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Abstract— Feedback control of diffusive network dynamics
using incidental measurements and actuation is explored. A
standard model for diffusion or synchronization in networks
is enhanced to represent two incidental control architectures:
one in which clocked measurements from a stochastically-
moving platform are used to regulate a fixed actuator, and a
second where the sensor and actuator are collocated on a mov-
ing platform. Simple proportional-integral-derivative control
schemes are studied. For both control architectures, low-gain
controllers are shown to achieve regulation in a mean-square
sense. A simulation example is presented, which demonstrates
that the incidental control architectures allow for practical
regulation, and in fact can sometimes outperform a fixed control
architecture.

I. INTRODUCTION

The analysis and control of network dynamics have been a
primary focus of the controls-engineering community during
the last 15-20 years (e.g. [1], [2]). Within this broad effort,
there has been a particular interest in the analysis and control
of network diffusion and synchronization processes, such as
thermal processes in buildings, rumor or disease spread, and
distributed clock synchronization, to name just a few [1]–[5].
A major thrust of the work on diffusive networks has been
to understand how global coordination emerges from local
diffusive interactions, and in turn to design decentralized
and distributed control schemes to shape global properties.
This research has also been extended toward achieving
disturbance rejection, addressing sparse controller design,
developing state and mode estimators, and characterizing
input-output properties, among many other directions [4],
[6]–[9]. A common theme underlying the various studies has
been to expose the connection between the network’s graph
and its dynamics and control.

The deployment and networking of new sensing/actuation
technologies are enabling a paradigm shift in the control
of complex network dynamics, including diffusive processes
[10]–[12]. One aspect of this paradigm shift is the growing
availability of ad hoc or incidental measurement and actu-
ation platforms, which stochastically probe or actuate the
network dynamics while primarily serving other purposes
or engaging in unrelated missions [13]–[16]. For instance,
personal handheld devices like Smartphones provide a wealth
of information on user locations, which can be used for e.g.
traffic congestion management or catered control of building
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HVAC systems. In a parallel vein, unmanned aerial or under-
water vehicles can allow persistent sampling of environmen-
tal processes and hazards (e.g., pollution levels), and perhaps
can directly combat some hazards. Meanwhile, social-media
communications and blogs serve as monitors for the spread
of infectious diseases, as well as for human social dynamics.
These various platforms are incidental or ad hoc, in the
sense that their primary missions are typically unrelated to
the sensing and actuation of the diffusive network processes.
Despite being stochastic in nature, however, these incidental
platforms can greatly inform monitoring and control. Indeed,
such platforms have already been widely used for real-time
monitoring of network processes like traffic congestion and
disease spread. To date, real-time feedback control using
these ad hoc platforms has been more limited, perhaps due to
the inherent variability of the measurements and actuations
permitted by the platforms.

In this article, we explore feedback control of diffusive
network processes using ad hoc or incidental measurements
and actuations. Specifically, a standard diffusive-network
model is augmented to represent two control architectures,
one that uses clocked measurements from a stochastically-
moving platform along with a fixed actuator, and a second
where collocated measurement and actuation from a mo-
bile platform are used (Section II). For both architectures,
proportional-integral-derivative (PID) controls are consid-
ered, for regulation of the network state. The closed-loop
dynamics at sample times are shown to be governed by
a discrete-time Markov jump-linear system (Section III.A).
This MJLS formulation is used to verify that regulation is
achieved asymptotically in a mean-square sense, when low-
gain proportional-derivative controllers are applied (Sections
III.B and III.C). Finally, a simulation is presented which
shows that incidental measurement and actuation-based con-
trol schemes are practical, in the sense that they enable faster
regulation as compared to fixed schemes.

The research described here builds on two recent studies
on incidental measurement paradigms for dynamical net-
works, one focused on state estimation from Markov and
non-Markov measurements from an incidentally-mobile plat-
form [15], the second concerned specifically with feedback
control of building thermal processes using incidental mea-
surements [16]. The approach taken here is closely connected
to the wide literature on the control of Markov jump-linear
systems (MJLS) [17]–[19], including particularly efforts on
control of jump-linear network processes [20], [21]. Relative
to the literature on MJLS, the main contribution of this
work is to show how the special structure of the diffusive



network dynamics can be exploited to construct simple
control schemes that achieve regulation.

II. MODELING AND PROBLEM FORMULATION

A standard model for diffusive interactions in a net-
work is enhanced to capture Markov sensing and actua-
tion paradigms. Formally, a network with n nodes, labeled
1, 2, · · · , n, is considered. Each node i has associated with it
a state xi(t), which evolves with the continuous time variable
t. Each state xi(t) is governed by the following differential
equation

ẋi(t) =

n∑
j=1,j 6=i

aij(xj − xi) + γi(t)u(t) (1)

where the weights aij indicate the strengths of the diffusive
interactions, the scalar u(t) is a control input, and γi(t) ≥ 0
(where

∑
i γi(t) = 1) indicates the (possibly time-varying)

actuation level provided to node i due to the control input.
The dynamics can be expressed in matrix form as

ẋ = Ax(t) +B(t)u(t) (2)

where x =
[
x1 · · · xn−1 xn

]T
, the entry of A at row i

and column j is given by Aij = aij for i 6= j, the diagonal
entries of A are given by Aii = −

∑
j 6=i aij , and B(t) is an

n × 1 vector with ith entry equal to γi(t) for i = 1, . . . , n.
We note that the internal dynamics of (2) have been very
widely studied, as a model for consensus/synchronization or
diffusion in networks.

