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Abstract

GridStat is a middleware framework designed to re-
place the power grids aging and inflexible data communica-
tions system. GridStat uses a specialization of the publish-
subscribe paradigm, status dissemination, that takes advan-
tage of the semantics of status data updates to provide data
delivery with multiple dimensions of QoS semantics. While
GridStat provides robust and timely support for data ac-
quisition, the publish-subscribe architecture supports only
one-way communication and provides semantics unsuitable
for control communications.

In this paper we present Ratatoskr, an RPC mechanism
that builds on the QoS semantics of GridStat are built upon
to provide the timeliness required for power-grid operation.
Additionally, user-defined pre- and post-condition expres-
sions over GridStat status variables are built into call se-
mantics. Pre-conditionscan abort an RPC call if the mea-
sured conditions dictate, while post-conditions provide ad-
ditional physical assurance the call succeeded. The archi-
tecture of Ratatoskr is presented, along with results from an
evaluation of a prototype implementation.

1. Introduction

Why grid communication today is inferior, [6]
Requirements for control traffic, [4]
GridStat data acquisition, [2]
Why GridStat needs control communication
RPC familiar semantics [3] Why CORBA would not do
Ratatoskr1
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1In Norse mythology, Ratatoskr is a squirrel climbing aroundthe great

world tree Yggdrasill, ferrying messages and gossip between the mytho-
logical creatures living in its branches and in particular insults between an
eagle residing in the treecrown and a dragon gnawing on the roots.



Contributions:

• Design and implementation of a novel control scheme
for an electrical power grid environment where remote
procedure calls are transported over a QoS enabled
one-way publish subscribe middleware network (Grid-
Stat).

• Design and implementation of three distinctive tech-
niques for redundancy, offering a tradeoff between

worst-case deadline, use of network resources and
resiliency towards a variety of network failure cate-
gories. Applications are allowed fine control of redun-
dancy semantics.

• Design and implementation of pre- and post- condi-
tions mechanisms designed into RPC semantics pro-
vides additional functionality over application-level
implementation and allows for a standardized mech-
anism for control signals between utilities.

• An experimental evaluation quantifying the tradeoffs
between the redundancy techniques and their perfor-
mance.

2 GridStat

The GridStat architecture is separated into two main sub-
systems, thedata plane, a middleware databus where sta-
tus updates supplied by publishers are forwarded to sub-
scribers, and themanagement plane, a set of servers that
manages system resources and organizes subscriptions by
receiving subscription requests from subscribers and con-
figuring the data plane towards forwarding accordingly.
GridStat uses two kinds of communication traffic:Data
traffic is always forwarded through the data plane message
bus; control traffic between GridStat entities can be sent
over any middleware control mechanism. The current im-
plementation of GridStat uses CORBA and Ratatoskr as
control message mechanisms.

Forwarding in the data plane is performed bystatus
routers, middleware routers placed throughout a wide area
network. Status routers form an overlay network by for-
warding status events from router to router. The status
routers retain implementations of all protocols used in the
wide area network, and may function as bridges between the

Figure 1. Example of a GridStat deployment



parts of the network using different networking technolo-
gies or with separate addressing spaces. Network connec-
tions in the data plane (from publishers and subscribers to
status routers and between status routers) are representedas
event channelsthat contain abstractions of data forwarding
properties required for resource management. Each pub-
lisher and subscriber has event channels to one or more sta-
tus routers.

Whereas the data plane has a flat organization, the man-
agement plane consists of a hierarchy of servers calledQoS
brokers. QoS brokers in the lowest level of the hierarchy are
leaf QoS brokers, and are the only QoS brokers that directly
communicate with entities in the data plane. QoS brokers
above the leaf level are called internal QoS brokers and act
as the soleparent QoS Brokerof one or morechild QoS bro-
kers. All QoS brokers have a parent, with the exception of
theroot QoS broker, and leaf QoS brokers do not have child
QoS brokers. Each QoS broker is associated with a set of
entities in the data plane, the QoS broker’scloud. The data
plane is divided up so each status router belongs to the cloud
of exactly one leaf QoS broker. Status routers that have
event channels to the same publisher or subscriber must be
in the same cloud, and publishers and subscribers belong to
the same cloud as their status routers. The clouds of internal
QoS brokers are defined as the union of the clouds of their
children, and thus the cloud of the root broker is all entities
in the data plane. Entities are named according to their re-
lationship to the management plane hierarchy. A GridStat
element must have a name unique within the scope of its
parent; its full name is the name within the scope with an
added prefix of the parent’s name. This hierarchy of clouds
is meant to correspond to a natural organization of man-
agement domains in the power grid, such as levels of geo-
graphical areas. Figure 1 illustrates a GridStat system, with
a hierarchy of QoS brokers managing status routers, sub-
scribers and publishers divided into two leaf-level clouds.

