

1

Abstract—TCP veto is a detection-resistant variation of the

TCP connection hijacking attack. While not limited to SCADA

protocols, Modbus TCP, the Ethernet Industrial Protocol

(EtherNet/IP), and the Distributed Network Protocol (DNP3)

each meet the necessary assumptions of the attack. Experimental

results reveal that the integrity of messages transmitted using

each of the three SCADA protocols are vulnerable to TCP veto.

Additionally, TCP veto produces up to 600 times less network

traffic during its attack than connection hijacking. This work

underscores the vulnerability of current SCADA protocols that

communicate over TCP/IP to network attack. A method to

definitively identify TCP veto requires a detection system to

perform deep packet inspection on every TCP packet of a

monitored connection. Methods for mitigating the attack through

message authentication include implementing DNP3 with Secure

Authentication, tcpcrypt, or Internet Protocol Security (IPsec).

Index Terms—Cyberspace, Intrusion detection, IP networks,

Message authentication, Network security, SCADA systems,

TCPIP

I. INTRODUCTION

RITICAL infrastructure such as electric, oil, and gas

intersect with cyberspace in the form of technologies that

perform Supervisory Control And Data Acquisition (SCADA).

Specialized legacy devices originally designed to communicate

over serial networks are adapted for the Transmission Control

Protocol and the Internet Protocol (TCP/IP) to increase

scalability, bandwidth, and communication distance. Inherent

with this transition is a dependence on protocols that were

never designed to support end-to-end authentication or

encryption. This property means endpoint devices on SCADA

networks are vulnerable to a variety of classic TCP network

attacks.

 The goals of this research are threefold:

1. Describe TCP veto, a variation of the connection

hijacking attack that is more resistant to detection.

2. Experimentally demonstrate that TCP veto

compromises the integrity of several common

SCADA protocols.

This work was supported in part by the Center for Cyberspace Research,

Air Force Institute of Technology, and the Department of Homeland Security.

J. T. Hagen is with the Electrical and Computer Engineering Department,

Air Force Institute of Technology, WPAFB, OH 45433 USA (email:

johnthagen@ieee.org)

B. E. Mullins is with the Electrical and Computer Engineering

Department, Air Force Institute of Technology, WPAFB, OH 45433 USA

(email: barry.mullins@afit.edu)

3. Provide methods to detect and mitigate TCP veto.

II. BACKGROUND

The following topic areas are necessary for understanding

the novel attack described in this research and the

experimentation conducted.

A. Network Security

 Security is often defined with the Confidentiality, Integrity,

and Availability (CIA) model. While each of these principles

have potentially critical implications to SCADA networks, this

research focuses on attacks that compromise integrity,

specifically origin integrity. Origin integrity, or

authentication, is the principle that a receiver can verify the

identity of the sender of a message.

 This paper uses the following actors to describe TCP veto

and perform experimentation:

 Client – The client initiates communication with the

server. In SCADA networks this is typically the Human

Machine Interface (HMI).

 Server – The server listens for communication requests

from and provides services to the client. In SCADA

networks this is typically the Programmable Logic

Controller (PLC).

 Attacker – The malicious attacker’s goal is to

compromise the integrity of the communication between

the client and server.

B. Connection Hijacking

Connection hijacking is an active attack against TCP in

which the attacker creates a desynchronized state between the

client and server so that they can no longer exchange data [1].

The attacker then creates synchronized packets that mimic

those being transmitted by the client and server, thereby

allowing the attacker to compromise the integrity of the

communication between the client and server by modifying

their messages or injecting additional messages.

Joncheray proposes two methods for creating a

desynchronized TCP connection, early desynchronization and

null data desynchronization [1]. Early desynchronization

consists of resetting the TCP connection between the client

and server in its early stage and creating new connections with

each side using different sequence numbers. To perform null

data desynchronization, the attacker injects null data (data that

does not affect the state of the client or server application) into

the connection to increment the sequence numbers into a

desynchronized state.

TCP veto: A novel network attack and its

application to SCADA protocols
John T. Hagen, Member, IEEE, and Barry E. Mullins, PhD, Senior Member, IEEE

C

2

A weakness of connection hijacking is that desynchronizing

a TCP connection creates what Joncheray termed as an “ACK

storm.” After the client and server are desynchronized, each

transmitted, desynchronized packet is acknowledged by an

ACK packet (a TCP packet with no payload) containing the

sequence numbers that the receiver believes to be correct.

