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Abstract—TCP veto is a detection-resistant variation of the 

TCP connection hijacking attack. While not limited to SCADA 

protocols, Modbus TCP, the Ethernet Industrial Protocol 

(EtherNet/IP), and the Distributed Network Protocol (DNP3) 

each meet the necessary assumptions of the attack.  Experimental 

results reveal that the integrity of messages transmitted using 

each of the three SCADA protocols are vulnerable to TCP veto.  

Additionally, TCP veto produces up to 600 times less network 

traffic during its attack than connection hijacking.  This work 

underscores the vulnerability of current SCADA protocols that 

communicate over TCP/IP to network attack.  A method to 

definitively identify TCP veto requires a detection system to 

perform deep packet inspection on every TCP packet of a 

monitored connection. Methods for mitigating the attack through 

message authentication include implementing DNP3 with Secure 

Authentication, tcpcrypt, or Internet Protocol Security (IPsec). 

 
Index Terms—Cyberspace, Intrusion detection, IP networks, 

Message authentication, Network security, SCADA systems, 

TCPIP 

I.  INTRODUCTION 

RITICAL infrastructure such as electric, oil, and gas 

intersect with cyberspace in the form of technologies that 

perform Supervisory Control And Data Acquisition (SCADA).  

Specialized legacy devices originally designed to communicate 

over serial networks are adapted for the Transmission Control 

Protocol and the Internet Protocol (TCP/IP) to increase 

scalability, bandwidth, and communication distance.  Inherent 

with this transition is a dependence on protocols that were 

never designed to support end-to-end authentication or 

encryption.  This property means endpoint devices on SCADA 

networks are vulnerable to a variety of classic TCP network 

attacks. 

 The goals of this research are threefold: 

1. Describe TCP veto, a variation of the connection 

hijacking attack that is more resistant to detection. 

2. Experimentally demonstrate that TCP veto 

compromises the integrity of several common 

SCADA protocols. 
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3. Provide methods to detect and mitigate TCP veto. 

II.  BACKGROUND 

The following topic areas are necessary for understanding 

the novel attack described in this research and the 

experimentation conducted. 

A.  Network Security 

 Security is often defined with the Confidentiality, Integrity, 

and Availability (CIA) model.  While each of these principles 

have potentially critical implications to SCADA networks, this 

research focuses on attacks that compromise integrity, 

specifically origin integrity.  Origin integrity, or 

authentication, is the principle that a receiver can verify the 

identity of the sender of a message. 

 This paper uses the following actors to describe TCP veto 

and perform experimentation: 

 Client – The client initiates communication with the 

server.  In SCADA networks this is typically the Human 

Machine Interface (HMI). 

 Server – The server listens for communication requests 

from and provides services to the client.  In SCADA 

networks this is typically the Programmable Logic 

Controller (PLC). 

 Attacker – The malicious attacker’s goal is to 

compromise the integrity of the communication between 

the client and server. 

B.  Connection Hijacking 

Connection hijacking is an active attack against TCP in 

which the attacker creates a desynchronized state between the 

client and server so that they can no longer exchange data [1].  

The attacker then creates synchronized packets that mimic 

those being transmitted by the client and server, thereby 

allowing the attacker to compromise the integrity of the 

communication between the client and server by modifying 

their messages or injecting additional messages. 

Joncheray proposes two methods for creating a 

desynchronized TCP connection, early desynchronization and 

null data desynchronization [1].  Early desynchronization 

consists of resetting the TCP connection between the client 

and server in its early stage and creating new connections with 

each side using different sequence numbers.  To perform null 

data desynchronization, the attacker injects null data (data that 

does not affect the state of the client or server application) into 

the connection to increment the sequence numbers into a 

desynchronized state. 
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A weakness of connection hijacking is that desynchronizing 

a TCP connection creates what Joncheray termed as an “ACK 

storm.”  After the client and server are desynchronized, each 

transmitted, desynchronized packet is acknowledged by an 

ACK packet (a TCP packet with no payload) containing the 

sequence numbers that the receiver believes to be correct.  

This packet in turn is acknowledged by another ACK packet, 

creating a seemingly endless loop of ACK packets.  As a 

result, the ACK storm generates a large amount of extraneous 

network traffic, making connection hijacking detectable 

through several methods.  Joncheray reports that on a local 

Ethernet connection, a single desynchronized packet generates 

between 10 and 300 ACK packets [1]. 

