GridStat
Middleware for More Extensible and Resilient Status Dissemination for the Electric Power Grid

Professors: David E. Bakken, Anjan Bose, Carl Hauser

Students: Ioanna Dionysiou, Kjell “Harald” Gjermundrød, Sudipto Bhowmik, Thomas Evje

April, 2002
GridStat Collaborations & Sponsors

• Funded in party by US Dept. of Commerce, National Institute of Standards and Technology (NIST), Critical Infrastructure Program, Grant #60NANB1D0116
 – Schweitzer Engineering Labs, Pullman (Dr. Schweitzer & Dr. Oman, PIs)
 – U. Idaho (Prof. Axel Krings and Prof. Jim Alves-Foss, survivability of power substations)
• Prof. Kevin Tomsovic, WSU, grid control with varying feedback loops and varying time horizons
• Prof. Curtis Dyreson, WSU, metadata for power grid status, temporal queries over status information
• Dr. Howard Lipson and Dr. David Fisher, CMU CERT, GridStat Integration with Easel Simulation environment
• Prof. Ken Birman and Fred Schneider, Cornell, former PSERC grant (grid communications)
• **GridStat is work in progress….**
Outline of Presentation

• **Power grid today**
• GridStat Architectural Overview
• GridStat and Quality of Service (QoS)
Power Grid Today

• Three fundamental roles in the power grid:
 1. Generation
 2. Transmission
 3. Distribution

• Traditionally owned by a single, vertically-integrated company
 – Based largely on geography
 – Hierarchical infrastructure
 – Communications network is
 • Hardwired
 • Dedicated
 • Slow

• Everything is hard-coded based on this fixed hierarchy
 – Application programs
 – Status information
 – Control decisions
Components of the Power Grid

- **Generator**: generates power, based on requirements given by the grid.
- **Substation**: point of monitoring and control in the grid.
 - Can service many generators, and/or other functions
 - Distribution point to customers
 - Voltage boosting
 - Control functions
 - Generally only services one fundamental role
 - Always involved in control based on status of a lot of devices
- **Control area**: a set of substations
 - Geographic area ranging from a county in US to a few states
 - Services all three fundamental role
 - Is roughly equivalent to one or a few utility companies (most 1:1)
 - Collects status info from all substations for control decisions
- **Grid**: a set of control areas which are synchronously controlled
 - AKA “regional reliability council”, or “region”
Major Components of the Grid [NSTAC]

- **Generation**
 - Wind
 - Coal
 - Hydroelectric

- **Transmission**
 - ISO
 - Traders
 - Monitoring and Trading Services
 - Transmission Substation
 - Subtransmission Substation

- **Distribution**
 - Distribution Substation
 - Residential
 - Commercial
 - Industrial

- **Customers**
 - (Create load)
Grids in Canada and the US
ISO and Grid Security

- **Independent System Operator (ISO):** new layer above the control area layer currently being added
 - A small number of ISOs for bigger grids

- ISO is responsible for **grid security**
 - Means no actions being considered, or any probable contingency, can lead to a blackout or brownout
 - Roughly translates to what computer scientists would consider stability and reliability

- Grid security is an online, real-time activity
 - ISO monitors status from all control areas
 - Receives all status info from any control area or substation in its jurisdiction

- ISO’s functionality used to be performed by the vertically-integrated utilities
 - Now too much power flowing across them or around them
Status Information & the Power Grid

• Deregulation (of generation) is adding many more participants to the grid!

• Resulting changes in status monitoring requirements
 – Many more devices with intelligence
 – More general topology and connectivity
 – Much more heterogeneity involved
 – Existing hardwired, hierarchical structure does not suffice!

• New services require more quantity, timeliness, …
 – Local extreme today: substations tracks all its devices
 – Other extreme possible: adjacent grids track some of neighbors’ internal status or derived (computed) values

• Workarounds beginning
 – Use internet technologies with existing ISPs, on best-effort basis
 – Would love to have their own ISPs with specialized communications services and achievable survivability, if shown the way…
Outline of Presentation

- Power grid today
- **GridStat Architectural Overview**
- GridStat and Quality of Service (QoS)
GridStat

• Status dissemination middleware tailored for the power grid
 – Collaborative project with EE and CS at WSU, others
 – Could be used for other critical infrastructures

• Publish-subscribe architecture
 – Simple, CORBA-compliant APIs for both publishers and subscribers
 – Subscribers have transparent cache of latest value
 – Network of internal servers managed for QoS
GridStat (cont.)