Two measurement and actuation architectures are consid-
ered in this study: 1) an incidental-measurement architecture,
where measurements from a sensor that is moving stochas-
tically among the nodes are used for feedback control of a
fixed actuation capability; and 2) a mobile sensor-actuator
architecture, where a single stochastically-moving device is
responsible for both sensing and actuation at its current
location. For both architectures, the movement of a single
device among the network’s nodes is considered. Noting that
measurement and actuation devices are increasingly cyber-
enabled, we assume a clocked model for the measurements
and/or actuation made by the stochastically- moving device
in our framework. Formally, the device’s location in the
network is modeled as Markov process which evolves at
clocked intervals, specifically at the times t = kT for k =
0, 1, 2, · · · . The node occupied by the device at time t = kT
is denoted as s[k], where s[k] may take on values among
1, · · · , n. The device location s[k] is modeled as a finite-state
Markov chain with (n) × (n) transition matrix P =

[
pij
]
.

This location Markov chain is assumed throughout this work
to be ergodic.

For both architectures, state measurements are obtained at
the device’s current location at the clocked intervals, for the
purpose of feedback control. Formally, the measurement y[k]
is the state of the occupied node sampled at time t = kT ,
i.e. y[k] = xs[k](kT ). For the statistical analysis developed
here, it is convenient to express the measurement as a time-
varying projection of the state x(t). Specifically, we have

that y[k] = −→v T [k]x(kT ), where −→v T [k] is a 0 –1 indicator
vector for the occupant's node s[k].

Two actuation paradigms are considered here. For the
incidental-measurement architecture, the coefficients γi(t)
and hence input matrix B(t) is fixed. For the mobile
measurement and actuation architecture, the control unit is
modeled as moving with the sensor to the different network
nodes. In that case, the γi(t) and hence B(t) are time
varying. Specifically, noting that the sensor and actuator are
collocated, the input matrix B(t) is modeled as B(t) = B[k]
for kT ≤ t < (k + 1)T , where B[k] = −→v [k]. We are
interested in designing control schemes to regulate the state
of diffusive process. Specifically, we seek to design the
control so that the node states xi(t) are regulated to a
common desired reference value yref , i.e. xi(t)− yref → 0
for i = 1, . . . , n. From the diffusive form of the model, we
notice here that the node states asymptote to a common value
even when no control is used, provided that the state matrix
A is irreducible; however, the asymptote is governed by the
initial states of the network nodes. The aim of the control
here is to permit regulation to a desired reference value.

The above described model for incidental measure-
ment/actuation of diffusive network processes is becoming
relevant to an array of controller design applications, as
new IoT technologies enable pervasive sensing and actuation
from user-based platforms like cell phones. Here, we briefly
describe two potential applications. First, the model (2) can
be used to model thermal processes in buildings, see e.g.
our previous work [16] which tracks temperature dynamics
is rooms within a building, see also the literature on resistive-
capacitive network models for heat flow within buildings [?],
[?]. New IoT-based sensing technologies enable locationing
of occupants, whose movement can be modeled as a Markov
process, as well as sensing of temperatures throughout the
building. Hence, clocked measurements of temperatures in
the occupants’ current locations are available. A natural con-
trol scheme is to regulate the temperature at the occupants’
current locations, so as to optimize comfort while saving
energy. This problem resolves to a control problem for a
diffusive network process with incidental measurements. Air
pollution is a second process that can be modeled with linear
diffusion model [15]. Unmanned aerial vehicles (drones)
can be used to measure the level of air pollution, as they
circulate around different areas of city on unrelated missions;
thus, incidental measurements are obtained of the diffusion
process. Some drones may also have technologies that enable
local actuation of the pollution process, e.g. via dispersion
of cleaning agents. Similar incidental-measurement-based
and mobile-sensor-actuator-based controls can be envisioned
for other diffusive processes like oil spills and spreads of
infectious diseases.

In this work, a proportional-integral-derivative control
scheme is considered, since simple and generic schemes are
practical for many mobile-control applications. We consider
implementation of the control via a zero-order-hold, for
which the control input is updated after each data transmis-
sion and held constant in between. The following PID control



scheme of this form is proposed:
u(t) = u[k] for kT ≤ t < (k + 1)T , where:
u[k] = Kp(yref − y[k]) + Kd(y[k] − y[k − 1])/T +

Ki

∑k
0(yref − y[k])× T

and where Kp, Kd and Ki are proportional, derivative, and
integral gains.

The main focus of this work is to develop a statistical
analysis of the closed-loop dynamics of the diffusion process
for two incidental control architectures, and to use the
analysis to show that the control achieves regulation. Via
simulations, the incidental sensing and actuation schemes are
compared with fixed schemes, with regard to the speed at
which regulation is achieved.

III. CONTROLLER ANALYSIS AND DESIGN

The main purpose of this section is to develop a two-
moment statistical analysis of the closed-loop dynamics for
both incidental measurement/actuation paradigms, and in
turn to demonstrate that low-gain controls can be designed
to achieve the regulation goal. The notation and approach of
this part is highly related to our previous attempt in [16].
However, here we concern about general diffusion process
rather than heat flow problem that was discussed in [16].
That means our Ā matrix is laplacian in this work rather than
grounded laplacian with was in [16]. Also low gain stability
results are expanded for PID controller through theorem 5
and 6 in this work.

