Ratatoskr: Wide-Area Actuator RPC over GridStat with Timeliness,
Redundancy, and Safety

Erlend S. Viddal* Stian Abelsen! David E. Bakken* and Carl H. Hauser
Washington State University
School of Electrical Engineering and Computer Science
Pullman, Washington, USA
{eviddal, stian.abelsen } @ gmail.com, {bakken, chauser} @wsu.edu

Abstract

GridStat is a QoS-managed middleware framework de-
signed to replace the power grid’s aging, inflexible, and
slow data communications system. GridStat is a special-
ization of the publish-subscribe paradigm that takes advan-
tage of the semantics of periodic status data updates to pro-
vide data delivery with a per-subscriber rate, latency, and
redundant paths. While GridStat is well-suited for deliv-
ery of sensor data over a wide-area network, its baseline
one-way mechanisms are not suitable for round-trip invo-
cations such as setting an acutator or calling between con-
trol centers. In this paper we present the design, implemen-
tation and experimental evaluation of Ratatoskr, a tunable
RPC mechanism that builds on the QoS semantics of Grid-
Stat and supports three kinds of redundancy. Additionally,
user-defined pre- and post-condition predicates over Grid-
Stat status variables are built into the call semantics. Pre-
conditions can abort an RPC call if the measured conditions
dictate, while post-conditions provide additional physical
assurance the call succeeded.
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1. Introduction

The communication infrastructure of the electric power
grids in the USA were developed largely as a result of the
1965 blackout. Due to low investment by utilities, this in-
frastructure has not been meaningfully updated since then;
it is still slow, inflexible, and does not even meet today’s
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data delivery requirements let alone tomorrow’s [9, 5, 3].

GridStat is a QoS-managed publish-subscribe middle-
ware framework designed to augment and eventually re-
place the grid’s aging communication system [6, 3, 7]. It
provides one-way delivery with per-subscriber rate, latency,
and redundant disjoint paths over a critical infrastructure’s
wide-area network. GridStat has been involved with a num-
ber of research collaboraitons with electric utilities since
2004 and has been under development since 2000.

GridStat’s one-way delivery mechanisms are sufficient
for delivering updated values from remote sensors, How-
ever, they are inadequte for a round-trip remote proce-
dure call (RPC), for example to an actuator in the power
grid or between control centers. There has been some
work in CORBA on real-time and fault-tolerance proper-
ties [18, 13, 17, 16]. However, none of these was designed
specifically for the kinds of conditions faced in a wide-area
network [22], and we believe the CORBA object model
is far to complex for the more modest needs of a simple
request-reply call to an actuator [20].

In this paper we present Ratatoskr!, a highly tunable
RPC mechanism tailored to the needs of the power grid and
built over GridStat. The research contributions of this paper
are:

e Design and implementation of an RPC mechanism
over QoS-managed, one-way publish subscribe mech-
anisms. The RPC mechanism supports three distinc-
tive techniques for redundancy, offering tradeoffs be-
tween worst-case deadlines, use of network resources
and resiliency towards a variety of network failures.
Applications are allowed fine control of redundancy
semantics.

In Norse mythology, Ratatoskr is a squirrel climbing around the great
world tree Yggdrasill, ferrying messages and gossip between the mytho-
logical creatures living in its branches, and in particular delivering insults
between an eagle residing in the treecrown and a dragon gnawing on the
roots.



e Design and implementation of pre- and post-condition
mechanisms integrated with RPC semantics pro-
vides additional functionality when compared to
application-level implementations.

e Experimental evaluation quantifying the redundancy
techniques.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of GridStat. Section 3 describes
the Ratatoskr architecture, while Section 4 details its RPC
mechanism. Section 5 presents an experimental evaluation
of Ratatoskr. Section 6 overviews related work, while Sec-
tion 7 concludes and discusses future research.

2 GridStat

GridStat is a QoS-managed, publish-subscribe middle-
ware framework designed for delivering periodic updates
of sensor data for the electric power grid and other wide-
area critical infrastructures. Its architecture is given in Fig-
ure 1. GridStat’s data plane is responsible for delivering the
sensor data. A single sensor datum is called a status vari-
able, and can be subscribed to by multiple subscribers. The
data plane consists of pubishers, which produce the sensor
data; subscribers, which consume the data; and a network
of status routers, specialized middleware-layer forwarding
engines that deliver the status variables.

