

CptS 591: Elements of Network Science

Assefaw Gebremedhin

assefaw.gebremedhin@wsu.edu

http://www.eecs.wsu.edu/~assefaw
Spring 2021

About me

- Name: Assefaw Gebremedhin
- Email: assefaw.gebremedhin@wsu.edu
- Webpage: <u>www.eecs.wsu.edu/~assefaw</u>
- Research interests: data science & AI, network science, high performance computing, and applications in bioinformatics, energy systems, and cybersecurity
- Lab: Scalable Algorithms for Data Science Laboratory (https://scads.eecs.wsu.edu)
- NSF CAREER project: Fast and Scalable Combinatorial Algorithms for Data Analytics www.eecs.wsu.edu/~assefaw/fascada
- Teaching at WSU:
 - CptS 475/575: Data Science (Fall 2015--2020)
 - CptS 591: Elements of Network Science (Spring 2015--2020)
 - CptS 317: Automata and Formal Languages (Spring 2020, Spring 2021)
 - CptS/STAT 424: Data Analytics Capstone (Spring 2019)
- CptS 591, Spring 2021
 - Lectures: TuTh 9:10—10:25am (via Zoom)
 - Office Hour: Tuesdays 12:00--1pm (via Zoom)

What I know about the class so far

- 29 enrolled (23 MS students, 6 PhD students)
- Disciplines:
 - Computer Science (22)
 - Electrical Engineering (3)
 - Anthropology (1)
 - Economics (2)
 - Veterinary Science (1)

Big Picture

Who's talking networks?

Complex *connectedness* is everywhere!

- The *social* interconnections we have
- The *information* we consume
- The technological systems we use
- The *economic* systems we live in
- The *political* systems we operate in
- The *organizations* we work at
- The *institutions* we belong to
- The ecological systems around us
- Ourselves (cell, brain)
- •

Complex connectedness is everywhere (in pic)

(Pictures here and elsewhere, unless stated otherwise, are courtesy of Barabasi et al, Network Science Course, NEU, http://barabasilab.neu.edu/courses/phys5116/.)

An underlying feature:

Behind each such system there is an intricate wiring diagram, *network*, that encodes the interactions between the components.

And to understand the systems, we must understand the networks behind!

Networks: Social

Networks: structure of an organization

idepartments

: consultants

: external experts

Networks: Brain

Networks: Financial

Reasoning about networks

- Study aspects
 - Structure and Evolution
 - Behavior and Dynamics
- Full understanding requires synthesis of ideas from various disciplines, including
 - Computer science
 - Applied mathematics
 - Natural sciences
 - Statistics
 - Economics
 - Sociology

Networks, why now?

http://barabasilab.neu.edu/courses/phys5116/

Catalysts for emergence of network science

Availability of network "maps"

• The Internet, cheap digital storage, and computational technologies made it possible to collect, assemble, share, and analyze data pertaining to real networks

Recurring similarity

• Networks from science, nature, and technology are more similar than one would expect

Confluence of ideas and tools

• Newer ways of reasoning about interconnectedness are being born by integration of ideas and tools from various disciplines

Characteristics of Network Science

Interdisciplinary

- Common language for interaction
- Cross-fertilization of ideas and tools

• Empirical, data driven

Focuses on data and utility

Quantitative and Mathematical

- Graph theory (to deal with graphs)
- Statistical physics (to deal with randomness and universal organizing principles)
- Engineering + control + information theory + statistics + data mining (to deal with extracting information from incomplete and noisy data)

Computational

- Size of networks and nature of data result in formidable computational challenges
- Algorithms, database management, data mining

Impact of network science

- Economic
 - Web search
 - Social networking
- Health
 - Drug design
 - Metabolic engineering
- Security
 - Fighting terrorism (net-war)
- Epidemics
 - Epidemic prediction (biological, electronic viruses)
 - Halting spread
- Brain Science
 - In 2010 NIH initiated the Connectcome project, aimed at developing a neuron-level map of mammalian brains
- Management
 - Uncovering the internal structure of an organization