The analysis and design are approached as follows.
First, the closed-loop state dynamics sampled at the data-
transmission times are reformulated as a discrete-time
Markov jump-linear system or MJLS (III.A). Standard results
for MJLS are then used to develop a two-moment analysis of
the state dynamics (Section III.B). An eigenanalysis of the
moment dynamics is undertaken to demonstrate stochastic
(two-moment) stability, and in turn to verify that regulation
is achieved (Section III.C): this is the main technical con-
tribution of the paper. We note that a preliminary statistical
analysis of an incidental-measurement-based feedback con-
trol for building thermal processes was developed without
proof in the brief paper [16]. The preliminary analysis in
Sections III.A and III.B partially follows this development,
however the main stability analysis is new and also the
methodology is generalized to encompass the mobile sensor-
actuator architecture.

A. Reformulation as an MJLS

For both control architectures, the closed-loop dynamics
sampled at the data-transmission times are shown to be
governed by an autonomous discrete-time state equation
whose state matrix switches according to the Markov chain,
i.e. the dynamics are reformulated as an autonomous MJLS.
This reformulation requires defining an extended state vector

−→
ξ , as:

−→
ξ [k] =


−→
θ [k]

−→
θ [k − 1]
Acc[k]

 where
−→
θ [k] = −→x [k]−yref

−→
1 is

a shift of the state vector relative to the desired (goal) state,−→
1 is a vector with all unity entries, Acc[k] =

∑k
m=1 z[k] is

an accumulator for the integral controller, and z[k] = −→v T
−→
θ

indicates the diffusive proces state at the device location in
the shifted coordinates.

The extended state vector
−→
ξ [k] is governed by a discrete-

time MJLS model, which can be obtained by solving the
continuous-time diffusive dynamics over intervals of duration
T for each possible underlying observer-location state:

−→
ξ [k + 1] = GPIDc (i)

−→
ξ [k] (3)

where the (2n+1)× (2n+1) matrix GPIDc (i) is function
of the location Markov chain state i. The matrix GPIDc (i),
i = 1, . . . , n, can be calculated as follows:

GPIDc (i) = GPIDA (i)+GPIDp (i)+GPIDd (i)+GPIDi (i) (4)

where

GPIDA (i) =

 Ā 0n×n 0n×1

In×n 0n×n 0n×1

vT (i) 01×n 1


GPIDp (i) = −KpΦβ̄

S2(i) 0n×n 0n×1

0n×n 0n×n 0n×1

01×n 01×n 0


GPIDd (i) = −Kd

T Φβ̄

S2(i) −S2(i) 0n×1

0n×n 0n×n 0n×1

01×n 01×n 0


and

GPIDi (i) = −KiTΦβ̄

S2(i) 0n×n 1n×1

0n×n 0n×n 0n×1

01×n 01×n 0

.

Here, Ā = eAT , S2 is an n×n matrix whose ith column is
a unity vector while all other entries are 0, and Φβ̄ is (2n+
1)×(2n+1) diagonal matrix. For the incidental-measurement
control architecture, for each i, the jth diagonal entry of Φβ̄
is equal to jth entry of the vector Φβ = ΦB for j = 1, . . . , n,
where Φ =

∫ T
0
eA(τ)dτ . For the mobile measurement and

actuation architecture, the jth diagonal entry of Φβ̄ is equal
to the jth entry of the vector Φβ = Φei for j = 1, . . . , n

where Φ =
∫ T

0
eA(τ)dτ , and ei is a 0–1 indicator vector

whose ith entry is unity.
The matrix GPIDA (i) in the above expression describes the

nominal (uncontrolled) diffusive dynamics and the evolution
of the accumulator state Acc[k], while GPIDp (i), GPIDd (i)
and GPIDi (i) describe the effects of the proportional, deriva-
tive, and integral control terms, respectively.

A simpler approximation of the MJLS formulation can
be obtained, provided that the time-constants of the dif-
fusion process are large compared to the sampling (data-
transmission) interval T , which is the case for many diffusive
processes. The approximation is appealing for computational
purposes, and also because the graph structure of the dif-
fusion process is then explicitly encoded in the matrices
GPIDc (i). We primarily focus on the exact model here, but
include the approximation for these reasons. Specifically,
provided that T is sufficiently small, the matrix exponential
eAT can be approximated as eAT = I + TA. In this case,
the summed matrices in Equation 4 can be approximated as:



GPIDA (i) =

I + TA 0n×n 0n×1

In×n 0n×n 0n×1

vT (i) 01×n 1


GPIDp (i) = −KpS1

S2(i) 0n×n 0n×1

0n×n 0n×n 0n×1

01×n 01×n 0


GPIDd (i) = −Kd

T S1

S2(i) −S2(i) 0n×1

0n×n 0n×n 0n×1

01×n 01×n 0


GPIDi (i) = −KiTS1

S2(i) 0n×n 1n×1

0n×n 0n×n 0n×1

01×n 01×n 0

.