GridStat’s management plane is responsible for manag-
ing the data plane, including making admission control de-
cisions. It is organized into a hierarchy of QoS Brokers that
is designed to map directly onto the geographically-based
hierarchies that the power grid and other critical infrastruc-
tures are normally organized into. A leaf QoS broker is the
lowest level in this hieararchy and is responsible for, and di-
rectly connected to, a collection of status routers that are or-
ganized into a single administrative domain called a cloud.

GridStat’s data delivery semantics are novel in two broad
ways. First, they are a specialization of the publish-
subscribe paradigm tailored to leverage the semantics of
periodic streams of data updates. For example, in a nor-
mal publish-subscribe system, an event that is being for-
warded from a publisher to its subscribers cannot be arbi-
trarily dropped, because it is in general impossible to know
how it will affect the application programs that subscribe to
it. However, in GridStat the subscribers’ required rate, la-
tency, and number of redundant (disjoint) paths are part of
the API to subscribe to a given status variable[6, 10]. With
this knowledge, a status router can discard updates, an op-
eration we call rate filtering, when downstream subscribers
have gotten an update recently enough to satisfy their la-
tency and rate requirements. This can potentially save a
large amount of bandwidth, because many sensors in the
power grid produce updates with a hard-coded rate that is
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Figure 1. GridStat architecture

deliberately conservative, i.e. at a rate above what its engi-
neers believed any application would require. Rate filtering
in GridStat preserves temporal relationships between differ-
ent GPS-timestamped updates; for more details, see [11, 6].

The second way in which GridStat’s data delivery is
novel is that different subscribers to a given status variable
can be provided with different rate, latency, and number of
redundant paths. This allows a power device such as a re-
lay that is physically very close to the publisher to be given
a high rate and low latency, while remote subscribers that
only need to loosely track the variable can be given a much
lower rate and higher latency. If this flexibility was not sup-
ported, then the remote subscribers would have to receive
the high rate of delivery that the device in the same substa-
tion is given. This can be a large amount of bandwidth over
a large geographical area: for example, many hundreds of
miles in a large power grid such as that in Western Europe
or the Western USA.

GridStat has been under development since 2000 [2], and
has been receiving live data feeds from a regional electric
utility since 2004 [21]. It has been involved in a regional pi-
lot project involving two US national energy labs since mid-
2007, and a pilot project involving utilities in the Southeast-
ern USA is planned for early 2008. More details on the ar-
chitecture and design of GridStat can be found in [6, 3, 7].

3 Ratatoskr

Ratatoskr uses a two-tiered architecture. A communi-
cation module implements the 2WoPS protocol, providing
timely, fault-tolerant two way communication over one-way
GridStat paths; and an RPC module provides RPC server
and client functionality. Separating the communication pro-
tocol into a separate module allows the communication



module to be reused by other applications. For example,
the 2WoPS protocol has been utilized for control communi-
cation between GridStat QoS brokers [1].

Figure 2 shows an overview of the modules of Ratatoskr
(light shade), the GridStat modules used by Ratatoskr (dark
shade), and other applications using the modules (white).
The example shows the architecture stack for a control cen-
ter and a substation. The main intended use of Ratatoskr is
illustrated by the control center’s energy management sys-
tem (EMS) using Ratatoskr RPC to execute control oper-
ations on an actuator in the substation. We believe that it
also can be useful for control messages going to other tar-
gets than an actuator, for example a peer control center or
from a higher-level balancing authority to a control center,
but a detailed investigation of its applicability to these con-
texts is future work.

3.1. The 2WoPS Protocol

To achieve a two-way communication style needed for
RPC signaling, Ratatoskr uses two GridStat pub-sub con-
nections. Each RPC host utilizes both a publisher and a sub-
scriber - the publisher for sending data as published status
variables and the subscriber for receiving data. Two hosts
wishing to communicate each publish a new status variable
and subscribe to the other hosts published variable. Data
is sent over the connection by publishing status events. It
should be noted that as GridStat uses the status dissem-
ination pub-sub paradigm for message forwarding, send-
ing data in this manner has a very low routing overhead,
as paths are established at connection setup time and for-
warding ports are mapped to a simple connection identifier.
Currently the 2WoPS protocol supports only communica-
tion between two hosts, but the GridStat network has excel-
lent support for multicast of status events so future versions
could add support for one-to-many and group communica-
tion styles. For the remainder of the paper, the initiator of
a connection will be referred to as a 2WoPS client and a
receiving host the 2WoPS server, although in practice no
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Figure 2. Ratatoskr module stack

distinction is made after connection setup.