This packet in turn is acknowledged by another ACK packet,

creating a seemingly endless loop of ACK packets. As a

result, the ACK storm generates a large amount of extraneous

network traffic, making connection hijacking detectable

through several methods. Joncheray reports that on a local

Ethernet connection, a single desynchronized packet generates

between 10 and 300 ACK packets [1].

C. SCADA Protocols

Modbus TCP is a member of the Modbus protocol family

that operates over TCP/IP [2]. The Modbus protocol was

originally developed by Modicon in 1979 and was later

transferred to the Modbus Organization to become an open

standard. Modbus TCP features a simple design that utilizes

function codes to specify request and response format.

Modbus TCP communication is identified by its use of TCP

port 502.

The Ethernet Industrial Protocol (EtherNet/IP) is another

SCADA protocol that operates over TCP/IP. EtherNet/IP was

originally developed by Rockwell Automation in the late

1990s and was turned over to be managed by the Open

DeviceNet Vendors Association (OVDA) in 2001 [3].

Specifications for the protocol are controlled and can only be

obtained by subscribing as an authorized vendor through

OVDA. EtherNet/IP provides extensible, object-oriented

communication through the Common Industrial Protocol

(CIP). The presence of EtherNet/IP communication is

identified by its use of TCP port 44818.

The Distributed Network Protocol (DNP3) is a SCADA

protocol designed to be transported across various physical

media, including TCP/IP networks. Westronic Incorporated

originally began development of DNP3 in the early 1990s, and

the protocol is currently maintained by the DNP Users Group

[4]. DNP3 was adopted as a standard by the IEEE in 2010 [5].

Notable characteristics of DNP3 include the use of a three-

layer architecture (data-link, transport, application) and an

optional Secure Authentication specification first proposed in

[6] and updated to the latest version in [7]. Secure

Authentication uses hash-based message authentication codes

(HMAC) to authenticate users to SCADA endpoint devices.

DNP3 communication on IP networks is identified by its use

of TCP port 20000.

III. ATTACK ANATOMY

TCP veto, described in this section, is designed to be an

enhancement of connection hijacking that avoids generating an

ACK storm. TCP veto targets specific application-layer

payloads in a TCP connection that have predictable lengths

and replaces them with a malicious payload. The attack is

crafted in such a way that the client and server’s original

communication appears to continue uninterrupted with little

extraneous network traffic generated. Because of this, the

attacker can begin and end TCP veto at any time during a

connection. The assumptions for this work are selected to

match those used in Joncheray’s original connection hijacking

paper [1]. To facilitate a concise description of the attack,

only the essential details of the TCP connection are included.

A detailed description of the behavior of the TCP protocol can

be found in [8].

A. Assumptions

The following assumptions are taken from the connection

hijacking attack.

1. The attacker is positioned somewhere along the TCP

communication path between the client and server

and can sniff traffic, and inject packets with arbitrary

IP, TCP and application layers.

2. The attacker can sniff and inject packets faster than the

targeted system, permitting the attacker to exploit a

race condition.

The following assumption is an additional constraint of TCP

veto not required to perform connection hijacking.

3. The targeted application-layer payload uses a

predictable, fixed-length format.

B. TCP Veto

This paper adopts the naming conventions used in

Joncheray’s description of connection hijacking to describe the

flow of TCP packets [1]. For simplicity, only sequence and

acknowledgement numbers and segment lengths are discussed.

All packets are assumed to fall within the client and server’s

respective TCP windows and packet loss and retransmission

are not considered. The following terms are used to describe

the attack:

 CLT_SEQ – The sequence number of the next byte to be

sent by the client

 CLT_ACK – The sequence number of the next byte to be

received by the client

 SVR_SEQ – The sequence number of the next byte to be

sent by the server

 SVR_ACK – The sequence number of the next byte to be

received by the server

 SEG_SEQ – The sequence number in the TCP header of

a packet

 SEG_ACK – The acknowledgement number in the TCP

header of a packet

 SEG_LEN – The length of the TCP payload of a packet

Fig. 1 depicts the exchange of messages between the client,

server, and attacker during TCP veto. Attacker packets are

marked with dashed lines. First, the client connects to the

server by performing the TCP three-way handshake. This

portion of the connection is of no concern to the TCP veto

attack. The attacker need not affect the connection at this

time.