For the incidental-measurements architecture, S1 is a
(2n + 1) × (2n + 1) diagonal matrix whose jth diagonal
entry is equal to γj for j = 1, . . . , n (and whose remaining
diagonal entries are zero). For the mobile measurement and
actuation architecture, S1 is a (2n+ 1)× (2n+ 1) diagonal
matrix whose ith diagonal entry is unity (and all other
diagonal entries are zero).

B. Two-Moment Analysis

Standard analyses of state moments for MJLS can be
applied to find statistics of the closed-loop dynamics of the
diffusive network model, for either control architecture [17]–
[19]. Specifically, a two-moment analysis requires considera-
tion of the Kronecker product vectors ψ1[k] = −→v T [k]⊗ ξ[k]
and ψ2[k] = −→v T [k] ⊗ ξ[k]

⊗2, which contain products of
the extended state vector entries with an indicator of the
underlying Markov chain's status. Here, the notation (Q)⊗2

refers to the self-Kronecker product of the matrix or vector
Q. The vectors ψ1[k] and ψ2[k] have n(2n+ 1) and n(2n+
1)2 entries, respectively. From the standard MJLS analysis
[17]–[19], the first-moment vector E(ψ1[k]) and the second-
moment vector E(ψ2[k]) are governed by the following linear
time-invariant dynamics: E(ψ1[k + 1]) = HPID

1 E(ψ1[k]),

where HPID
1 =

p11G
PID
c (1) · · · p1nG

PID
c (n)

...
. . .

...
pn1G

PID
c (1) · · · pnnG

PID
c (n)

.

Likewise, E(ψ2[k + 1]) = HPID
2 E(ψ2[k]), where HPID

2 =p11G
PID
c (1)⊗2 · · · p1nG

PID
c (n)⊗2

...
. . .

...
pn1G

PID
c (1)⊗2 · · · pnnG

PID
c (n)⊗2

.

We notice that the first and second moment vectors
contain conditional moments of the extended state vec-
tor, given the measurement location. For example, the
first moment vector can be written as E(ψ1[k]) =E(ξ[k]|s[k] = 1)P (s[k] = 1)

...
E(ξ[k]|s[k] = n)P (s[k] = n)

, where E(ξ[k]|s[k] = j) is

the conditional expectation of the extended state given the
measurement/actuation device's location, and P (s[k] = j) is
the location probability at time step k.

C. Stability Analysis

It is shown that the first and second moment dynamics
of the MJLS are asymptotically stable when low-gain pro-

portional (P), proportional-derivative (PD), or proportional-
integral-derivative (PID) feedback control are used, for both
control architectures. Hence, the expected squared devia-
tion of each node’s state from the desired reference, i.e.
E((xi(t) − yref )2) for i = 1, · · · , n, approaches zero
asymptotically. The stability analysis serves as a verification
that the two incidental control architectures indeed can be
used to regulate diffusive processes, in such a way that
the state at all network locations tracks a specified constant
reference signal.

The stability analysis is based on an eigenanalysis of
the recursion matrices HPID

1 and HPID
2 , which draws

on the structure of the diffusive network dynamics. The
state matrices for the first- and second- moment dynamics
for the uncontrolled diffusive network model each have a
single eigenvalue at 1 (provided that the network graph
is strongly connected), with the remaining eigenvalues
located strictly within the unit circle. Our focus is on
understanding whether the moment dynamics of the
MJLS are strictly (asymptotically) stable, with eigenvalues
strictly within the unit circle, when the two incidental
measurement/actuation-based control schemes are deployed.
In the following theorems, asymptotic stability of the
moment dynamics are verified, and in turn the regulation
goal is shown to be achieved exactly in a mean-square
sense, for low-gain proportional (P), proportional-derivative
(PD), and proportional-integral-derivative (PID) controls.
The results are developed in detail for the incidental-
measurement control architecture, and analogous results
are then summarized for the mobile sensor-and-actuator
architectures. Although the result for the PID controller
encompasses the results for the P and PD controller,
we present the three results sequentially to simplify the
presentation of their proofs, which build on each other. The
separate treatment of the different control architectures also
yields explicit formulas for eigenanalysis of the moment
recursions for these special controls. The proofs of the
theorems draw on results for non-negative matrices [22],
[23]. The first result addresses proportional control when
the incidental-measurement architecture is used.

Theorem 1: Consider the closed-loop diffusion process
in the case that the nodes are connected, and the location
Markov chain is ergodic. Consider the incidental measure-
ment control architecture, and assume that a proportional
control is used (i.e. Kd = Ki = 0). For all sufficiently small
negative feedback (0 ≤ Kp ≤ K̄p, for some K̄p > 0), the
first- and second- moment dynamics for the MJLS formu-
lation are asymptotically stable in the sense of Lyapunov.
Further, regulation is achieved, i.e. x(t)− yref1 approaches
the origin in a mean-square sense.

Proof:
When a proportional controller is used, the MJLS formu-

lation only requires tracking the shifted state vector
−→
θ [k]

at the data-transmission times. The shifted state vector is



governed by the autonomous discrete-time MJLS:
−→
θ [k + 1] = GPc (i)

−→
θ [k], (5)

where the n× n matrix GPc (i) is given by:

GPc (i) = GPA(i) +GPp (i) (6)

where GPA(i) = Ā and GPp (i) = −KpΦS2(i), and where the
parameters in the equations are as defined before.