• QoS properties
 – timeliness
 – fault tolerance
 – security

• Optimizations and management will take advantage of
 – Semantics of status events
 – QoS requirements

• Need to integrate different viewpoints:
 – Publish-subscribe logical view
 – Hierarchy of QoS controls
 – Physical info and power flow
GridStat Architecture
Point of view: Publish-Subscribe with Hierarchical QoS Managers
Point of view: Logical Publish-Subscribe
Sample Admission Control Graph

Trader 1

0.2/0.4

0.2/0.3

8

10

0.2/0.3

0.1/0.3

9

0.1/0.3

0.1/0.3

11

0.3/0.5

12

0.7/0.9

Link Delay Transmission

Link Delay Transmission with Encryption

13

14

0.1/0.3

0.1/0.3

0.2/0.4

0.2/0.4

Trader 2

Power Station 2

© 2002 Washington State University

Dave Bakken

GridStat–16
GridStat Subscribers Caches

Server

Status 1

Subscriber 1

Status 1

cache 1

Server

Status 2

Status 2

cache 2

Server

Status 3

Status 3

...
Attributes of Status Items

• A status item has the following attributes (initial set):
 – value (of type bool or int or float)
 – moving_average(t)
 – change_rate
 – change_rate_moving_average(t)
 – max(t), min(t)

• Static attributes
 – name
 – principal (user/owner) of publisher
 – …. probably more
Compound Status Items

- Created dynamically from existing status items and their attributes
 - Creates a new, first-class status item
 - Can be published, reused, managed...
- Can be the usual types for its value
 - boolean, float, int
 - type unrelated to underlying value types: can construct a bool from two floats etc.
Condensation Functions

- Sometimes subscribers just read a large set of status items once to calculate a derived variable.
- Support by allowing user-defined condensation functions to be loaded in GridStat servers.
 - Typically close to publishers.
- Note: condensation functions may obsolete compound status items (open research question).
 - And my voting middleware could be used for condensation!
GridStat Status Patterns

• Goals: give building blocks useable by non-CS specialists to create common status items
 – Try to capture status semantics + some QoS info

• Initial examples
 – **Boolean**: Failure detector or circuit breaker
 • Values in intermediate servers can cancel out
 – **Periodic**: Sends float or int value periodically
 • Can be dropped downstream if nobody needs it in the near future and has a recent enough one
 – **Alert**: Potentially catastrophic situation
 • Propagate to subscribers immediately, from highest priority to lowest
 • Deliver by Callback (not just cache update)
Outline of Presentation

• Power grid today
• GridStat Architectural Overview
• GridStat and Quality of Service (QoS)
Overview of GridStat and QoS

- QoS requirements/preferences/metadata captured from multiple entities
 - Subscriber
 - Publisher
 - QoS Manager
- QoS properties
 - Fault Tolerance
 - Timeliness
 - Security
 - Integrity
 - Confidentiality
 - Priority
 - To be used mainly when above properties cannot be delivered
GridStat QoS Entities

• Subscriber
 – Widest varieties of QoS requirements & specs
 – Specifies what it desires and can fall back to

• Publisher
 – Rate(s) of pushing updates of status item into the system
 – Sometimes access restrictions
 – Publisher knows little else about how its status is used!

• QoS Manager
 – Can override above settings by subscriber and publisher
Initial QoS specifications

<table>
<thead>
<tr>
<th>Who sets what</th>
<th>Publisher</th>
<th>Subscriber</th>
<th>QoS manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy (space)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Delivery rate</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Delivery timeliness</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Publisher rate</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Priority</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Integrity</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Access Control</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Note: QoS Manager can override Publishers and Subscribers specifications
Related Work

- PASS (BBN/Gatech ICDCS ’99 Zinky/O’Brien/Bakken/…)
- Sienna (U. Colorado): content-based publish-subscribe
- InfoPipes (GaTech): fresh delivery of status info
- SpinGlass/Astrolabe (Cornell): scaleable multicast
Status

- Finished: Centralized publish-subscribe middleware with
 - one QoS Manager
 - publisher delivery rate QoS requirement satisfied
Status (cont.)

• Under development: Distributed publish-subscribe prototype with
 – multiple QoS Managers
 – redundant paths and best effort delivery
 – expected delivery date: June 2002
Other Related Work

• Development of a query language (ApproXPath) using XML for handling irregular data by supporting inexact (and exact) searches

• Simulation studies of the distributed information structure of the power system (can the real-time requirements be met by distributed system architectures?)

• Definition and documentation of QoS parameters necessary for wide-area power grid control and status dissemination

• Quantification of the requirements/effects of communication delays in the traditional Automatic Generation Control scheme
Future Work

• Integration with bandwidth reservation
• Easel simulation language
Conclusions

• GridStat is publish-subscribe middleware
 – Optimized for the power grid
 – Providing QoS: timeliness, fault tolerance, security
 – With CORBA-Compliant APIs for heterogeneous operation
 – Clients get transparent cache of latest value