Economic Impact

Google

Market Cap(2010 Jan 1): \$189 billion

Cisco Systems

networking gear Market cap (Jan 1, 2919): \$112 billion

Facebook

market cap: *\$50 billion*

www.bizjournals.com/austin/news/2010/11/15/facebooks... - Cached

Military impact

http://www.slate.com/id/2245232

EPIDEMIC FORECAST Predicting the H1N1 pandemic

Real

Projected

http://barabasilab.neu.edu/courses/phys5116/

This course in focus

Goals

Students will be introduced to select

- mathematical and computational methods used to analyze networks
- models used to understand and *predict* behavior of networked systems
- theories used to reason about network *dynamics*

And students will apply what they learn by completing a semester project and a set of assignments

(Tentative) list of topics

- Network structure, modeling and algorithms
 - Graph theory refresher
 - Basic network properties
 - Random graphs
 - Spectral analysis
 - Centrality
 - PageRank, Hubs and Authorities
 - Graph similarity
 - Community detection
 - Signed networks

- Graph embeddings and representation learning
- Network dynamics
 - Cascading behaviors
 - Information diffusion
 - Epidemic models
 - Influence maximization
- Temporal networks
 - Models
 - Algorithms
 - Applications

List may be updated later

Books

- Frequent reference:
 - Easley and Kleinberg, Networks, Crowds and Markets, Cambridge Univ. Press, 2010
- Other/related references
 - M.E. J. Newman, *Networks: An Introduction*, Oxford University Press, 2010
 - U. Brandes and T. Erlebach (Eds.), *Network Analysis: Methodological Foundations*, Springer 2005
 - A. Barabasi, *Network Science*, e-book

Software

We will use igraph as the primary software tool for network analysis:

• *igraph* : <u>http://igraph.org</u>

Other related tools

- networkX: http://networkx.github.io
- networKit : https://networkit.iti.kit.edu/
- SNAP: http://snap.stanford.edu/

Expectation

Basic knowledge of:

- Algorithms
- (Graph theory)
- Linear algebra
- Probability and Statistics

Reasonable programming experience:

Python, R, C/C++, Java

Course work

- Three assignments + a few exercises (30%)
 - Individual
- One semester project (50%)
 - Collaborative (a team of two or three)
- Mid-term exam (18%)
- Class participation (2%)
 - Discussions in class, in-class exercise
- Project breakdown: 50%
 - Reaction paper: 7%
 - Project proposal: 7%
 - Presentation: 8%
 - Final report: 28%

Project

- Could take one of several forms:
 - Experimental analysis of an interesting dataset using existing methods and software
 - (Experimental) comparison of existing methods and software tools in the context of a specific application
 - Theoretical analysis of a model/an algorithm in a specific application
 - *Implementation* of a new method
 - *In-depth survey* of a research topic
- Students required to work in teams of two or three (solo projects allowed if there are valid reasons)

Lecture material and resources

- Course website: everything will be on Canvas
 - Slides, reading materials, announcements, and other resources
- Canvas will also be used to handle assignment and project submissions
- The Easley & Kleinberg reference book is available on-line
- Check the Canvas page of the course regularly for info and updates

Related courses elsewhere

- Cornell (Jon Kleinberg and Eva Tardos, Networks)
 - https://courses.cit.cornell.edu/cs2850_2016fa/
- Stanford (Jure Leskovek, Social and Information Network Analysis)
 - http://web.stanford.edu/class/cs224w/
- Northeastern (Barabasi lab, Complex Networks, Fall 2018)
 - https://www.barabasilab.com/course
- Yale (Dan Speilman, Spectral Graph Theory, Fall 2015)
 - http://www.cs.yale.edu/homes/spielman/561/

A few words on policies

- Classroom conduct
 - Mute when not speaking
 - Arrive on time and remain throughout the class
- Correspondence
 - All class related correspondence should be made via Canvas
- Class participation
 - Required
- Late work or missing work
 - Submissions should happen by due dates and times
 - Late submissions up to 48 hours accepted with 10% grade penalty per 24 hours late
 - Missing work or work submitted more than 48 hours late will be counted as zero
- Academic Integrity
 - Strictly enforced
- Read syllabus for COVID-19 policy and other statements

Thanks!

- Welcome, once again
- It is going to be a fun semester
- Put your best effort
- You will be rewarded