The 2WoPS protocol leverages the QoS guarantees pro-
vided by the GridStat publish subscribe paths to supply
timely communication. Further, the protocol aims to pro-
vide a high degree of fault tolerance while retaining pre-
dictable delivery times. To this end, three redundancy tech-
niques are employed to strengthen delivery guarantees:

e Spatial redundancy: One major feature of GridStat is
that subscriptions may be routed through multiple dis-
joint network paths. If a status event sent over two re-
dundant paths is dropped or corrupted along one path,
successful delivery is still possible along the secondary
path. The 2WoPS protocol exposes the number of
disjoint paths used for the paths between the 2WoPS
client and server and for the return path during setup
connection time, and filters any excess status events
upon receipt. For a connection in which both direc-
tions employ n disjoint paths, we say that the connec-
tion has a spatial redundancy level of n. Status events
sent over such a connection will tolerate n — 1 losses,
and are not affected by temporal concentration of er-
rors. It should be noted that common mode failures
thoughout the network, such as very high traffic lev-
els during attacks or crisis situations may affect com-
ponents involved in all redundant paths. The degree
of spatial redundancy possible for a connection de-
pends on the network topology as the network must
support disjoint paths from the 2WoPS client to the
2WoPS server, but it is expected that the high relia-
bility requirements of a critical infrastructure as the
power-grid will justify the expense of building a net-
work with a high degree of redundancy. Spatial redun-
dancy incurs some delay overhead because of routing
complexity and, also depending on the network topol-
ogy, as the delay-optimal route might be incompatible
with provoding the required number of disjoint paths.
It should be noted that the process of allocating redun-
dant paths through the network is more complex than
allocating a single path, and so spatial redundancy in-
duces overhead to the network management, but only
at subscription setup time. GridStat supports delay
guarantees also for paths redundant to the best-delay
route (the primary path), and so a connection employ-
ing n spatial redundancy will provide delay guarantees
even in the face of up to n — 1 losses. Redundant dis-
joint paths also lower the expected delivery latency in
the face of occasional dropped or delayed packets.

o Temporal redundancy: While spatial redundancy pro-
vides protection from a range of network failures, the
network costs and delay properties of a large num-
ber of paths could prove prohibitive in cases where a
very high degree of fault tolerance is required or where



the network topology is unsuited for spatial redun-
dancy. Ratatoskr offers temporal redundancy by allow-
ing each data unit sent by the 2WoPS protocol to be re-
peatedly published without waiting for a round-trip. A
data unit published n times has a temporal redundancy
level of n and tolerates n — 1 losses. The technique
consumes n times more bandwidth than regular sends,
but has no additional setup costs. Additionally, in com-
parison to spatial, which has significant worst-case de-
lay overhead because of longer paths, and ACK/retry,
which may be unbounded, temporal redundancy adds
minimal overhead to the worst case delay (the send
time of the copy of the packet). Temporal redundancy
does not provide the same level of protection as spa-
tial redundancy, as network losses may be temporally
concentrated. For example, network congestion will
often lead to periods of high loss rates when a router’s
buffer for an outgoing link is full or maintenance on
a router might disable all connecting links for several
minutes. To add to this, by sending several copies
of the same 2WoPS packet in a short span, the extra
bandwidth used might add to existing congestion. The
2WOoPS protocol allows applications to specify a delay
between sending each temporally redundant copy of a
2WoPS packet, and the degree of temporal redundancy
may be specified for each send.

o ACK/resend: While spatial and temporal redundancy
provides a high degree of fault tolerance, they do not
provide any feedback to the application about success-
ful delivery, and do not provide protection from fail-
ures that affect the whole network, such as periods of
heavy congestion. Ratatoskr provides a third technique
for redundancy by having message receivers ACK suc-
cessfully received 2WoPS messages, and allowing the
user to specify that messages that do not produce an
ACK should be resent up to n times. A message that
is set to be resent up to n times when ACKs are miss-
ing has an ACK/retry level of n. Successfully received
ACKs are reported back to the server, while messages
that do not receive an ACK even after n resends are
reported with unknown delivery status.