The attacker may begin the attack at any time. Let w, x, and

y represent the following TCP header fields of the packet

transmitted by the client immediately preceding the attack:

 SEG_ACK = w

3

 SEG_SEQ = x

 SEG_LEN = y

The attacker sniffs and dissects the TCP header of the client

packet to create the following TCP header fields that appears

to have originated from the server:

 SEG_ACK = x+y; properly acknowledge the client

request packet

 SEG_SEQ = w; the next byte that the client is expecting

from the server

After creating an acceptable TCP header, let z be the length

of the TCP payload the attacker predicts that the server will

transmit in response to the client’s packet. This requires that

the attacker have knowledge of how the application-layer

protocol operates. The attacker appends exactly z bytes of

malicious payload. This is the essential step in TCP veto that

allows payload data to be injected without desynchronizing the

targeted TCP connection.

 SEG_LEN = z

Data:[Malicious Payload]

Data:[Response]

Client ServerAttacker
[SYN]

[SYN ACK]

[ACK]

●

●

●

Data:[Request]

SEG_ACK:w SEG_SEQ:x SEG_LEN:y

SEG_ACK:x+y SEG_SEQ:w SEG_LEN:z

SEG_ACK:x+y

SEG_SEQ:w SEG_LEN:z

XDiscarded as

duplicate TCP

retransmission

SEG_ACK:w+z SEG_SEQ:x+y Appears to

ACK server’s

response
●

●

●
Connection continues

normally

Allows attacker

to predict z

CLT_SEQ: x+y

CLT_ACK: w
SVR_SEQ: w

SVR_ACK: x+y

CLT_SEQ: x+y

CLT_ACK: w+z

SVR_SEQ: w+z

SVR_ACK: x+y

CLT_SEQ: x

CLT_ACK: w

SVR_SEQ: w

SVR_ACK: x

Three-way

handshake{

Fig. 1. TCP connection diagram of TCP veto.

 The client’s TCP stack accepts the attacker’s packet and

passes the malicious payload to the application. When the

server’s response is eventually transmitted and received by the

client, it is discarded because it appears to the client as an old

duplicate TCP retransmission [9]. This occurs because on

receipt of the server’s response: SEG_ACK = CLT_SEQ and

SEG_SEQ + SEG_LEN = CLT_ACK.

 TCP veto, in contrast to connection hijacking, does not

desynchronize both the client and server. Because of this,

when the client sends an ACK for the attacker’s malicious

packet, it appears to the server to be properly acknowledging

its own response. The attacker must ensure that the malicious

packet is not sent too soon such that the client’s ACK arrives

at the server before the server transmits its response, which can

desynchronize the connection. For the default configuration of

the hardware studied in this research, no such additional delay

is required to perform the attack.

 Avoiding two-sided desynchronization results in the

following benefits:

 No ACK storm is generated, resulting in substantially

increased resistance to detection.

 The attacker is not required to continue forwarding

packets between the client and server to maintain their

connection. As a result, the attacker may begin and end

the attack at any time.

IV. METHODOLOGY

To test the effectiveness of TCP veto, a simple SCADA

network is created to serve as a means to quantitatively

compare its behavior to connection hijacking.

A. System Description

The following parameters define the components of the

experimental network depicted in Fig. 2. The attacker is

connected to an Ethernet hub with the HMI to satisfy the

attack assumption of being along the communication path

between the client and server.