As the data plane provides bounded delay and other QoS
guarantees for subscription data, additional subscriptions
must not overload network resources. The management
plane administers the use of resources in the data plane,
and so handles subscription requests. Subscription requests
are made by the subscriber to its leaf QoS broker. If both
the publisher and the subscriber of a new subscription are
within the leaf level QoS broker’s cloud, the leaf-level QoS
broker is responsible for verifying that the connection will
not overload network resources and update the status routers
with the new subscription. If the publisher and subscribers
are in different leaf-level clouds, the subscription request is
propagated up in the hierarchy to the first QoS broker that
has both within its cloud.

More details on the architecture and design of GridStat
can be found in [5]

3 Ratatoskr

Ratatoskr uses a two-tier architecture. A communication
module implements the 2WoPS protocol, providing timely,
fault-tolerant two way communication over one-way Grid-
Stat paths; and an RPC module provides RPC server and
client functionality. Separating the communication protocol
into a separate module allows the communication module to
be reused by other applications.

In [1], the 2WoPS protocol was utilized for control com-
munication between GridStat QoS brokers. Figure 2 shows
an overview of the modules of Ratatoskr (light shade), the
GridStat modules used by Ratatoskr (dark shade), and other
applications using the modules (white). The example shows
the architecture stack for a control center and a substation.
The main intended use of Ratatoskr is illustrated by the con-
trol center control system using Ratatoskr RPC to execute
control operations on an actuator in the substation. Other
uses of the 2WoPS protocol may be to transport legacy con-
trol messages to actuators if the actuator API remains to be
fully implemented for Ratatoskr. The publisher and sub-
scriber used by the 2WoPS protocol may have other uses,
such as sending sensor data from the substation to the con-
trol center, or publishing reports of power-grid state aggre-
gated in the control center to be used by protection schemes
in the substation. Finally, while GridStat requires con-
trol of the underlying network resources, network technolo-
gies that manage resource use may reserve bandwidth for
uses outside GridStat, such as transferring video feeds from
surveillance cameras in the substation.

3.1. The 2WoPS protocol

2 pages To achieve a two-way communication style
needed for RPC signaling, Ratatoskr uses two GridStat pub-
sub connections. Each RPC host utilizes both a publisher
and a subscriber - the publisher for sending data as pub-
lished status variables and the subscriber for receiving data.
Two hosts wishing to communicate each publish a new sta-
tus variable and subscribe to the other hosts published vari-
able. Data is sent over the connection by publishing status

Figure 2. Ratatoskr Module Stack



events. It should be noted that as GridStat uses the status
dissemination pub-sub paradigm for message forwarding,
sending data in this manner has a very low routing over-
head, as paths are established at connection setup time and
forwarding ports are mapped to a simple connection identi-
fier. Currently the 2WoPS protocol supports only commu-
nication between two hosts, but the GridStat network has
excellent support for multicast of status events so future ver-
sions could add support one-to-many and group communi-
cation styles. For the remainder of the paper, the initiator
of a connection will be referred to as a 2WoPS client and
a receiving host the 2WoPS server, although in practice no
distinction is made after connection setup.

The 2WoPS protocol was designed to draw upon the QoS
guarantees provided by the GridStat publish subscribe paths
to supply timely communication. Further, the protocol aims
to provide a high degree of fault tolerance while retaining
predictable delivery times. To this end, three redundancy
techniques are employed to strengthen delivery guarantees:

• Spatial redundancy:One major feature of GridStat is
that subscriptions may be routed through multiple dis-
joint network paths. Thus, if a status event sent over
two redundant paths is corrupted along one path, suc-
cessful delivery is still possible along the secondary
path. The 2WoPS protocol exposes the number of
disjoint paths used for the paths between the 2WoPS
client and server and for the return path during setup
connection time, and filters any excess status events
upon receival. For a connection in which both direc-
tions employn disjoint paths, we say that the connec-
tion has aspatial redundancy levelof n. Status events
sent over such a connection will toleraten − 1 losses,
and are not affected by temporal concentration of er-
rors. It should be noted that common mode failures
thoughout the network, such as very high traffic lev-
els during attacks or crisis situations may affect com-
ponents involved in all redundant paths. The degree
of spatial redundancy possible for a connection de-
pends on the network topology as the network must
support disjoint paths from the 2WoPS client to the
2WoPS server, but it is expected that the high relia-
bility requirements of a critical infrastructure as the
power-grid will justify the expense of building a net-
work with a high degree of redundancy. Further, spa-
tial redundancy will incur some delay overhead be-
cause of routing complexity and, also depending on
the network topology, as the delay-optimal route might
be incompatible with the number of disjoint paths. It
should be noted that the process of allocating redun-
dant paths through the network is more complex than
allocating a single path, and so spatial redundancy in-
duces overhead to the network management. GridStat
supports delay guarantees also for paths redundant to

the best-delay route (theprimary path), and so a con-
nection employingn spatial redundancy will provide
delay guarantees even in the face of up ton− 1 losses.
The current implementation of GridStat supports only
up to two redundant paths, and does not allow redun-
dant paths between leaf-level clouds, but work is done
to eliminate these limitations.

• Temporal redundancy:While spatial redundancy pro-
vides efficient protection from a range of network fail-
ures, the network costs and delay properties of a large
number of paths could prove prohibitive in cases where
a very high degree of fault tolerance is required or
where the network topology is unsuited for spatial re-
dundancy. Ratatoskr offers temporal redundancy by al-
lowing each data unit sent by the 2WoPS protocol to be
repeatedly published as several status events carrying
the same data. A data unit publishedn times has atem-
poral redundancy levelof n and toleratesn− 1 losses.
The technique consumesn times more bandwidth than
regular sends, but has no delay overhead or additional
setup costs. Temporal redundancy does not provide the
same level of protection as spatial redundancy, as net-
work losses may be temporally concentrated. For ex-
ample, network congestion will often lead to periods
of high loss rates when a router’s buffer for an outgo-
ing link is full or maintenance on a router might dis-
able all connecting links for several minutes. To add
to this, by sending several copies of the same 2WoPS
packet in a short span, the extra bandwidth used might
add to existing congestion. The 2WoPS protocol al-
lows applications to specify a delay between sending
each temporally redundant copy of a 2WoPS packet,
and the degree of temporal redundancy may be speci-
fied for each send.

• ACK/resend: While spatial and temporal redundancy
provides a high degree of fault tolerance, they do not
provide any feedback to the application about success-
ful delivery, and will not provide protection from fail-
ures that affect the whole network, such as periods of
heavy congestion. Ratatoskr also allows a third tech-
nique for network redundancy by having message re-
ceivers ACK successfully sent 2WoPS messages, and
allowing the user to specify that messages that do not
produce an ACK should be resent up ton times. A
message that is set to be resent up ton times with miss-
ing ACKs has anACK/retry levelof n. Successfully
received ACKs are reported back to the server, while
messages that do not receive an ACK even aftern re-
sends are reported withunknown deliverystatus.



3.1.1 Combining redundancy techniques

Redundancy measures can be combined as seen fit by the
user. Temporal and spatial redundancy measures are cumu-
lative and affect all 2WoPS packets, including ACKs. For
example, if a sending a 2WoPS packet with 3 temporally
redundant sends and 4 ACK/resends over a connection with
2 spatially redundant paths in each direction, three status
events containing copies of the message packet will be sent.
At the entry-point router, each of the status events will be
forwarded to the first routers of the redundant paths, and, as-
suming no network failures, six status events containing the
same 2WoPS packet will arrive at the receiver. The receiver
will similarly send a single ACK 2WoPS packet, which will
be sent in three temporally redundant status events, which
again will be copied onto the redundant paths. If all ACKs
are lost in the network, the sender will resend three new sta-
tus events containing the message, and so on. This gives
application designers the ability to tailor a connection tothe
exact needs of the application, allowing use of high spa-
tial and temporal redundancy where a low delay is required,
or relying on ACK/resend for redundancy for less delay-
sensitive applications or where bandwidth is scarce. Com-
bining redundancy techniques in this manner gives a total
delivery guarantee based on the cumulative worst cases of
the redundancy techniques. The last packet of a message
with temporal and spatial redundancy will have a deadline
of the last temporally redundant packet along the worst of
the redundant paths. This overhead will be doubled for mes-
sages with ACK/retry enabled because of the ACK.