3.1.1 Combining Redundancy Techniques

Redundancy measures can be combined as seen fit by the
user. Temporal and spatial redundancy measures are cumu-
lative and affect all 2WoPS packets, including ACKs. For
example, if a sending a 2WoPS packet with 3 temporally
redundant sends and 4 ACK/resends over a connection with
2 spatially redundant paths in each direction, three status
events containing copies of the message packet will be sent.
At the entry-point router, each of the status events will be
forwarded to the first routers of the redundant paths, and, as-

suming no network failures, six status events containing the
same 2WoPS packet will arrive at the receiver. The receiver
will similarly send a single ACK 2WoPS packet, which will
be sent in three temporally redundant status events, which
again will be copied onto the redundant paths. If all ACKs
are lost in the network, the sender will resend three new sta-
tus events containing the message, and so on. This gives
application designers the ability to tailor a connection to the
needs of the application, allowing use of high spatial and
temporal redundancy where a low delay is required, or rely-
ing on ACK/resend for redundancy for less delay-sensitive
applications or where bandwidth is scarce. Combining re-
dundancy techniques in this manner gives a delivery guaran-
tee based on the cumulative worst cases of the redundancy
techniques. A 2WoPS packet sent with spatial and tempo-
ral redundancy will have an end-to-end delivery guarantee
equal to the last temporally redundant packet sent along the
longest spatially redundant path. The timeout for retrying
a packet sent with ACK/retry, spatial and temporal redun-
dancy is calculated as two times the end-to-end delivery
guarantee, as in the worst case the only status event contain-
ing the message that reaches the server is the last temporally
redundant along the longest spatial path, and the same for
the ACK.

4 The Ratatoskr RPC Mechanism

Ratatoskr RPC (RRPC) is a remote procedure call pro-
tocol for power-grid control communication built on top of
the 2WoPS protocol. The primary application for Ratatoskr
is remote operation of power-grid actuators, either to a gate-
way interfacing multiple devices or by directly controlling
intelligent electronical devices (IEDs) with remote inter-
faces embedded in the actuator itself. The current grid com-
munication system is unable to support trends in the power-
grid stress levels and the security threat picture, and pro-
posed solutions require real-time, reliable control [5].

RRPC draws extensively on the features provided by the
2WOoPS protocol. Delivery guarantees for calls is achieved
using GridStat’s QoS enabled network communications.
Because the use of redundancy trades off network resources,
or worst case delay in the case of ACK/retry, against safety,
applications designers are allowed detailed control over the
techniques used for redundancy.

In addition to increased safety through fault-tolerance,
pre- and post-conditions on calls are built into the RPC se-
mantics. Pre-conditions are conditional expressions over
GridStat status variables that are evaluated at the server (a
power grid actuator) before execution of an RRPC call, and
if the expression is false, the call to the physical actuator is
not executed. Post-conditions are similar expressions eval-
uated after the call has executed, and negative results are
reported back to the application via exception. This can



provide a physical confirmation that the actuator succeeded
even if all of the redundant reply messages are lost.

4.1 Pre-and Post Conditions

For power grid control operations, placing pre-
conditions on the execution may help in preserving safety in
face of unwarranted situations such as power-grid anoma-
lies or unexpected mechanical operation. Because of the
distances involved, communication must be expected to suf-
fer from bandwidth and delay limitations. Thus one may
assume that the client-side information about server state
is limited and not fully updated, and following this, pre-
conditions should be placed on the server-side of the call.

Examples of pre-conditions in power-grid operation are:

e Isolators are actuators that connect and disconnect de-
energized power circuits. A precondition could be to
verify that a line is de-energized before attempting iso-
lation. (A number of utility technicians are electro-
cuted every year even though both the EMS software
and the control center operators were certain the line
was de-energized.)

e High voltage equipment carries with it electrocution
hazard, and another pre-condition could be to verify
that no manned maintenance is scheduled at a field site
when performing operations that might place mainte-
nance personnel in danger.

Ratatoskr further allows application designers to use the
same predicate modules used for pre-conditions to place
post-conditions on calls. Power-grid operations are com-
plex, and actuator operations may give unexpected results
in face of situations such as mechanical malfunctions or op-
erator overrides. Server-side post-conditions utilize the rich
information environment local to the substation for analyz-
ing the physical outcome of an execution and returning a
brief report to the client. Thus client applications can review
the results of calls without having to retrieve large amounts
of data from the substation. By allowing a delay before the
post-condition is evaluated, the effect of the operation is al-
lowed to stabilize. By designing the post-conditions into
the RPC semantics, the result of the post-condition is trans-
ferred to the client as a separate send, without affecting the
delay of the RPC call itself.