C.  SCADA Protocols 

Modbus TCP is a member of the Modbus protocol family 

that operates over TCP/IP [2].  The Modbus protocol was 

originally developed by Modicon in 1979 and was later 

transferred to the Modbus Organization to become an open 

standard.  Modbus TCP features a simple design that utilizes 

function codes to specify request and response format.  

Modbus TCP communication is identified by its use of TCP 

port 502. 

The Ethernet Industrial Protocol (EtherNet/IP) is another 

SCADA protocol that operates over TCP/IP.  EtherNet/IP was 

originally developed by Rockwell Automation in the late 

1990s and was turned over to be managed by the Open 

DeviceNet Vendors Association (OVDA) in 2001 [3].  

Specifications for the protocol are controlled and can only be 

obtained by subscribing as an authorized vendor through 

OVDA.  EtherNet/IP provides extensible, object-oriented 

communication through the Common Industrial Protocol 

(CIP).  The presence of EtherNet/IP communication is 

identified by its use of TCP port 44818. 

The Distributed Network Protocol (DNP3) is a SCADA 

protocol designed to be transported across various physical 

media, including TCP/IP networks.  Westronic Incorporated 

originally began development of DNP3 in the early 1990s, and 

the protocol is currently maintained by the DNP Users Group 

[4].  DNP3 was adopted as a standard by the IEEE in 2010 [5].  

Notable characteristics of DNP3 include the use of a three-

layer architecture (data-link, transport, application) and an 

optional Secure Authentication specification first proposed in 

[6] and updated to the latest version in [7].  Secure 

Authentication uses hash-based message authentication codes 

(HMAC) to authenticate users to SCADA endpoint devices.  

DNP3 communication on IP networks is identified by its use 

of TCP port 20000. 

III.  ATTACK ANATOMY 

TCP veto, described in this section, is designed to be an 

enhancement of connection hijacking that avoids generating an 

ACK storm.  TCP veto targets specific application-layer 

payloads in a TCP connection that have predictable lengths 

and replaces them with a malicious payload.  The attack is 

crafted in such a way that the client and server’s original 

communication appears to continue uninterrupted with little 

extraneous network traffic generated.  Because of this, the 

attacker can begin and end TCP veto at any time during a 

connection.  The assumptions for this work are selected to 

match those used in Joncheray’s original connection hijacking 

paper [1].  To facilitate a concise description of the attack, 

only the essential details of the TCP connection are included.  

A detailed description of the behavior of the TCP protocol can 

be found in [8].  

A.  Assumptions 

The following assumptions are taken from the connection 

hijacking attack. 

1. The attacker is positioned somewhere along the TCP 

communication path between the client and server 

and can sniff traffic, and inject packets with arbitrary 

IP, TCP and application layers. 

2. The attacker can sniff and inject packets faster than the 

targeted system, permitting the attacker to exploit a 

race condition. 

The following assumption is an additional constraint of TCP 

veto not required to perform connection hijacking. 

3. The targeted application-layer payload uses a 

predictable, fixed-length format. 

B.  TCP Veto 

This paper adopts the naming conventions used in 

Joncheray’s description of connection hijacking to describe the 

flow of TCP packets [1].  For simplicity, only sequence and 

acknowledgement numbers and segment lengths are discussed.  

All packets are assumed to fall within the client and server’s 

respective TCP windows and packet loss and retransmission 

are not considered.  The following terms are used to describe 

the attack: 

 CLT_SEQ – The sequence number of the next byte to be 

sent by the client 

 CLT_ACK – The sequence number of the next byte to be 

received by the client 

 SVR_SEQ – The sequence number of the next byte to be 

sent by the server 

 SVR_ACK – The sequence number of the next byte to be 

received by the server 

 SEG_SEQ – The sequence number in the TCP header of 

a packet 

 SEG_ACK – The acknowledgement number in the TCP 

header of a packet 

 SEG_LEN – The length of the TCP payload of a packet 

 

Fig. 1 depicts the exchange of messages between the client, 

server, and attacker during TCP veto.  Attacker packets are 

marked with dashed lines.  First, the client connects to the 

server by performing the TCP three-way handshake.  This 

portion of the connection is of no concern to the TCP veto 

attack.  The attacker need not affect the connection at this 

time. 