4 The Ratatoskr RPC mechanism

Ratatoskr RPC is a remote procedure call protocol for
power-grid control communication built on top of the
2WoPS protocol. The primary application for Ratatoskr is
remote operation of power-grid actuators, either to a gate-
way interfacing multiple devices or by directly controlling
intelligent electronical devices (IEDs) with remote inter-
faces embedded in the actuator itself. The current grid com-
munication system is unable to support developments in the
power-grid stress levels and the security threat picture, and
proposed solutions require real-time, reliable control [4].

Ratatoskr draws extensively on the features provided
by the 2WoPS protocol. Delivery guarantees for calls is
achieved using GridStat’s QoS enabled network communi-
cations, and fault-tolerance is provided through the redun-
dancy techniques found in the 2WoPS protocol. As the use
of redundancy trades off network resources, or worst case
delay in the case of ACK/retry, against safety, applications
designers are allowed detailed control over the level tech-
niques used for redundancy.

In addition to increased safety through fault-tolerance,

pre- and post-conditions on calls are built into the RPC se-
mantics. Pre-conditions are conditional expressions over
GridStat variables that are evaluated before execution of
an RPC call, and if the expression is negative, the call is
negated. Post-conditions are similar expressions evaluated
after the call has executed, and negative results are reported
back to the application, allowing evaluations of operation
outcome.

Ratatoskr does currently not provide the security fea-
tures required for a deployment in a critical infrastructure
such as the power grid, and assumes no Byzantine behav-
ior. Further, the prototype was implemented in Java, and
the communication primitives does not accommodate plat-
form independence. Finally, handling client and server
failure is left for future work. This affects RPC failure
semantics[12] in that only at-most once failure semantics
are available. It should be noted that as the number of
ACK/retries are customizable, the at-most once semantics
found in Ratatoskr are more flexible than the traditional un-
derstanding, i.e. maybe once semantics may be achieved
by setting the number of retries for a call to zero. If at-
least once semantics or some form of exactly-once seman-
tics should be implemented for Ratatoskr, similar flexibil-
ity would arise. Further information on the properties of
Ratatoskr fault-semantics may be found in [13]

4.1 Pre-and Post Conditions

For many power-grid control-operations, placing pre-
conditions on the execution may help in preserving safety in
face of unwarranted situations such as power-grid anoma-
lies or unexpected mechanical operation. Because of the
distances involved, communication must be expected to suf-
fer from bandwidth and delay limitations. Thus one may
assume that the client-side information about server state
is limited and not fully updated, and following this, pre-
conditions should be placed on the server-side of the call.
Such conditions could be placed in application code using
RPC exceptions, but this could lead to variations in seman-
tics between vendor implementations.

Ratatoskr incorporates pre-conditions in call semantics.
This gives standardized predicate semantics, easing interop-
erability between equipment vendors and inter-utility com-
munication.

Examples of pre-conditions in power-grid operation may
be:

• Isolators are actuators that connect and disconnect de-
energized power circuits. A precondition could be to
verify that a line is de-energized before attempting iso-
lation.

• High voltage equipment carries with it electrocution
hazard, and another pre-condition could be to verify



that no manned maintenance is scheduled at a field site
when performing operations that might place mainte-
nance personnel in danger.

Ratatoskr further allows application designers to use the
same predicate modules used for pre-conditions for placing
post-conditions on calls. Power-grid operations are com-
plex, and actuator operations may give unexpected results
in face of situations such as mechanical malfunctions or op-
erator overrides. Server-side post-conditions will be able to
utilize the rich information environment local to the substa-
tion for analyzing the physical outcome of an execution and
return only a brief report to the client. Thus client applica-
tions will be able to review the results of calls without hav-
ing to retrieve large amounts of data from the substation. By
allowing a delay before the post-condition is evaluated, the
effect of the operation is allowed to stabilize. By designing
the post-conditions into the RPC semantics, the result of the
post-condition is transferred to the client as a separate send,
without affecting the delay of the RPC call itself.

Examples of post-conditions in power-grid operation
may be:

• Load tap changer are components of certain transform-
ers that allow adjustment to voltage output during load.
A post condition could be to verify the new voltage
level after load tap changer operations, or even gener-
ate a status report from all connected devices and send
it back to the client.

• Transformer protection is a scheme to detect internal
faults in a transformer and isolate it by braking all con-
nected lines if a fault is detected. A post-condition
could be to trigger a transformer protection scheme af-
ter all transformer operations.