 HMI (Client)

o Dell Precision M4600

o Windows 7 x64 SP1

o Modbus TCP Client – Automated Solutions

ASComm 3.2.0.11 Modbus Master Simple Read &

Write

o EtherNet/IP Client – Automated Solutions ASComm

3.2.0.11 A-B Legacy Simple Read & Write

o DNP3 Client – Triangle Microworks Protocol Test

Harness 3.13.4.0

 Attacker

o Dell Precision M4600

o Windows 7 x64 SP1

o Packet Sniffer/Injector – WinPcap 4.1.2

o Packet Capture – Wireshark 1.8.0 x64

 Modbus TCP PLC (Server)

o OMRON CP1L with CP1W-MODTCP61 Modbus

TCP protocol adapter

 EtherNet/IP PLC (Server)

o Allen Bradley MicroLogix 1100 Ser. B

 DNP3 PLC (Server)

o Allen Bradley MicroLogix 1400 Ser. B

Ethernet Hub

Netgear DS108

10/100Mbps

DNP3 PLC (Server)

Allen Bradley

MicroLogix 1400

192.168.0.102

Attacker

Dell Precision M4600

0.0.0.0

Ethernet Switch

Cisco SG 100D-08

10/100/1000Mbps

Modbus TCP PLC (Server)

OMRON CP1L

CP1W-MODTCP61

192.168.0.100

EtherNet/IP PLC (Server)

Allen Bradley

MicroLogix 1100

192.168.0.101

HMI (Client)

Dell Precision M4600

192.168.0.1

Fig. 2. Experimental network diagram.

4

B. Experimental Design

During experimentation, a SCADA HMI client polls the

corresponding PLC at a fixed interval using a specific

protocol. The attacker then executes an attack, which is

successful if the HMI displays incorrect data. To determine

the effect of the network attacks, the factors varied to test the

experimental network are SCADA protocol and attack. Levels

selected for each factor are summarized in Table I. The

connection hijacking implementation used in this research

employs null data desynchronization. The client and server

communicating via DNP3 do not employ the optional Secure

Authentication features of DNP3.

TABLE I

FACTORS AND LEVELS

Factor Levels

Protocol Modbus TCP, EtherNet/IP, DNP3

Attack None, TCP veto, Connection hijacking

 A full factorial design is selected to explore the interaction

between each attack and protocol. For each factor level

combination, 30 replications are conducted to establish a

standard error (SE) for the sample mean.

V. ANALYSIS OF DETECTION RESISTANCE

Results from experimentation described in the preceding

section are provided here. The metrics are selected to

specifically demonstrate the effectiveness of TCP veto and

compare TCP veto's detection resistance to connection

hijacking.

A. Attack Success

TCP veto is 100% successful in compromising the integrity

of each SCADA protocol in all 30 replications. This reliability

is a result of several factors. First, the simple, low-traffic

nature of the experimental network allows for the reliable

injection of packets by the attacker. In the conducted

experiments, the attacker's packets are never lost. For this

experimental configuration, the attacker also possesses the

ability to process and respond to packets on the order of 10

times quicker than the targeted PLCs, meaning that,

throughout experimentation, the attacker always succeeds in

exploiting the race condition between the client and server.

These results confirm the practicality of TCP veto,

demonstrating that the SCADA protocols studied in this paper

are vulnerable to the attack. The hardware and software

selected for this research consists of real-world components

used in SCADA networks and the attacker's machine possesses

mainstream hardware.

B. ACK Storm Detection

A key design goal of TCP veto is to avoid the ACK storm

experienced by connection hijacking to produce an attack that

is more resistant to detection. Table II shows a summary of

the network traffic collected for each protocol and attack

combination. Connection hijacking data for Modbus TCP is

not available (N/A) because no mechanism could be

determined to inject null data that did not modify the state of

the client, causing it to close the connection. For EtherNet/IP

and DNP3, TCP veto generates 400 and 630 times less

network traffic, respectively, than connection hijacking. A

detection system would require a much higher degree of

sensitivity to detect the increase in traffic resulting from TCP

veto.
TABLE II

TCP TRAFFIC (PACKETS/S)

Modbus TCP EtherNet/IP DNP3

Mean SE Mean SE Mean SE

None 6.110 ±0.0106 6.120 ±0.0112 3.181 ±0.0144

Veto 8.296 ±0.0307 8.274 ±0.0293 4.390 ±0.0273

Connection

Hijacking

N/A

N/A

866.0

±4.30

765.2

±6.35

Joncheray demonstrates that connection hijacking can be

detected by comparing the percentage of ACK packets with

and without the attack present [1]. Table III presents this

percentage for each factor level combination. The connection

hijacking results are validated by Joncheray’s previous work in

which on a local Ethernet connection “the percentage of TCP

ACK is near 100%” [9]. When compared with no attack, TCP

veto decreases the percentage of ACK packets by only 8-9%

because for each request, response, ACK cycle the client and

server exchange, the attacker injects a malicious packet with a

TCP payload. The attacker’s malicious packet lowers the

relative weight of the ACK packet that is sent in the cycle.