The attacker may begin the attack at any time.  Let w, x, and 

y represent the following TCP header fields of the packet 

transmitted by the client immediately preceding the attack: 

 SEG_ACK = w 
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 SEG_SEQ = x 

 SEG_LEN = y 

 

The attacker sniffs and dissects the TCP header of the client 

packet to create the following TCP header fields that appears 

to have originated from the server:   

 SEG_ACK = x+y; properly acknowledge the client 

request packet 

 SEG_SEQ = w; the next byte that the client is expecting 

from the server 

 

After creating an acceptable TCP header, let z be the length 

of the TCP payload the attacker predicts that the server will 

transmit in response to the client’s packet.  This requires that 

the attacker have knowledge of how the application-layer 

protocol operates.  The attacker appends exactly z bytes of 

malicious payload.  This is the essential step in TCP veto that 

allows payload data to be injected without desynchronizing the 

targeted TCP connection. 

 SEG_LEN = z 

 

Data:[Malicious Payload]

Data:[Response]

Client ServerAttacker
[SYN]

[SYN ACK]

[ACK]

●

●

●

Data:[Request]

SEG_ACK:w  SEG_SEQ:x  SEG_LEN:y

SEG_ACK:x+y  SEG_SEQ:w  SEG_LEN:z

SEG_ACK:x+y 

SEG_SEQ:w SEG_LEN:z

XDiscarded as 

duplicate TCP 

retransmission

SEG_ACK:w+z  SEG_SEQ:x+y Appears to 

ACK server’s 

response
●

●

●
Connection continues 

normally

Allows attacker

to predict z

CLT_SEQ: x+y

CLT_ACK: w
SVR_SEQ: w

SVR_ACK: x+y

CLT_SEQ: x+y

CLT_ACK: w+z

SVR_SEQ: w+z

SVR_ACK: x+y

CLT_SEQ: x

CLT_ACK: w

SVR_SEQ: w

SVR_ACK: x

Three-way 

handshake{

Fig. 1.  TCP connection diagram of TCP veto. 

 

 The client’s TCP stack accepts the attacker’s packet and 

passes the malicious payload to the application.   When the 

server’s response is eventually transmitted and received by the 

client, it is discarded because it appears to the client as an old 

duplicate TCP retransmission [9].  This occurs because on 

receipt of the server’s response: SEG_ACK = CLT_SEQ and 

SEG_SEQ + SEG_LEN = CLT_ACK. 

 TCP veto, in contrast to connection hijacking, does not 

desynchronize both the client and server.  Because of this, 

when the client sends an ACK for the attacker’s malicious 

packet, it appears to the server to be properly acknowledging 

its own response.  The attacker must ensure that the malicious 

packet is not sent too soon such that the client’s ACK arrives 

at the server before the server transmits its response, which can 

desynchronize the connection.  For the default configuration of 

the hardware studied in this research, no such additional delay 

is required to perform the attack.  

 Avoiding two-sided desynchronization results in the 

following benefits: 

 No ACK storm is generated, resulting in substantially 

increased resistance to detection. 

 The attacker is not required to continue forwarding 

packets between the client and server to maintain their 

connection.  As a result, the attacker may begin and end 

the attack at any time. 

IV.  METHODOLOGY 

To test the effectiveness of TCP veto, a simple SCADA 

network is created to serve as a means to quantitatively 

compare its behavior to connection hijacking. 

A.  System Description 

The following parameters define the components of the 

experimental network depicted in Fig. 2.  The attacker is 

connected to an Ethernet hub with the HMI to satisfy the 

attack assumption of being along the communication path 

between the client and server.  