Examples of post-conditions in power-grid operation
are:

e Load tap changers are components of certain trans-
formers that allow adjustmentment of output voltage.
A post condition could be to verify the new voltage
level after load tap changer operation, or even to gener-
ate a status report from all connected devices and send
it back to the client.

e Transformer protection is a scheme to detect internal
faults in a transformer and isolate it by breaking all
connected lines if a fault is detected. A post-condition
could be to trigger a transformer protection scheme af-
ter all transformer operations.

5 [Evaluation

Ratatoskr was evaluated with respect to performance in
face of network faults. The purpose is to understand the
efficiency of the implemented fault tolerance techniques on
RPCs over a faulty network, not to evaluate the performance
of the prototype implementation, as a real-time implemen-
tation is outside the scope of the prototype design.

5.1 Evaluation Procedure

Evaluations were performed by connecting Ratatoskr
client and server processes to a small GridStat network and
commencing a number of RPC calls from the client to the
server. To introduce network faults, event channels between
status routers were routed through a network link emula-
tor introducing delay and errors. Links going through the
link emulator are referred to as emulated links. This setup
tries to emulate control traffic over a wide area network of
status routers, where both the client and server are either
connected to their entry-point status router by a local area
network, or running as processes on the same computer. No
delay or loss is induced on the link between RRPC peers
and their entry-point SRs. This is based on the expectation
that a deployment of GridStat will include a wide deploy-
ment of status routers throughout the power grid to provide
a high degree of network redundancy, which makes it likely
that sites using RRPC also contain a status router.

5.1.1 Evaluation Topology

The topology used for the evaluation is shown in figure 3.
13 status routers form two paths between the client and the
server, one of 7 links and one of 6. This is to allow for
the fact that when using spatial redundancy additional paths
may often be longer than a single best path. The current
implementation of GridStat does not allow more than two
redundant paths. No additional links and status routers out-
side the two paths were employed as routing between the
same two peers in a static network (such as the current ver-
sion of GridStat) always uses the same path no matter the
erTors.

5.2 Evaluation Setup

5.2.1 Processes

The processes used for testing were:
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e 13 GridStat status routers
e 1 GridStat leaf QoS broker

e | evaluation program implementing a Ratatoskr client
peer (client)

e | evaluation program implementing a Ratatoskr server
peer (server)

e | Sun Java CORBA nameserver, not shown in Figure 3

e | Java program providing socket tunnels with loss and
delay properties (network link emulator), not shown in
Figure 3

5.2.2 Hardware

The evaluation was tested on a single computer, running a
Core2 duo 2.13GHz dual-core processor and 4 gigabytes
of RAM. The operating system was Ubuntu linux, kernel
2.6.20-16 compiled with 1 millisecond kernel tick intervals
and full kernel preemption. All evaluated programs were
implemented in Java, compiled and run with sun java2SE
6 (version 1.6.0.00). All inter-process communication was
done over operating system UDP sockets for GridStat data
traffic and Sun’s Java 2 Platform CORBA Package for con-
trol. All tests were performed in user mode with regular
process priority and with the graphical operating system in-
terface turned off.

5.2.3 Garbage Collection Handling

A mechanism was implemented to measure the im-
pact of garbage collection and substract this from
call results. The mechanism queries the Java
java.lang.management.GarbageCollectorMXBean

interface for recent garbage collection operations and their
durations, and if gc operations have occured, substracts
the gc operation duration from the end-to-end duration

of the affected call. Early measurments revealed that
the garbage collector had a significant impact on results.
As the purpose of the evaluation was to evaluate the
effectiveness of the redundancy measures, and not the
execution-time predictability of implementation, we found
that removing garbage collection would improve measur-
ment data. Further, a deployment of Ratatoskr would have
to provide some degree of execution time predictability,
suggesting that a release would use some other, more
predictable sort of memory management, i.e. explicit
memory allocation/deallocation.

5.3 Fault Models

GridStat uses multiple underlying network technologies,
spans a wide area, and will sustain several usage patterns
(usage patterns to this point includes rate based status up-
dates and bursty RPC traffic). This makes for very complex
behavior and it is difficult to provide a good fault model for
GridStat without field testing. For this evaluation, two fault
models were combined to account for the rich diversity of
potential fault patterns in a GridStat deployment.

e Omission-fault - Each link is assigned a uniform prob-
ability of dropping each packet passing through it. The
drop probability is the only variable for the omission-
fault model. Each drop is completely isolated; no other
link or later or earlier packet on the same link is af-
fected by a drop. Omission-fault attempts to model
temporally and spatially isolated drops in links where
no retry-upon-failure is attempted below the transport
layer in the protocol stack. Examples of uniform drop
rate errors are background noise or very short term
physical interference in links causing packet data cor-
ruption: passing physical objects in the way of the
beam of a microwave beam, bursts of electromag-
netic noise from power anomalies in a substation wired
with copper or frequency noise from grid devices in a
broadband over power link.