5 Evaluation

Ratatoskr is evaluated with respect to performance in
face of network faults. The purpose is to understand the
efficiency of the implemented fault tolerance techniques on
RPCs over a faulty network, not to evaluate the performance
of the prototype implementation, as a real-time implemen-
tation is outside the scope of the prototype design.

5.1 Evaluation Procedure

Evaluations were performed by connecting Ratatoskr
client and server processes to a small GridStat network and
commencing a number of RPC calls from the client to the
server. To introduce network faults, event channels between
status routers were routed through a network link emula-
tor introducing delay and errors. Links going through the
link emulator are referred to asemulated links. This setup

tries to emulate control traffic over a wide area network of
status routers, where both the client and server are either
connected to their entry-point SR by LAN or running as
processes on the same computer. No delay or loss is in-
duced on the link between Ratatoskr peers and their entry-
point SRs. This is based on the expectation that a deploy-
ment of GridStat will include a wide deployment of status
routers throughout the power grid to provide a high degree
of network redundancy, which makes it likely that sites us-
ing RPC also contain a status router.

5.1.1 Evaluation Topology

The topology of the evaluation setup is shown in figure 3.
13 status routers form two paths between the client and the
server, one of 7 links and one of 6. This is to allow for
the fact that when using spatial redundancy additional paths
may often be longer than a single best path. The current
implementation of GridStat does not allow more than two
redundant paths. No additional links and status routers out-
side the two paths were employed as routing between the
same two peers in a static network (as the current version of
GridStat is) will result in the same path no matter the errors.

5.2 Evaluation Setup

5.2.1 Processes

The processes used for testing were:

• 13 GridStat status routers

• 1 GridStat leaf QoS broker

• 1 evaluation program implementing a Ratatoskr client
peer(client)

• 1 evaluation program implementing a Ratatoskr server
peer(server)

Figure 3. Evaluation Topology



• 1 Sun Java CORBA nameserver

• 1 Java program providing socket tunnels with loss and
delay properties(network link emulator)

5.2.2 Hardware

The evaluation was tested on a single computer, running a
Core2 duo 2.13GHz dual-core processor and 4 gigabytes
of RAM. The operating system was Ubuntu linux, kernel
2.6.20-16 compiled with 1 millisecond kernel tick intervals
and full kernel preemption. All evaluated programs were
implemented in Java, compiled and run with sun java2SE
6 (version 1.6.0.00). All inter-process communication was
done over operating system UDP sockets for GridStat data
traffic and Sun’s Java 2 Platform CORBA Package for con-
trol. All tests were performed in user mode with regular
process priority and with the graphical operating system in-
terface turned off.

5.2.3 Garbage Collection Handling

A mechanism was implemented to measure the im-
pact of garbage collection and substract this from
call results. The mechanism queries the Java
java.lang.management.GarbageCollectorMXBean
interface for recent garbage collection operations and their
durations, and if gc operations have occured, substracts the
gc operation duration from the end-to-end duration of the
affected call.

5.3 Fault Models

GridStat uses multiple underlying network technologies,
spans a wide area, and will sustain several usage patterns
(usage patterns to this point includes rate based status up-
dates and bursty RPC traffic). This makes for very complex
behavior and it is difficult to provide a good fault model for
GridStat without field testing. For this evaluation, two fault
models were combined to account for the rich diversity of
potential fault patterns in a GridStat deployment.

• Omission-fault- Each link is assigned a uniform prob-
ability of dropping each packet passing through it. The
drop probability is the only variable for the omission-
fault model. Each drop is completely isolated; no other
link or later or earlier packet on the same link is af-
fected by a drop. Omission-fault attempts to model
temporally and spatially isolated drops in links where
the no retry-upon-failure is attempted below the trans-
port layer in the protocol stack. Examples of uni-
form drop rate errors are background noise or very
short term physical interference in links causing packet
data corruption: passing physical objects in the way of

the beam of a microwave beam, bursts of electromag-
netic noise from power anomalies in a substation wired
with copper or frequency noise from grid devices in a
broadband over power link.