 HMI (Client) 

o Dell Precision M4600 

o Windows 7 x64 SP1 

o Modbus TCP Client – Automated Solutions 

ASComm 3.2.0.11 Modbus Master Simple  Read & 

Write 

o EtherNet/IP Client – Automated Solutions ASComm 

3.2.0.11 A-B Legacy Simple Read & Write 

o DNP3 Client – Triangle Microworks Protocol Test 

Harness 3.13.4.0 

 Attacker 

o Dell Precision M4600 

o Windows 7 x64 SP1 

o Packet Sniffer/Injector – WinPcap 4.1.2 

o Packet Capture – Wireshark 1.8.0 x64 

 Modbus TCP PLC (Server) 

o OMRON CP1L with CP1W-MODTCP61 Modbus 

TCP protocol adapter 

 EtherNet/IP PLC (Server) 

o Allen Bradley MicroLogix 1100 Ser. B 

 DNP3 PLC (Server) 

o Allen Bradley MicroLogix 1400 Ser. B 

 

Ethernet Hub

Netgear DS108

10/100Mbps

DNP3 PLC (Server)

Allen Bradley

MicroLogix 1400

192.168.0.102

Attacker

Dell Precision M4600

0.0.0.0

Ethernet Switch

Cisco SG 100D-08

10/100/1000Mbps

Modbus TCP PLC (Server)

OMRON CP1L

CP1W-MODTCP61

192.168.0.100

EtherNet/IP PLC (Server)

Allen Bradley 

MicroLogix 1100

192.168.0.101

HMI (Client)

Dell Precision M4600

192.168.0.1

Fig. 2.  Experimental network diagram. 
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B.  Experimental Design 

During experimentation, a SCADA HMI client polls the 

corresponding PLC at a fixed interval using a specific 

protocol.  The attacker then executes an attack, which is 

successful if the HMI displays incorrect data.  To determine 

the effect of the network attacks, the factors varied to test the 

experimental network are SCADA protocol and attack.  Levels 

selected for each factor are summarized in Table I. The 

connection hijacking implementation used in this research 

employs null data desynchronization.  The client and server 

communicating via DNP3 do not employ the optional Secure 

Authentication features of DNP3. 

 
TABLE I 

FACTORS AND LEVELS 

Factor Levels 

Protocol Modbus TCP, EtherNet/IP, DNP3 

Attack None, TCP veto, Connection hijacking 

 

 A full factorial design is selected to explore the interaction 

between each attack and protocol.  For each factor level 

combination, 30 replications are conducted to establish a 

standard error (SE) for the sample mean. 

V.  ANALYSIS OF DETECTION RESISTANCE 

Results from experimentation described in the preceding 

section are provided here.  The metrics are selected to 

specifically demonstrate the effectiveness of TCP veto and 

compare TCP veto's detection resistance to connection 

hijacking. 

A.  Attack Success 

TCP veto is 100% successful in compromising the integrity 

of each SCADA protocol in all 30 replications.  This reliability 

is a result of several factors.  First, the simple, low-traffic 

nature of the experimental network allows for the reliable 

injection of packets by the attacker.  In the conducted 

experiments, the attacker's packets are never lost.  For this 

experimental configuration, the attacker also possesses the 

ability to process and respond to packets on the order of 10 

times quicker than the targeted PLCs, meaning that, 

throughout experimentation, the attacker always succeeds in 

exploiting the race condition between the client and server. 

These results confirm the practicality of TCP veto, 

demonstrating that the SCADA protocols studied in this paper 

are vulnerable to the attack.  The hardware and software 

selected for this research consists of real-world components 

used in SCADA networks and the attacker's machine possesses 

mainstream hardware. 

B.  ACK Storm Detection 

A key design goal of TCP veto is to avoid the ACK storm 

experienced by connection hijacking to produce an attack that 

is more resistant to detection.  Table II shows a summary of 

the network traffic collected for each protocol and attack 

combination.  Connection hijacking data for Modbus TCP is 

not available (N/A) because no mechanism could be 

determined to inject null data that did not modify the state of 

the client, causing it to close the connection.  For EtherNet/IP 

and DNP3, TCP veto generates 400 and 630 times less 

network traffic, respectively, than connection hijacking.  A 

detection system would require a much higher degree of 

sensitivity to detect the increase in traffic resulting from TCP 

veto.   
TABLE II 

TCP TRAFFIC (PACKETS/S) 

 

Modbus TCP EtherNet/IP DNP3 

 

Mean SE Mean SE Mean SE 

None 6.110 ±0.0106 6.120 ±0.0112 3.181 ±0.0144 

Veto 8.296 ±0.0307 8.274 ±0.0293 4.390 ±0.0273 

Connection 

Hijacking 

 

N/A 

 

N/A 

 

866.0 

 

±4.30 

 

765.2 

 