e Duration-fault - Each link is in one of two states:
disabled or enabled. If disabled, all packets passing
through the link are dropped. If enabled, the opera-
tion of the link is not affected, and all packets pass
through the link unless omission failures occur. Links
are ordinarily enabled, except for 1-second periods of
disable state. Disabled state periods occur by a Pois-
son process, where the average number of occurrences
per second () is the only variable for the duration-
fault model. Duration-faults model transient failures in
network components. Examples may include: router
maintenance, fiber cuts or local power-outs. Such fail-
ures may certainly have a duration of well over a sec-
ond, but disabling for one second is enough to no-



tice the effects of duration failures on communication.
It should be noted that dynamically routed networks
will quickly adjust so signals will circumvent duration
faults, even nearly instantaneously [12]. GridStat uses
static routing for steady-state effciency and through-
put, and so paths will not be adjusted even if faults are
detected. This is future work, but the path calculations
are costly and in many cases may not be worthwhile;
this is why the primary mechanisms for overcoming
longer-term failures of network links and status routers
is spatial redundancy.

5.4 Experiment Procedure

The following experimental procedures were utilized:

e For all experiments, the process running the Ratatoskr
client also functioned as experiment coordinator.

e For each experiment session, 10,000 RPC calls were
made to warm up the system, and then one or more
experiments were run sequentially.

e An experiment consists of 10,000 RPC calls with data
gathered from each call.

e A new Ratatoskr connection was established for each
experiment, and closed at the end of the experiment.

e All calls were made with an unlimited number of
ACK/retries.

e Between each call and the next, all links emulated in
the link emulator was reset, specifically by setting the
internal clock used for duration failure 2 * (1/\) sec-
onds into the future, in effect ending all previous dis-
abled states and allowing new ones to arrive.

o A link delay of 1 millisecond was used unless specified
otherwise in the experiment description.

e When temporal redundancy was used, a two millisec-
ond delay between redundant sends was used.

e For all experiments without spatial redundancy, calls
were made over a path consisting of 6 emulated links.
For experiments using spatial redundancy, calls were
made over one path of 6 emulated links and one path
of 7 emulated links.

e The timeout for the ACK/retry technique had a base
of 25 milliseconds, allowing 12 ms for transfer delay,
20 ms for garbage collection and 3 ms for overhead
from the link emulator, GridStat routing and Ratatoskr.
Higher timeouts were assigned by Ratatoskr to sends
with temporal or spatial redundancy due to the wait

between redundant sends and the extra hop in the spa-
tial paths. Specifically, using spatial redundancy added
2 ms to the timeout, and using temporal redundancy
added 2 ms for each redundant send.

5.5 Result Data

The following data was extracted from each call:

e Time was measured from when the call was made until
the result arrived (end-to-end delay).

e The number of timeouts experienced was recorded.
This includes any timeouts the server experienced
while attempting to send the result. Specifically, the
number of timeouts for a call is the number of time-
outs at the client before the first time a call arrives at
the server hence, not including timeouts introduced by
missed ACKs), and the number of timeouts for the re-
sult to reach the client the first time (again not includ-
ing timeouts introduced by lost ACKs).

e Early success rate for experiments is defined as the
number of calls with no retries divided by the total
number of calls.

5.6 Resiliency of Temporal Redundancy

To evaluate the resiliency of the temporal redundancy
mechanism, a series of experimental runs was performed
with increasing degrees of temporal redundancy (1, 2, 4 and
8 sends). Each of the temporal redundancy levels was tested
over a set of omission fault rates (1%, 2%, 4% and 8%) ap-
plied to all emulated links. Duration loss was omitted from
the evaluation, and is addressed in a later experiment. The
results are shown in figure 4, with corresponding expected
results from analysis. The analysis combines the drop rates
of individual links into one drop rate for the 6-link path from
client to server (f¢—iink), and calculates the probability of
at least one packet being delivered (Ssend = (1 — fo—tink)"™
for temporal redundancy level n. For the end-to-end loss
probablility, the probabilities for successful delay of both
the send and the return is s2_, ;. The experimental results
match the analysis very closely.