TABLE III

TCP ACK / TOTAL TCP PACKETS (%)

Modbus TCP EtherNet/IP DNP3

Mean SE Mean SE Mean SE

None 33.4% ±0.11% 33.5% ±0.10% 33.4% ±0.23%

Veto 24.9% ±0.06% 24.8% ±0.03% 24.9% ±0.07%

Connection

Hijacking

N/A

N/A

99.4%

±0.03%

99.9%

±0.00%

If it is known that the percentage of ACK packets is being

used to detect the attack, the attacker could modify TCP veto

to inject additional ACK packets to compensate, however this

would increase the total traffic footprint of the attack.

C. Packet Retransmission

A desired side effect of TCP veto is that after an attacker

injects a packet to the client, the following legitimate response

from the server is discarded by the client because it appears to

be a normal, duplicate retransmission. This behavior can also

be used to detect the attack, however. Table IV lists the

percentage of apparent TCP retransmissions observed during

experimentation. When no attack is used, no TCP

retransmissions are recorded for the simple experimental

network. For each of the three SCADA protocols, TCP veto

increases the apparent TCP retransmissions to nearly 25%. It

is important to note that these are not retransmitted packets but

rather the packets targeted by the attacker. So only the

receiver (or a detection system that could sniff all traffic

between the client, attacker, and server) could detect these

anomalous packets.

The small percentage of apparent retransmissions present in

connection hijacking is a result of injecting null data to

desynchronize the connection between the client and server.

These retransmission packets are then dwarfed by the large

number of ACK packets generated by the ACK storm.

5

TABLE IV

TCP RETRANSMISSIONS / TOTAL TCP PACKETS (%)

Modbus TCP EtherNet/IP DNP3

Mean SE Mean SE Mean SE

None 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Veto 24.9% 0.06% 24.8% 0.03% 24.9% 0.07%

Connection

Hijacking N/A N/A 0.202% 0.001% 0.014% 0.000%

It is expected that as the network is scaled to include other

non-targeted TCP connections, the detectability of these

apparent retransmissions diminishes.

D. Advanced Detection

Even if retransmissions are detected, it is difficult to

distinguish if an attack is occurring or if the sending host is

simply performing a legitimate TCP retransmission. This

section presents a method to definitively detect the presence of

TCP veto. This detection method is based off the principle

that the TCP network stack should never correctly retransmit

different data for a given sequence number.

Assume that a detector can sniff all traffic transmitted

between the client, server, and attacker. The detector also

possesses memory (MEM) it uses to store all TCP payload

data (SEG_PAY) transmitted throughout a connection. Fig. 3

depicts the decision process the detector follows to identify a

TCP veto attack. Sequence number wrap and transmission

errors resulting in correct checksums are not considered in this

simplified explanation.

When the detector receives a TCP segment, it first validates

that the TCP checksum (SEG_CHK) is correct. If it is not, it

simply discards the segment because a segment with an

incorrect checksum will not be processed by the receiver and

poses no danger of compromising integrity. New payload data

is stored in MEM, and the detector performs a byte-wise

comparison of retransmitted TCP payload (SEG_PAY[i])

against previously stored payload data (MEM[i]). Any data

comparisons found to be different indicate that an attacker has

performed a TCP veto attack.

This process of deep packet analysis to definitively detect

TCP veto requires a great amount of computing and memory

resources. Simultaneously performing byte-wise comparisons

on all the TCP connections of a network is not expected to

scale well. This provides additional support to TCP veto’s

detection resistance.

VI. PREVENTION

The fundamental weakness that both connection hijacking

and TCP veto exploit to compromise the integrity of the

communication between a client and server is a lack of

message authentication. Without cryptographically strong

message authentication, the client and server cannot

distinguish between legitimate and malicious messages. This

section presents network protocols that can provide

authenticated SCADA communication over TCP/IP.