• Duration-fault - Each link is in one of two states:
disabled or enabled. If disabled, all packets passing
through the link is dropped. If enabled, the opera-
tion of the link is not affected, and all packets pass
through the link unless omission failures occur. Links
are ordinarily enabled, except for 1-second periods of
disable state. Disabled state periods occur by a Pois-
son process, where the average number of occurrences
per second (λ) is the only variable for the duration-
fault model. Duration-fault attempts to model tran-
sient failures in network components. Examples may
include: router maintenance, fiber cuts or local power-
outs. Such failures may certainly have a duration of
well over a second, but a one second disable state dura-
tion is enough to notice the effects of duration failures
on communication. It should be noted that dynami-
cally routed networks will quickly adjust so signals
will circumvent duration faults, even nearly instanta-
neously [7]. GridStat uses static routing, and so paths
will not be adjusted even if faults are detected. A future
solution for this in GridStat is for the QoS hierarchy
to create new paths around failures, but this is an ex-
pensive operation when resource management calcula-
tions and communication to status routers is taken into
concern, and must be expected to be time consuming.
The primary mechanism for overcoming longer-term
failures in GridStat is spatial redundancy.

5.4 Experiment Procedure

• For all experiments, the process running the Ratatoskr
client also functioned as experiment coordinator.

• For each new experiment session, 10,000 RPC calls
were made to warm up the system, and then one or
more experiments were run sequentially.

• An experiment consists of 10,000 RPC calls with data
gathered from each call.

• A new Ratatoskr connection was established for each
experiment, and closed at the end of the experiment.

• All calls were made with an unlimited number of
ACK/retries.

• Between calls, all links emulated in the link emulator
was reset, specifically by setting the internal clock used
for duration failure2∗(1/λ) seconds into the future, in
effect ending all previous disabled states and allowing
new ones to arrive.



• A link delay of 1 millisecond was used unless specified
otherwise in the experiment description.

• When temporal redundancy was used, a two millisec-
ond delay between redundant sends was used.

• For all experiments without spatial redundancy, calls
were made over a 6 emulated link path. For experi-
ments using spatial redundancy, calls were made over
one path of 6 emulated links and one path of 7 emu-
lated links.

• The timeout for the ACK/retry technique had a base
of 25 milliseconds, allowing 12 ms for transfer de-
lay, 20 ms for garbage collection and 3 ms for over-
head from the link emulator, GridStat rounting and
Ratatoskr. Higher timeouts were assigned by Ratatoskr
to sends with temporal or spatial redundancy due to
the wait between redundant sends and the extra hop
in the spatial paths. Specifically, using spatial redun-
dancy added 2 ms to the timeout, and using temporal
redundancy added 2 ms for each redundant send.

5.5 Result Data

The following data was extracted from each call:

• Time was measured from when the call was made until
the result arrived (end-to-end delay).

• The number of timeouts experienced was recorded.
This includes any timeouts the server experienced
while attempting to send the result. Specifically, the
number of timeouts for a call is the number of time-
outs for the first time of a call to arrive at the servernot
including timeouts introduced by missed ACKs, and the
number of timeouts for the result to reach the client the
first time, again not including timeouts introduced by
missing ACKs.

• Early success rate for experiments is defined as the
number of calls with no retries divided by the total
number of calls.

5.6 Resiliency of Temporal Redundancy

To evaluate the resiliency of the temporal redundancy
mechanism, a series of experimental runs was performed
with increasing degrees of temporal redundancy (1, 2, 4 and
8 sends). Each of the temporal redundancy levels was tested
over a set of omission fault rates (1%, 2%, 4% and 8%) ap-
plied to all emulated links. Duration loss was omitted from
the evaluation, and is addressed in a later experiment. The
results are shown in figure 4, with corresponding expected
results from analysis. The analysis combines the drop rates

of each link into one drop rate for the 6-link path from client
to server (f6−link), and calculates the probability of all re-
dundant packet not getting dropped (ssend(1−f6−link)n for
temporal redundancy leveln). For the end-to-end loss prob-
ablility, the probabilities for both the send and the returnnot
getting dropped was calculated ass2

send
. The experimental

results match the analysis very closely.
Figure 4 shows that two temporally redundant sends are

not sufficient to entirely overcome a 1% loss rate, but with
99.2% early successes against 88.5% for the non-redundant
calls it is still a good improvement. With 4 resends, 99.92%
early successes are achieved at 4% failure rate. For 8 re-
sends, 99.92% of calls were early successfull even at 8%
loss rate, where the end-to-end early success rate without
reliability was 36.5%. Even during periods of intensive net-
work loss, critical applications where the extra bandwidth
for temporal redundancy can be spared should be able to
perform RPC calls with very few retries, given that the loss
patterns accomodate temporal redundancy.

