin/news/2010/11/15/facebooks... - Cached
Military impact

http://www.slate.com/id/2245232
EPIDEMIC FORECAST
Predicting the H1N1 pandemic

Real vs. Projected

http://barabasilab.neu.edu/courses/phys5116/

This course in focus
Goals

Students will be introduced to select

• mathematical and computational methods used to analyze networks
• models used to understand and predict behavior of networked systems
• theories used to reason about network dynamics

And students will apply what they learn by completing a semester project and a set of assignments
(Tentative) list of topics

- Network structure, modeling and algorithms
 - Graph theory refresher
 - Basic network properties
 - Random graphs
 - Spectral analysis
 - Centrality
 - PageRank, Hubs and Authorities
 - Graph similarity
 - Community detection
 - Signed networks

- Graph embeddings and representation learning

- Network dynamics
 - Cascading behaviors
 - Information diffusion
 - Epidemic models
 - Influence maximization

- Temporal networks
 - Models
 - Algorithms
 - Applications

List may be updated later
Books

• Frequent reference:
 • Easley and Kleinberg, Networks, Crowds and Markets, Cambridge Univ. Press, 2010

• Other/related references
 • M.E. J. Newman, Networks: An Introduction, Oxford University Press, 2010
 • U. Brandes and T. Erlebach (Eds.), Network Analysis: Methodological Foundations, Springer 2005
 • A. Barabasi, Network Science, e-book
Software

We will use igraph as the primary software tool for network analysis:

• *igraph* : http://igraph.org

Other related tools

• *networkX* : http://networkx.github.io
• *networKit* : https://networkit.iti.kit.edu/
Expectation

Basic knowledge of:
• Algorithms
• (Graph theory)
• Linear algebra
• Probability and Statistics

Reasonable programming experience:
Python, R, C/C++, Java
Course work

- Three assignments + a few exercises (30%)
 - Individual
- One semester project (50%)
 - Collaborative (a team of two or three)
- Mid-term exam (18%)
- Class participation (2%)
 - Discussions in class, in-class exercise

- Project breakdown: 50%
 - Reaction paper: 7%
 - Project proposal: 7%
 - Presentation: 8%
 - Final report: 28%
Project

- Could take one of several forms:
 - *Experimental analysis* of an interesting dataset using existing methods and software
 - *(Experimental) comparison* of existing methods and software tools in the context of a specific application
 - *Theoretical analysis* of a model/an algorithm in a specific application
 - *Implementation* of a new method
 - *In-depth survey* of a research topic
- Students required to work in teams of two or three
 (solo projects allowed if there are valid reasons)
Lecture material and resources

• Course website: everything will be on Canvas
 • Slides, reading materials, announcements, and other resources

• Canvas will also be used to handle assignment and project submissions

• The Easley & Kleinberg reference book is available on-line

• Check the Canvas page of the course regularly for info and updates
Related courses elsewhere

• Cornell (Jon Kleinberg and Eva Tardos, Networks)
 • https://courses.cit.cornell.edu/cs2850_2016fa/

• Stanford (Jure Leskovek, Social and Information Network Analysis)
 • http://web.stanford.edu/class/cs224w/

• Northeastern (Barabasi lab, Complex Networks, Fall 2018)
 • https://www.barabasilab.com/course

• Yale (Dan Speilman, Spectral Graph Theory, Fall 2015)
 • http://www.cs.yale.edu/homes/spielman/561/
A few words on policies

• Classroom conduct
 • Mute when not speaking
 • Arrive on time and remain throughout the class

• Correspondence
 • All class related correspondence should be made via Canvas

• Class participation
 • Required

• Late work or missing work
 • Submissions should happen by due dates and times
 • Late submissions up to 48 hours accepted with 10% grade penalty per 24 hours late
 • Missing work or work submitted more than 48 hours late will be counted as zero

• Academic Integrity
 • Strictly enforced

• Read syllabus for COVID-19 policy and other statements
Thanks!

• Welcome, once again
• It is going to be a fun semester
• Put your best effort
• You will be rewarded