A. Application Layer

Of the SCADA application-layer protocols studied in this

paper, only DNP3 currently provides optional authentication.

The most recent specification includes Secure Authentication

version 5, which allows the use of pre-shared keys to

authenticate user communication to SCADA endpoint devices

[7].

Advantages of DNP3 Secure Authentication include end-to-

end authentication of application data even if it traverses

physical media other than IP networks and the ability to

distinguish individual users or applications on a host. The

disadvantage for current SCADA applications not employing

DNP3 is that an entirely different application-layer protocol

would have to be adopted, breaking compatibility.

Receive TCP

segment

Is SEG_CHK

correct?

Discard TCP

Segment

MEM[i] = SEG_PAY[i]

No

Yes

No

Yes

No

Alert that

TCP veto

attack

occuring
Yes

Does data exist

at MEM[i]?

Is SEG_PAY[i] =

MEM[i]?

i = SEG_SEQ

i = i +1

More bytes in

segment?

Yes
End

No

Fig. 3. Flowchart of advanced detection method.

B. Transport Layer

There are currently no widely-adopted security protocols for

the transport layer. Tcpcrypt is a “work in progress” security

protocol that integrates opportunistic encryption and optional

authentication into TCP [11]. At the time of writing, tcpcrypt

is a draft at the Internet Engineering Task Force (IETF) [12].

If adopted as a formal standard, tcpcrypt could be integrated

into the TCP stack of SCADA client and server devices,

providing a uniform security solution across many different

SCADA protocols.

One advantage of using tcpcrypt is that it has the ability of

authenticating much of the TCP header in addition to the

application layer, which mitigates certain denial-of-service

(DoS) attacks that target the TCP connection. Tcpcrypt can

also protect any application-layer protocol, which preserves

6

backwards compatibility. The disadvantage of tcpcrypt is that

SCADA applications would need to be reconfigured to

interface to tcpcrypt’s authentication features.

C. Network Layer

Internet Protocol Security (IPsec) is a network-layer security

protocol designed to mitigate many of the security weaknesses

in IP [13]. IPsec is designed to complement upper-layer

protocols (e.g., TCP) such that they do not need to be re-

written in order to be protected. IPsec defines two protocols –

the Authentication Header (AH) described in [14] and the

Encapsulating Security Payload (ESP) detailed in [15]. Both

protocols can be configured to authenticate SCADA

communication that travels over IP networks by integrating

IPsec into the IP stack of SCADA client and server devices,

providing a uniform security solution across many different

SCADA protocols.

IPsec has the advantage of not requiring SCADA

applications or protocols to be modified, which preserves

backwards compatibility. The disadvantage of authenticating

at the network layer is that IPsec cannot distinguish multiple

users or applications on the same host, resulting in a loss of

authentication precision.

VII. CONCLUSIONS

TCP veto is a novel detection-resistant network attack

effective at compromising the integrity of messages passed

between certain protocols that use predictable, fixed-length

formats. All three SCADA protocols tested, Modbus TCP,

EtherNet/IP, and DNP3, are vulnerable to TCP veto because

of a lack of message authentication. By avoiding the

disadvantage in connection hijacking that generates an ACK

storm, TCP veto generates between 400 and 600 times less

network traffic. The proposed method to definitively identify

TCP veto requires the memory and computing power to

perform deep packet inspection of every packet of a monitored

connection. TCP veto is ideally suited to the broadcast nature

of wireless portions of a SCADA network or to an insider

threat that plants an attacking device along the path of SCADA

communication. The SCADA community must prioritize the

migration of critical infrastructure to authenticated network

protocols such as DNP3 with Secure Authentication, tcpcrypt,

or IPsec.

VIII. ACKNOWLEDGMENT

The authors gratefully acknowledge the contributions of

David R. Hagen for his critical reading and critique of the

original version of this document. The views expressed in this

paper are those of the authors and do not reflect the official

policy or position of the United States Air Force, Department

of Defense, or the U.S. Government.