For the proportional controller, the two-moment analysis
of the discrete-time closed-loop model can be developed
using the Kronecker product vectors χ1[k] = −→v T [k] ⊗ θ[k]
and χ2[k] = −→v T [k] ⊗ θ[k]

⊗2. Per the standard analysis
of MJLS, the first-moment vector E(χ1[k]) and the
second-moment vector E(χ2[k]) are governed by the
following linear dynamics: E(χ1[k + 1]) = HP

1 E(χ1[k]),

where HP
1 =

p11G
P
c (1) · · · p1nG

P
c (n)

...
. . .

...
pn1G

P
c (1) · · · pnnG

P
c (n)

; and

E(χ2[k + 1]) = HP
2 E(χ2[k]), where HP

2 =p11G
P
c (1)⊗2 · · · p1nG

P
c (n)⊗2

...
. . .

...
pn1G

P
c (1)⊗2 · · · pnnG

P
c (n)⊗2

. The matrix HP
1

has dimension equal to n2 × n2, while the matrix HP
2 has

dimension equal to n3 × n3.
To prove that the linear dynamics governing the first- and

second- moments are stable in the sense of Lyapunov, we will
show that HP

1 and HP
2 have eigenvalues strictly inside the

unit circle, for sufficiently small kp. This is proved according
to the following four steps.

Step 1: Several properties of the matrices GPc (i) are
determined. First note that GPc (i) = Ā −KpΦS2(i), where
Ā = eTA. The matrix A is a Metzler-matrix with zero
row sum. Since sum of each row A is equal to zero. It is
immediate that A has a non-repeated eigenvalue at 0 with
right eigenvector

−→
1 , with remaining eigenvalues strictly in

the ORHP. Using the Jordan decomposition of A to find
the matrix exponential, it thus follows that Ā = eTA has
a non-repeated eigenvalue at 1 with right eigenvalue

−→
1 ,

and hence the row sums of eTA are 1. Since A is a non-
singular irreducible Metzler matrix, it follows immediately
that Ā = eAT is strictly positive [22], [23]. Also, notice
that −KpΦS2(i) has strictly negative entries in row 1, . . . , n
of the ith column, and is zero otherwise. Further, for any
sufficiently small positive Kp (less than some K̄p), the
entries in the ith column of −KpΦS2(i) are strictly less
than the entries in the ith column of Ā in magnitude. Thus,
it follows immediately that where GPc (i) is nonnegative with
row sums less than or equal to 1, and one row sum strictly
less than one.

Step 2: From this point on (Steps 2-3), we investigate the
properties of HP

1 and HP
2 based on the obtained properties

of GPc (i). For the case that Kp = 0, this implies GPc (i) = Ā.
In that case, the sum of each row of HP

1 is equal to one and
all entries are positive. Therefore, HP

1 has one eigenvalue
equal to one and the remaining eigenvalues are inside the unit
circle. Now consider the graph representation of HP

1 . From

the expression for Hp
1 , the vertices in this graph form a single

recurrent class, since P is ergodic and A is fully connected.
Now consider the matrix Hp

1 and its corresponding graph
when a negative feedback is used. For sufficiently small
negative gains Kp (0 < Kp < K̄p for some K̄p), the matrix
Hp

1 continues to be nonnegative and the graphs continues
to contain a single recurrent class. Further, some entries in
HP

1 decreased compared to the uncontrolled case, and hence
at least one row in HP

1 has row sum less than 1. Thus,
the dominant eigenvalue of HP

1 is strictly less than 1 and
magnitude, and all eigenvalues of HP

1 are verified to be
located strictly inside the unit circle.

Step 3: An entirely analogous argument can be used to
prove that HP

2 has a single eigenvalue at 1, with other
eigenvalues strictly within the unit circle for uncontrolled
case. The proof for HP

2 requires verifying that GPc (i)
⊗2 has

nonnegative entries and row sums are less or equal than 1.
These properties follow immediately from an expansion of
the Kronecker product, whereupon the analogous logic as
Steps 1-2 can be used to characterize the spectrum.

The eigenstructures of HP
1 and HP

2 show that the linear
recursions for the first- and second- moment vectors are
asymptotically stable in the sense of Lyapunov, and hence
χ1[k] and χ2[k] for k = 0, 1, 2 . . . are upper bounded and
asymptotically decaying to the origin. Since the first- and
second- moments of x[k]−yref1 are purely linear functions
of χ1[k] and χ2[k], the moments are also verified to be
bounded and decaying to the origin. It remains to show that
the expected squared deviation E((x(t) − yref1)T (x(t) −
yref1)) is bounded for all t ≥ 0, and further asymptotes to
the origin. To see why this is true, notice that x(t)−yref1 is
a purely linear function of x[k∗]−yref1, where k∗ is greatest
integer less than t

T . Since x(t) − yref1 is computed from
x[k∗] by solving the closed-loop system over the interval
[k∗T, t], where t < (k∗ + 1)T , it follows that the linear
mapping between x[k∗]−yref1 and x(t)−yref1 is uniformly
bounded. Thus, it follows that the expected squared deviation
E((x(t)− yref1)T (x(t)− yref1)) is bounded for all t ≥ 0,
and further asymptotes to the origin.