Figure 4 shows that two temporally redundant sends are
not sufficient to entirely overcome a 1% loss rate, but with
99.2% early successes against 88.5% for the non-redundant
calls it is still a good improvement. With 4 resends, 99.92%
early successes are achieved at 4% failure rate. For 8 re-
sends, 99.92% of calls were early successful even at 8%
loss rate, where the end-to-end early success rate without
reliability was 36.5%. Even during periods of intensive net-
work loss, critical applications where the extra bandwidth
for temporal redundancy can be spared should be able to



perform RPC calls with very few retries, given that the loss
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patterns accomodate temporal redundancy. oo e
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fault durations for links as fault percentages (1s/50s=2%,
1s/100s=1%...).

For the experiments, 100% early successes was achieved
for both 1s/10000s and 1/1000s fault rates. As this is for
10,000 calls, this is encouraging as it satisfies at least a
99.99% end-to-end reliability requirement. For 1s/500s
fault durations, 99.96% early success is achieved.

Figure 4. Early success for temporal redun-
dancy over varying omission fault rates
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poral redundancy for the failure models used. Here, per-

formance refers to the ability to tolerate network faults and
end-to-end delay over a faulty network. Experiment runs %600%
for no redundancy, 4 temporally redundant sends, spatial re-
dundancy and the combination of the two were performed
over 1% omission fault rate, 1 second fault duration every Figure 5. Early success for spatial redun-
10000 seconds, the combination of the two and no failures. dancy over varying duration faults

The early success rates are shown in figure 6. The average
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duration with standard deviation for all redundancy levels
with both fault models combined is shown in figure 7. Cu- Early success rate, 10,000 packets
mulative distributions of timeouts experienced before call 10000% |
success for all redundancy levels for the combination of
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fault models is shown in figure 8 (note that the percent- .
age ranges on the graphs are different to allow visible de- 96.00% |
tails). The highest calltimes measured with the combination oo

of losses are: 939 milliseconds for no redundancy, 91 ms for = e

spatial redundancy, 977 ms for temporal redundancy and 24

ms for the combination of the redundancy techniques.
From figure 6, it is seen that for 1% omission loss, tem-
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achieve early success, which makes for very unstable call- Figure 6. Early Success for varying redun-
times. The 1s/10000s duration fault setting does not affect dancy and loss

the early success rate of any of the redundancy levels too



much, while the combination of fault models has a pattern
very similar to that of 1% omission failure.

In figure 7, the effects of duration loss becomes apparent.
Temporal redundancy, which is ineffective against duration
faults, has a considerably higher standard deviation of end-
to-end delays than spatial redundancy. Together with the
low early success rate, this signifies that a few calls must
retry several times before success is achieved, even with
four redundant sends. The experiment with no redundancy
follows a similar pattern with high standard deviation of
end-to-end delays, and also the average end-to-end delay is
higher. This is from the high percentage of calls that timed
out. The end-to-end delay with both forms of redundancy
retain the same average as spatial and temporal redundancy,
and with a small standard deviation. No loss was experi-
enced during the sends with full redundancy. Figure 8 de-
picts standard deviation patterns. 99.85% all of the calls
made with temporal redundancy incurred no timeouts, but
the distribution has a long tail, and 0.05% of the calls in-
curred over 10 retries. The highest end-to-end delay mea-
sured for temporal redundancy was 977 milliseconds, and
the highest number of retries was 22. Comparing the cu-
mulative distribution for spatial redundancy to the tempo-
ral calls reveals that while a relatively high number of calls
experience timeouts (over 0.8%), only a single call experi-
ences the highest number of timeouts, 2, and 91 millisec-
onds was the highest measured end-to-end delay. With both
redundancy techniques employed, no timeouts were expe-
rienced and the highest measured end-to-end delay was 24
milliseconds. Without redundancy, over 12% of the calls
experienced timeouts and the highest number of timeouts
was 25, with the measured end-to-end delay 939 millisec-
onds. This is a higher number of timeouts for a shorter
measured end-to-end delay compared to the temporal re-
dundancy call, as the timeout is set higher for temporal
redundancy due to the 2 millisecond wait between redun-
dant sends. From this we can conclude that even if a con-
trol mechanism over a single-path network uses a transport
protocol with temporal redundancy, it may still experience
very high call durations with longer-term failures in a single
component on the path. Compared to RPC calls without the
redundancy measures found in RRPC, spatial redundancy
greatly lowers the worst-case end-to-end call duration, tem-
poral redundancy improves the average call duration con-
siderably, and the combination improves reliability greatly.