5.7 Resiliency of Spatial Redundancy

The efficiency of spatial redundancy was evaluated in a
manner similar to temporal redundancy. Runs were per-
formed with spatial redundancy enabled over increasingly
higher occurrence frequencies of duration faults (1 second
failure every 10000 seconds, 1s/1000s, 1s/500s, 1s/100s and
1s/50s). Values for expected results based on analysis are
included in the diagram. An analysis similar to the analy-
sis for temporal redundancy was made, simplifying the ar-
rival rates of fault durations for links as fault percentages
(1s/50s=2%, 1s/100s=1%...).

For the experiments, 100% early successes was achieved
for both 1s/10000s and 1/1000s fault rates. As this is for
10,000 calls, this is encouraging as it satisfies at least a
99.99% end-to-end reliability requirement. For 1s/500s
fault durations, 99.96% early success is achieved. The ex-
perment’s results follow the analysis closely except for at
1s/50s fault rate. This could stem from the analysis simpli-
fying the fault rate to a percentage, which might weaken the
analysis for high fault rates.

5.8 Comparison to ACK/Retry-Only
RPC

A final experiment was made to compare the perfor-
mance of Ratatoskr to a traditional RPC call without other
forms of reliability than ACK/retry, and to evaluate the ef-
fect of spatial and temporal redundancy on the failure mod-
els used. Here, performance refers to the ability to tolerate
network faults and end-to-end delay over a faulty network.
Experiment runs for no redundancy, 4 temporally redundant
sends, spatial redundancy and the combination of the two
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Figure 4. Early Success for Temporal Redun-
dancy over Varying Omission Fault Rates
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Figure 5. Early Success for Spatial Redun-
dancy over Varying Duration Faults

were performed over 1% omission fault rate, 1 second fault
duration every 10000 seconds, the combination of the two
and no failures. The early success rates are shown in figure
6. The average duration with standard deviation for all re-
dundancy levels with both fault models combined is shown
in figure 7. Cumulative distributions of timeouts experi-
enced before call success for all redundancy levels for the
combination of fault models is shown in figure 8 (note that
the percentage range on the graphs are different to allow
visible details). The highest calltimes measured with the
combination of losses are: 939 milliseconds for no redun-
dancy, 91 ms for spatial redundancy, 977 ms for temporal
redundancy and 24 ms for the combination of the redun-
dancy techniques.

From figure 6, it is seen that for 1% omission loss, tem-
poral redundancy experiences very few timeouts, but the
spatial redundancy does not provide enough reliability for
the fault rate level and 0.81% of the calls experience time-
outs. Without any redundancy, less than 90% of the calls
achieve early success, which makes for very unstable call-
times. The 1s/10000s duration fault setting does not affect
the early success rate of any of the redundancy levels too
much, while the combination of fault models has a pattern
very similar to that of 1% omission failure.

In figure 7, the effects of duration loss becomes apparent.
Temporal redundancy, which is ineffective against duration
faults, has a considerably much higher standard deviation
of end-to-end delays than spatial redundancy. Together with
the low early success rate, this signifies that a few calls must
retry several times before success is achieved, even with
four redundant sends. The experiment run with no redun-
dancy follows a similar pattern with high standard deviation
of end-to-end delays, and also the average end-to-end delay
is higher. This is most likely from the high percentage of
calls that timed out. The end-to-end delay with both forms
of redundancy retain the same average as spatial and tem-
poral redundancy, and with a small standard deviation. The
standard deviation patterns are reflected in figure 8. 99.85%
all of the calls made with temporal redundancy incurred no
timeouts, but the distribution has a long tail, and 0.05% of
the calls incurred over 10 retries. The highest end-to-end
delay measured for temporal redundancy was 977 millisec-
onds, and the highest number of retries was 22. The cumu-
lative distribution for spatial redundancy compared to the
temporal calls reveals that while a relatively high number
of calls experience timeouts (over 0.8%), only a single call
experiences the highest number of timeouts, 2, and 91 mil-
liseconds was the highest measured end-to-end delay. With
both redundancy techniques, no timeouts were experienced
and the highest measured end-to-end delay was 24 millisec-
onds. Without redundancy, over 12% of the calls experi-
enced timeouts and the highest number of timeouts was 25,
with the measured end-to-end delay 939 milliseconds. This



is a higher number of timeouts for a shorter measured end-
to-end delay compared to the temporal redundancy call, as
the timeout is set higher for temporal redundancy due to
the 2 millisecond wait between redundant sends. From this
we can conclude that even if a control mechanism over a
single-path network uses a transport protocol with temporal
redundancy, it may still experience very high call durations
with longer-term failures in a single component on the path.
Compared to RPC calls without the redundancy measures
found in Ratatoskr, spatial redundancy greatly lowers the
worst-case end-to-end call duration, temporal redundancy
improves the average call duration considerably, and the
combination improves reliability greatly.