�

An analogous result can be obtained for the mobile sensor
and actuator model, when proportional control is used:

Theorem 2: Consider the closed-loop diffusion process
in the case that the nodes are connected, and the location
Markov chain is ergodic. Consider the mobile sensor and
actuator architecture, and assume that a proportional control
is used (i.e. Kd = Ki = 0). For all sufficiently small negative
feedback (0 ≤ Kp ≤ K̄p, for some K̄p > 0), the first-
and second- moment dynamics for the MJLS formulation
are asymptotically stable in the sense of Lyapunov. Further,
regulation is achieved, i.e. x(t)−yref1 approaches the origin
in a mean-square sense.

The proof for the result is identical to that for the
incidental-measurement architecture, with only the change
that different entries in GPc (i) are decreased when a negative
feedback is applied. Since the proof is so similar, it is



omitted.
We remark that for a small positive gain kp, the moment

vector dynamics are necessarily unstable. This is because
the sum of some rows of HP

1 and HP
2 exceed 1 while all

other rows sum to 1, and therefore HP
1 and HP

2 must have
eigenvalues outside the unit circle.

Theorems 1 and 2 establish that all low-gain zero-order-
hold proportional control schemes achieve asymptotic sta-
bility of the first two moments, and hence that the expected
squared deviation between the state the reference signal ap-
proaches zero in a mean-square sense. The theorem is impor-
tant as a verification that incidental measurement/actuation-
based platforms can be used to regulate diffusive processes,
and serves as a starting point for tuning the gains to
achieve desired performance specifications or optimizing
performance tradeoffs.

Stability can also be verified for all low-gain proportional-
derivative control schemes, as formalized in the following
theorems:

Theorem 3: Consider the closed-loop diffusion dynamics
in the case that the nodes are connected, and the location
Markov chain is ergodic. Consider the incidental measure-
ment control architecture, and assume that a proportional-
derivative control is used (i.e. Ki = 0). For all sufficiently
small negative feedback policies (0 ≤ Kp ≤ K̄p and
0 ≤ Kd ≤ K̄d, for some K̄p > 0 and K̄d > 0), the first and
second moment vectors are governed by linear systems that
are asymptotically stable in the sense of Lyapunov. Further,
regulation is achieved, i.e. x(t)−yref1 approaches the origin
in a mean-square sense.

Proof:
The proof for the proportional-derivative controller builds

on the proof for the proportional control, hence only the
required additional steps are presented.

For the PD controller, reformulation of the sampled
dynamics as an autonomous MJLS requires tracking the

extended state vector −→η [k] =

[ −→
θ [k]

−→
θ [k − 1]

]
. The two-moment

analysis of the discrete-time closed-loop model can then
be developed using the Kronecker product vectors %1[k] =
−→v T [k]⊗η[k] and %2[k] = −→v T [k]⊗η[k]

⊗2. The expectations
of these vectors are governed by linear dynamics: E(%1[k+
1]) = HPD

1 E(%1[k]) and E(%2[k + 1]) = HPD
2 E(%2[k]),

Aymptotic stability of the first and second moment dynamics,
in the sense of Lyapunov, again can be assured by showing
HPD

1 and HPD
2 has eigenvalues strictly within the unit circle

for 0 < Kp < K̄p and 0 < Kd < K̄d.
Let us now consider the graph for the nonnegative matrix

HPD
1 . From the expression for HPD

1 (omitted to save space),
this graph is seen to contain a recurrent class of vertices,
comprising vertices 1 + 2n(z − 1), . . . , n + 2n(z − 1) for
z = 1, · · · , n. The sum of each row of HPD

1 corresponding
to the recurrent vertices is equal to one for Kp = Kd = 0.
Also, HPD

1 can be permuted to an upper triangular form,
such that the submatrix associated with the recurrent class
is in the upper left of the matrix. Thus, for the uncontrolled

network, HPD
1 has a single eigenvalue equal to one, while

the remaining eigenvalues are strictly within the unit circle.
For 0 < Kp < K̄p and 0 < Kd < K̄d, it is easy to check
that entries in the top-left submatrix corresponding to the
recurrent class are decreased; further, the entries decreased
are strictly positive. It thus follows that, for sufficiently
small K̄p and K̄d, the matrix HPD

1 is a nonnegative matrix
with a single recurrent class. Further, all rows of of HPD

1

corresponding to recurrent vertices have row sum less than
or equal to 1, and at least one row has row sum less than
1. It thus follows that, in the closed loop, the dominant
eigenvalue of HPD

1 is strictly less than 1 in magnitude. A
similar argument can be used to show that the dominant
eigenvalue of HPD

2 is strictly less than 1 in magnitude.
The remainder of the proof follows that for the propor-

tional controller. �

An analogous result can be obtained for the mobile
measurement-actuation control architecture. The result is
presented next (without proof, since it is very similar to that
for the incidental measurement architecture):

Theorem 4: Consider the closed-loop diffusion dynamics
in the case that the nodes are connected, and the loca-
tion Markov chain is ergodic. Consider the mobile sensor-
actuator control architecture, and assume that a proportional-
derivative control is used (i.e. Ki = 0). For all sufficiently
small negative feedback policies (0 ≤ Kp ≤ K̄p and
0 ≤ Kd ≤ K̄d, for some K̄p > 0 and K̄d > 0), the first and
second moment vectors are governed by linear systems that
are asymptotically stable in the sense of Lyapunov. Further,
regulation is achieved, i.e. x(t)−yref1 approaches the origin
in a mean-square sense.