6 Related Work

Recent work on fault tolerant RPC mechanisms have
been centered on host replication using distributed objects.
As the distributed object interface is decoupled from the
underlying implementation and environment, an object in-
terface can be replicated into several implementations run-

End-to-end delay in ms

End-to-end call time, 10,000 calls, 1% omission and
1s/10,000s fault durations
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ning in separate environments with minimum impact on ob-
served behavior. Several CORBA implementations provide
replicated objects, [16, 17, 13]. A replicated distributed ob-
ject scheme, coupled with a real-time CORBA implemen-
tation, would provide timely delivery and fault-tolerance.
While server replication mainly protects from server failure,
protection from network failures would also be achieved to
some degree. Depending on the redundancy scheme, send-
ing to a group of replicated servers is achieved by multicas-
ting from the client to the replicated hosts, and so the data is
likely to go through several network paths. Such a scheme
would still rely on the underlying network for network-level
fault tolerance, and would not be able to reap the benefits
of redundant path routing without modification. Further,
object replication has to rely on strong multicast guaran-
tees for synchronization between replicas to achieve correct
group communication, which gives high worst-case mes-
saging costs in the face of communication failures and thus
scales badly with geographical distance.

We are currently aware of only one RPC mechanism uti-
lizing temporal and spatial redundancy: [4, 15, 14] provides
an implementation of CORBA for embedded systems pro-
viding hooks for spatial and temporal redundancy, but does
not provide analysis or evaluation of the effects of these
measures upon call reliability.

[8] is a study of the impact of path diversity on multi-
homed and overlay networks. They concluded that, on the
best-effort Internet, a significant percentage of the paths
from a multi-homed network might overlap, even when us-
ing multiple ISP. This is a strong argument against using
the internet for critical infrastructures, where some key con-
trol and monitoring functionality requires very low latency
and very high availability [5]. This points to the need for
disjoint path management and a dedicated monitoring and
control network for critical infrastructures.

7 Conclusions and Future Work

This paper presents the design, implementation, and
evaluation of Ratatoskr, a novel RPC mechanism. Ratatoskr
is split into two subsystems, a transport protocol for two-
way communication over the GridStat network, the 2WoPS
protocol; and an RPC mechanism built on top of the 2WoPS
protocol, Ratatoskr RPC. The 2WoPS protocol utilizes the
QoS semantics provided by the GridStat network to offer
maximum delivery delay guarantees and spatially redun-
dant network paths for sends. 2WoPS introduces two addi-
tional redundancy techniques: temporally redundant sends
and ACK/retries. While the 2WoPS protocol was imple-
mented specifically for the RPC mechanism, it is also used
in another GridStat project that gained from the timeliness
and reliability provided by the protocol. Ratatoskr RPC
provides extensive customization of the redundancy levels

for each call, providing a tradeoff space between timeliness,
use of network resources, and reliability. Further, pre- and
post conditions built into the call semantics provide addi-
tional safety mechanisms for application designers.

The evaluation explores the effectiveness of the redun-
dancy techniques in the face of two fault-models, omission
faults with uniform drop probability and durations of to-
tal link failure. The experiments show that both spatial and
temporally redundant resends provide an exponential reduc-
tion in end-to-end fault occurrence rates for omission faults,
with a a temporal redundancy of two providing a square re-
duction, a temporal redundancy of three providing cube re-
duction and so on.  The experimental results match the
expected results from the analysis. A comparison between
Ratatoskr and a simulated traditional RPC mechanism with-
out temporal and spatial redundancy, shows that Ratatoskr
profits from the redundancy with a lower average for end-
to-end call times and a considerably tighter call time distri-
bution.

There are many future areas of research for Ratatoskr.
Ratatoskr does currently not provide the security features
required for a deployment in a critical infrastructure such as
the power grid, and assumes no Byzantine behavior. Fur-
ther, the prototype was implemented in Java, and the com-
munication primitives does not accommodate platform in-
dependence. Finally, handling client and server failure is
left for future work. This affects RPC failure semantics[19]
in that only at-most once failure semantics are available. It
should be noted that as the number of ACK/retries is cus-
tomizable, the at-most once semantics found in Ratatoskr
are more flexible than the traditional understanding, i.e.
maybe once semantics may be achieved by setting the num-
ber of retries for a call to zero. If at-least once seman-
tics or some form of exactly-once semantics should be
implemented for Ratatoskr, similar flexibility would arise.
Further information on the properties of Ratatoskr fault-
semantics may be found in [20].
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