±6.35 

 

Joncheray demonstrates that connection hijacking can be 

detected by comparing the percentage of ACK packets with 

and without the attack present [1].  Table III presents this 

percentage for each factor level combination.  The connection 

hijacking results are validated by Joncheray’s previous work in 

which on a local Ethernet connection “the percentage of TCP 

ACK is near 100%” [9].  When compared with no attack, TCP 

veto decreases the percentage of ACK packets by only 8-9% 

because for each request, response, ACK cycle the client and 

server exchange, the attacker injects a malicious packet with a 

TCP payload.  The attacker’s malicious packet lowers the 

relative weight of the ACK packet that is sent in the cycle. 

 
TABLE III 

TCP ACK / TOTAL TCP PACKETS (%) 

 

Modbus TCP EtherNet/IP DNP3 

 

Mean SE Mean SE Mean SE 

None 33.4% ±0.11% 33.5% ±0.10% 33.4% ±0.23% 

Veto 24.9% ±0.06% 24.8% ±0.03% 24.9% ±0.07% 

Connection 

Hijacking 

 

N/A 

 

N/A 

 

99.4% 

 

±0.03% 

 

99.9% 

 

±0.00% 

 

If it is known that the percentage of ACK packets is being 

used to detect the attack, the attacker could modify TCP veto 

to inject additional ACK packets to compensate, however this 

would increase the total traffic footprint of the attack.  

C.  Packet Retransmission 

A desired side effect of TCP veto is that after an attacker 

injects a packet to the client, the following legitimate response 

from the server is discarded by the client because it appears to 

be a normal, duplicate retransmission.  This behavior can also 

be used to detect the attack, however.  Table IV lists the 

percentage of apparent TCP retransmissions observed during 

experimentation.  When no attack is used, no TCP 

retransmissions are recorded for the simple experimental 

network.  For each of the three SCADA protocols, TCP veto 

increases the apparent TCP retransmissions to nearly 25%.  It 

is important to note that these are not retransmitted packets but 

rather the packets targeted by the attacker.  So only the 

receiver (or a detection system that could sniff all traffic 

between the client, attacker, and server) could detect these 

anomalous packets.   

The small percentage of apparent retransmissions present in 

connection hijacking is a result of injecting null data to 

desynchronize the connection between the client and server.  

These retransmission packets are then dwarfed by the large 

number of ACK packets generated by the ACK storm.   
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TABLE IV 

TCP RETRANSMISSIONS / TOTAL TCP PACKETS (%) 

 

Modbus TCP EtherNet/IP DNP3 

 

Mean SE Mean SE Mean SE 

None 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Veto 24.9% 0.06% 24.8% 0.03% 24.9% 0.07% 

Connection 

Hijacking N/A N/A 0.202% 0.001% 0.014% 0.000% 

 

It is expected that as the network is scaled to include other 

non-targeted TCP connections, the detectability of these 

apparent retransmissions diminishes. 

D.  Advanced Detection 

Even if retransmissions are detected, it is difficult to 

distinguish if an attack is occurring or if the sending host is 

simply performing a legitimate TCP retransmission.  This 

section presents a method to definitively detect the presence of 

TCP veto.  This detection method is based off the principle 

that the TCP network stack should never correctly retransmit 

different data for a given sequence number. 

Assume that a detector can sniff all traffic transmitted 

between the client, server, and attacker.  The detector also 

possesses memory (MEM) it uses to store all TCP payload 

data (SEG_PAY) transmitted throughout a connection.  Fig. 3 

depicts the decision process the detector follows to identify a 

TCP veto attack.  Sequence number wrap and transmission 

errors resulting in correct checksums are not considered in this 

simplified explanation. 

When the detector receives a TCP segment, it first validates 

that the TCP checksum (SEG_CHK) is correct.  If it is not, it 

simply discards the segment because a segment with an 

incorrect checksum will not be processed by the receiver and 

poses no danger of compromising integrity.  New payload data 

is stored in MEM, and the detector performs a byte-wise 

comparison of retransmitted TCP payload (SEG_PAY[i]) 

against previously stored payload data (MEM[i]).  Any data 

comparisons found to be different indicate that an attacker has 

performed a TCP veto attack. 