6 Related work

Recent work on fault tolerant RPC mechanisms have
been centered on host replication using distributed objects.
As the distributed object interface is decoupled from the
underlying implementation and environment, an object in-
terface can be replicated into several implementations run-
ning in separate environments with minimum impact on ob-
served behavior. Several CORBA implementations provide
replicated objects, [10, 11, 8]. A replicated distributed ob-
ject scheme, coupled with a real-time CORBA implemen-
tation, would provide timely delivery and fault-tolerance.
While server replication mainly protects from server failure,
protection from network failures would also be achieved to
some degree. Depending on the redundancy scheme, send-
ing to a group of replicated servers is achieved by multi-
casting from the client to each replicated host, and so the
data is likely to go through several network paths. Such a
scheme would still have to rely on an underlying network
for network-level fault tolerance, and would not be able to
reap the benefits of redundant path routing wtihout modi-
fication. Further, object replication has to rely on strong
multicast guarantees for synchronization between replicas
to achieve correct group communication, which gives high
worst-case messaging rounds in face of communication fail-
ures and thus scales badly with geographical distance.

We are currently aware of only one RPC mechanism uti-
lizing temporal and spatial redundancy: [9] provides an im-
plementation of CORBA for embedded systems providing
hooks for spatial and temporal redundancy, but does not
provide an analysis or evaluation of the effects of these mea-
sures upon call reliability and effeciency.

7 Conclusion

Existing power-grid control mechanisms are inflexible,
incompatible across vendors, and designed for highly cen-
tralized environments, and cannot provide for the next gen-
eration of power grid communication. While much work is
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Figure 8. Cumulative distributions of number
of timeouts per call



done in using web services and other existing control mech-
anisms, such control mechanisms built directly on top of
existing network protocols will not overcome the incom-
patibility issues with proprietary protocols and may have to
compromise safety and timeliness depending on the under-
lying network.

This paper provides the architecture and evaluation of
Ratatoskr, an extension to the GridStat status dissemination
system with the design and implementation of a timely and
reliable remote procedure call mechanism running on top
of two one-way GridStat subscription paths. This extension
complements GridStat’s capabilities as a middleware data
acquisition system with the ability to send control messages
to power-grid actuators.

Ratatoskr is split into two subsystems, a transport pro-
tocol for two-way communication over the GridStat net-
work, the 2WoPS protocol, and an RPC mechanism built
on top of the 2WoPS protocol, the Ratatoskr RPC mecha-
nism. The 2WoPS protocol utilizes the QoS semantics pro-
vided by the GridStat network to offer maximum delivery
delay guarantees and spatially redundant network paths for
sends. Further, two additional redundancy techniques are
used; temporally redundant sends and ACK/retires. While
the 2WoPS protocol was implemented specifically for the
RPC mechanism, it is also used in another GridStat project
that gained from the timeliness and reliability provided by
the protocol. The Ratatoskr RPC mechanism provides ex-
tensive customization of the redundancy levels for each call,
providing a tradeoff space between timeliness, use of net-
work resources, and reliability. Further, pre- and post condi-
tions built into the call semantics provides additional safety
mechanisms for application designers, and creates a build-
ing block for a uniform middleware safety framework for
inter-vendor operations.

The evaluation explores the effectiveness of the redun-
dancy techniques in the face of two fault-models, omission
faults with uniform drop probability and durations of total
link failure. The experiments show that both spatial and
temporally redundant resends provide a polynomial reduc-
tion in end-to-end fault occurrence rates for omission faults,
with a a temporal redundancy of two providing a square
reduction, a temporal redundancy of three providing cube
reduction and so on. The spatial redundancy shows a simi-
lar pattern with two redundant paths providing a square re-
duction, but as the current implementation of GridStat does
not support more than two redundant paths, a conclusion on
the developments of the pattern with more paths could not
be established beyond mathematical models. Temporally
redundant sends proved of little value in the face of link
failure durations, but spatial redundancy provides a square
reduction also here. The experimental results match the
expected results from the analysis closely. A comparison
between Ratatoskr and a simulated traditional RPC mecha-

nism without temporal and spatial redundancy, shows that
Ratatoskr profits from the redundancy with a lower average
for end-to-end call times and a considerably tighter call time
distribution.
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