IX. REFERENCES

[1] L. Joncheray, “A simple active attack against TCP,” in Proc. of the

Fifth Usenix Unix Symposium.,Salt Lake City, UT, pp. 7-19

[2] Modbus Protocol Specification V1.1b. (2006, December). Modbus

Organization. [Online]. Available:

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pd

f

[3] EtherNet/IP(TM) - CIP on Ethernet Technology. (2008). Open

DeviceNet Vendors Association. [Online]. Available:

http://www.odva.org/Portals/0/Library/Publications_Numbered/PUB001

38R3_CIP_Adv_Tech_Series_EtherNetIP.pdf

[4] About DNP3 Users Group. (2012). DNP3 Users Group. [Online].

Available: http://www.dnp.org/Pages/AboutUsersGroup.aspx

[5] IEEE Standard for Electric Power Systems Communications –

Distributed Network Protocol (DNP3), IEEE Standard 1815-2010, July

2010.

[6] G. Gilchrist, “Secure authentication for DNP3,” in 2008 IEEE Power

and Energy Society General Meeting – Conversion and Delivery of

Electrical Energy in the 21st Century, Pittsburg, PA, pp. 1-3.

[7] Secure Authentication v5. (2011, November). DNP Users Group.

[Online]. Available:

http://www.dnp.org/Lists/Announcements/Attachments/7/Secure%20Au

thentication%20v5%202011-11-08.pdf

[8] J. Postel. (1981, September). Transmission Control Protocol – RFC 793.

Internet Engineering Task Force. [Online]. Available:

https://tools.ietf.org/html/rfc793

[9] Transmission Control Protocol – RFC 793. Internet Engineering Task

Force. [Online]. Available: https://tools.ietf.org/html/rfc793 p. 69.

[10] L. Joncheray, “A simple active attack against TCP,” in Proc. of the

Fifth Usenix Unix Symposium., p. 17

[11] A. Bittau, M. Hamburg, M. Handley, D. Mazieres, and D. Boneh, “The

case for ubiquitous transport-level encryption.” USENIX Security

Symposium, Washington, DC

[12] A. Bittau, D. Boneh, and M. Hamburg. (2012, February).

“Cryptographic protection of TCP Streams (tcpcrypt).” Internet

Engineering Task Force. [Online]. Available:

http://tools.ietf.org/html/draft-bittau-tcp-crypt-02

[13] S. Kent and K. Seo. (2005, December). Security Architecture for the

Internet Protocol – RFC 4301. Internet Engineering Task Force.

[Online]. Available: https://trac.tools.ietf.org/html/rfc4301

[14] S. Kent. (2005, December). IP Authentication Header – RFC 4302.

Internet Engineering Task Force. [Online]. Available:

https://trac.tools.ietf.org/html/rfc4302

[15] S. Kent. (2005, December). IP Encapsulating Security Payload (ESP) –

RFC 4303. Internet Engineering Task Force. [Online]. Available:

https://trac.tools.ietf.org/html/rfc4303

X. BIOGRAPHIES

John T. Hagen (M’2012) was born in the United

States of America in 1988. He graduated from

Cedarville University with highest honors with a

B.S. in Computer Engineering. He received a M.S.

in Cyber Operations from the Air Force Institute of

Technology where he was awarded distinguished

graduate.

His employment experience includes electrical

and computer engineering design of a prototype

hybrid-electric UAV for the Air Force Institute of

Technology, network security analysis of mobile robotics at the Air Force

Research Labs, and cryptanalysis.

His current research interests include network security, SCADA systems,

embedded devices, and cryptanalysis.

Barry E. Mullins (M’1996, SM’2000) is an

Associate Professor of Computer Engineering in the

Department of Electrical and Computer

Engineering, Air Force Institute of Technology

(AFIT), Wright-Patterson AFB OH. He received a

B.S. in Computer Engineering (cum laude) from the

University of Evansville in 1983, an M.S. in

Computer Engineering from AFIT in 1987, and a

Ph.D. in Electrical Engineering from Virginia

Polytechnic Institute and State University in 1997.

He is a registered Professional Engineer in Colorado and a member of Tau

Beta Pi, Eta Kappa Nu, Phi Beta Chi, Kappa Mu Epsilon, IEEE and ASEE.

His research interests include cyber operations, malware analysis, reverse

code engineering, computer/network security, and SCADA (supervisory

control and data acquisition) security.