Theorems 3 and 4 verify that low-gain PD controllers
achieve regulation in a mean-square sense. The results show
that arbitrary choices of the proportional and derivative feed-
back gains can be chosen, provided that they are sufficiently
small. This freedom to choose the proportional and derivative
gains at will means that stabilizing designs can be obtained
even if the diffusion process is incompletely modeled. The
stability analyses do not directly provide a comparison of the
P and PD schemes, but intuitively one might expect that the
derivative term would generally allow for faster regulation
without overshoot.

The behavior of low-gain PID controllers is more so-
phisticated, and the integral control gain has to be chosen
appropriately (specifically, sufficiently small compared to the
proportional and derivative gains) to ensure that regulation is
achieved; The following theorem verifies that appropriately-
designed low-gain PID controllers also achieve asymptotic
stability of the moments, and hence enable regulation.

Theorem 5: Consider the closed-loop diffusion dynamics
in the case that the nodes are connected, and the location
Markov chain is ergodic. Consider the incidental measure-
ment control architecture, and assume that a proportional-
derivative-integrator control is used. Consider applying a
small negative proportional and derivative feedback (0 ≤
Kp ≤ K̄p and 0 ≤ Kd ≤ K̄d, for some K̄p > 0 and



K̄d > 0). Further assume that a negative integral feedback is
applied, which is small compared to the proportional and
integral feedback terms (0 ≤ Ki ≤ f min(Kp,Kd), for
0 ≤ f ≤ f̄ for some f̄ ). the first and second moment vectors
are governed by linear systems that are asymptotically stable
in the sense of Lyapunov. Further, regulation is achieved, i.e.
x(t)− yref1 approaches the origin in a mean-square sense.

Proof: The proof is based on results in previous theorems
together with an eigenvalue sensitivity or singular pertur-
bation analysis. To develop the proof, we notice that the
closed-loop MJLS state matrix when the PID controller is
used can be expressed in terms of that for the PD controller,

as follows: GPIDc (i) =

[
ḠPDc (i) ε̄(i)
−→̄
V (i) 1

]
where ḠPDc (i) =

GPDc (i) − εŌ, ε = KiT , and Ō is 2n × 2n matrix with
all entries equal to one except the first n entries of row
i which are equal to corresponding entries of B′(i). Also,
ε̄(i) is column vector with 2n entries which all equal zero
except the ith entry, which is equal to −ε. Also,

−→̄
V (i) is

row vector with 2n entries, whose ith entry is equal to 1
and remaining entries are zero. In Theorem 3, it was shown
that all eigenvalues of GPDc are in unit circle for small Kp

and Kd. If we choose Ki sufficiently small compared to Kp

and Kd, then all entries of ḠPDc will remain positive, and
further all eigenvalues of ḠPDc will remain in unit circle as
well.

If we substitute the above form of the matrix GPIDc (i)
into HPID

1 , we have:

HPID
1 =


p11

[
ḠPD

c (1) ε̄(1)
−→̄
V (1) 1

]
· · · p1b

[
ḠPD

c (n) ε̄(n)
−→̄
V (n) 1

]
...

. . .
...

pb1

[
ḠPD

c (1) ε̄(1)
−→̄
V (1) 1

]
· · · pbb

[
ḠPD

c (n) ε̄(n)
−→̄
V (n) 1

]


(7)

By permuting HP
1 appropriately, we can simplify the eigen-

analysis of the matrix. In order to do that, we define H̃PID
1

as a permutation of HPID
1 , where the rows and columns

(2n + 1)z1, z1 = 1, . . . , n, are placed at the bottom and
right of the matrix respectively. Therefore, H̃PID

1 can be
written as follows:

H̃PID
1 =

[
F1 ε̃

Ṽ P

]
(8)

where F1 =

p11Ḡ
PD
c (1) · · · p1nḠPD

c (n)
...

. . .
...

pn1ḠPD
c (1) · · · pnnḠPD

c (n)

 and ε̃ =

p11ε̄(1) · · · p1nε̄(n)
...

. . .
...

pn1ε̄(1) · · · pnnε̄(n)

 and Ṽ =


p11
−→̄
V (1) · · · p1n

−→̄
V (n)

...
. . .

...

pn1

−→̄
V (1) · · · pnn

−→̄
V (n)

.

If ε is equal to zero (i.e. no integral term is used), then
H̃PID

1 has lower triangular structure and its eigenvalues are
equal to the union of the eigenvalues of F1 and P . It is
easy to show all eigenvalues of F1 are inside the unit circle
because it is positive matrix with all row sums less than

1. Also P has one eigenvalue equal to one, and remaining
eigenvalues equal to zero. On the other hand, If Ki and
hence ε is sufficiently small, from the eigenvalue perturbation
theory, we expect the eigenvalues of H̃PID

1 to be close to the
eigenvalues prior to perturbation, and hence all eigenvalues
except the eigenvalue at 1 necessarily remain within the unit
circle. It remains to prove that the eigenvalue of H̃PID

1 at
1 for ε = 0, moves into the unit circle for sufficiently small
positive ε. This can be shown using an eigenvalue sensitivity
analysis. Using the fact that the matrix H̃PID

1 is nonnegative
for ε = 0, both left and right eigenvectors associated with the
unity eigenvalue are seen to be nonnegative. Indeed, it can be
seen from the reducibility structure of H̃PID

1 that the final
m entries of the right eigenvector are strictly positive, while
all entries of the left eigenvector are strictly positive. Also, ε̃
is non-positive for non-zero ε. Therefore we can argue from
the eigenvalue sensitivity formulate that eigenvalues strictly
decrease for sufficiently small Ki. Exactly same argument
can be applied toHPID

2 . The remainder of the proof is similar
to that for Theorem 1 and 3, and hence is omitted.

�

Again, a similar result can be obtained for the mobile
sensor-actuator control architecture. The result is presented
next (without proof, since it is very similar to that for the
incidental measurement architecture):

Theorem 6: Consider the closed-loop diffusion dynamics
in the case that the nodes are connected, and the loca-
tion Markov chain is ergodic. Consider the mobile sensor-
actuator control architecture, and assume that a proportional-
derivative-derivative control is used. Consider applying a
small negative proportional and derivative feedback (0 ≤
Kp ≤ K̄p and 0 ≤ Kd ≤ K̄d, for some K̄p > 0 and
K̄d > 0). Further assume that a negative integral feedback
is applied, which is small compared to the proportional and
integral feedback terms (0 ≤ Ki ≤ f min(Kp,Kd), for 0 ≤
f ≤ f̄ for some f̄ ). Then the first and second moment vectors
are governed by linear systems that are asymptotically stable
in the sense of Lyapunov. Further, regulation is achieved, i.e.
x(t)− yref1 approaches the origin in a mean-square sense.

The stability analyses developed in this section verify that
PID controllers can be applied to incidental measurement
and actuation based architectures for controller diffusive
processes. These analyses provide a foundation for designing
PID controllers to regulate diffusive processes: a natural
next step is to study tuning of the controller gains to
achieve desirable performance. Another interesting direction
of further work is to relate the performance to the graph
topology of the diffusion process, and the Markov model
for the sensing/actuation platform. Also, it is important to
stress that the moment stability analyses exploit the diffusive
structure of the network dynamics; the verification that
low-gain controllers with incidental measurements/ actuation
stabilize such diffusive processes is the main result of this
study.



IV. EXAMPLE

The control of a linear diffusive network using incidental
measurements and/or actuation is illustrated in a small ex-
ample. Specifically, the two control architectures studied in
the paper are compared with a fixed scheme.

A network with 7 nodes, which are connected as shown
in Figure 1, is considered. The following state matrix
is assumed for the diffusive network process: A =

−1 1 0 0 0 0 0
0 −1/6 1/6 0 0 0 0

1/2 1/2 −1.125 0.125 0 0 0
0 0 0.25/3 −2.25/3 1/3 1/3 0
0 0 0 1/2 −1.25 1/2 0.5/2
0 0 0 1 1 −2 0
0 0 0 0 0.5/8 0 −0.5/8


.

To evaluate the influence of sensor and actuator posi-
tion on control performance, three control architecture are
considered. First, a fixed architecture where the sensor and
actuator are both fixed at at a central node (Node 3) is con-
sidered. This fixed scheme is compared with the incidental-
measurement architecture and the mobile measurement and
actuation architecture studied in this work. For both archi-
tectures, the transition probabilities for the location Markov
chain are assumed to be Pii = 0.95 for i = 1, . . . , 7,
Pij = 1

120 for i 6= j. For the incidental-measurement
architecture, the actuator is assumed to be fixed at node 3.
The regulation goal is yref = 0, and the initial condition is
x(0) = [−30, 12,−20, 20, 40, 30, 50]T . A time-step T = 1
is assumed.

Fig. 1: Topology of the diffusive network model.

Figure 2 show simulations of the state dynamics in the
given example, for the three case studies. Control gains are
chosen as Kp = 0.72, Ki = 0.01 and Kd = 0.02. The
simulations demonstrate that the controller is able to drive
all nodes'states to the reference signal, for all three controller
architectures. Figure 2a shows that the fixed architecture
requires significant time for regulation. In particular, since
there is a weak connection between nodes 3 and 4, the states
of nodes 4, 5, 6 and 7 have delay in reaching the desired
value. The incidental measurement architecture achieves
faster regulation, albeit at the cost of increased variability in
the interim Fig (3.b). Faster regulation is possible because the
measurement device visits nodes that are far from actuation
location, which forces the control system to modulate the
actuation in response to deviations at these remote locations.

Finally, the mobile measurement-actuation architecture al-
lows much faster regulation, without overshoot. The example
indicates that controls using incidental measurements and
actuation may be practical for control of complex network
processes. Development of formal performance bounds for
the incidental measurement/actuation architectures is an im-
portant direction of further work.

a)

b)

c)

Fig. 2: The state dynamics of the example diffusive network
model are shown, the three control architectures: a) fixed
actuator and sensor in room 3 ; b) incidental measurements
with fixed actuator in room 3 ; c) mobile measurement and
actuation. In all figures, location of the measurement device
at each time instance is indicated using a dashed line.



V. CONCLUSIONS

Regulation of diffusive network processes using incidental
measurement- and actuation- based feedback control ar-
chitectures has been studied. First- and second- moment
stability upon application of low-gain PID controllers has
been proved. The numerical simulation illustrates differences
between the two introduced incidental measurement and
actuation paradigms, and suggests that these paradigms may
perform well compared to traditional fixed control schemes.
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