This process of deep packet analysis to definitively detect 

TCP veto requires a great amount of computing and memory 

resources.  Simultaneously performing byte-wise comparisons 

on all the TCP connections of a network is not expected to 

scale well.  This provides additional support to TCP veto’s 

detection resistance.  

VI.  PREVENTION 

The fundamental weakness that both connection hijacking 

and TCP veto exploit to compromise the integrity of the 

communication between a client and server is a lack of 

message authentication.  Without cryptographically strong 

message authentication, the client and server cannot 

distinguish between legitimate and malicious messages.  This 

section presents network protocols that can provide 

authenticated SCADA communication over TCP/IP.  

A.  Application Layer 

Of the SCADA application-layer protocols studied in this 

paper, only DNP3 currently provides optional authentication.  

The most recent specification includes Secure Authentication 

version 5, which allows the use of pre-shared keys to 

authenticate user communication to SCADA endpoint devices 

[7]. 

Advantages of DNP3 Secure Authentication include end-to-

end authentication of application data even if it traverses 

physical media other than IP networks and the ability to 

distinguish individual users or applications on a host.  The 

disadvantage for current SCADA applications not employing 

DNP3 is that an entirely different application-layer protocol 

would have to be adopted, breaking compatibility. 

 

Receive TCP 

segment

Is SEG_CHK 

correct?

Discard TCP 

Segment

MEM[i] = SEG_PAY[i]

No

Yes

No

Yes

No

Alert that 

TCP veto 

attack 

occuring
Yes

Does data exist 

at MEM[i]?

Is SEG_PAY[i] = 

MEM[i]?

i = SEG_SEQ

i = i +1

More bytes in 

segment?

Yes
End

No

 
Fig. 3.  Flowchart of advanced detection method. 

 

B.  Transport Layer 

There are currently no widely-adopted security protocols for 

the transport layer.  Tcpcrypt is a “work in progress” security 

protocol that integrates opportunistic encryption and optional 

authentication into TCP [11].  At the time of writing, tcpcrypt 

is a draft at the Internet Engineering Task Force (IETF) [12].  

If adopted as a formal standard, tcpcrypt could be integrated 

into the TCP stack of SCADA client and server devices, 

providing a uniform security solution across many different 

SCADA protocols. 

One advantage of using tcpcrypt is that it has the ability of 

authenticating much of the TCP header in addition to the 

application layer, which mitigates certain denial-of-service 

(DoS) attacks that target the TCP connection.  Tcpcrypt can 

also protect any application-layer protocol, which preserves 
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backwards compatibility.  The disadvantage of tcpcrypt is that 

SCADA applications would need to be reconfigured to 

interface to tcpcrypt’s authentication features. 

C.  Network Layer 

Internet Protocol Security (IPsec) is a network-layer security 

protocol designed to mitigate many of the security weaknesses 

in IP [13].  IPsec is designed to complement upper-layer 

protocols (e.g., TCP) such that they do not need to be re-

written in order to be protected.  IPsec defines two protocols – 

the Authentication Header (AH) described in [14] and the 

Encapsulating Security Payload (ESP) detailed in [15].  Both 

protocols can be configured to authenticate SCADA 

communication that travels over IP networks by integrating 

IPsec into the IP stack of SCADA client and server devices, 

providing a uniform security solution across many different 

SCADA protocols. 

IPsec has the advantage of not requiring SCADA 

applications or protocols to be modified, which preserves 

backwards compatibility.  The disadvantage of authenticating 

at the network layer is that IPsec cannot distinguish multiple 

users or applications on the same host, resulting in a loss of 

authentication precision. 

VII.  CONCLUSIONS 

TCP veto is a novel detection-resistant network attack 

effective at compromising the integrity of messages passed 

between certain protocols that use predictable, fixed-length 

formats.  All three SCADA protocols tested, Modbus TCP, 

EtherNet/IP, and DNP3, are vulnerable to TCP veto because 

of a lack of message authentication.  By avoiding the 

disadvantage in connection hijacking that generates an ACK 

storm, TCP veto generates between 400 and 600 times less 

network traffic.  The proposed method to definitively identify 

TCP veto requires the memory and computing power to 

perform deep packet inspection of every packet of a monitored 

connection.  TCP veto is ideally suited to the broadcast nature 

of wireless portions of a SCADA network or to an insider 

threat that plants an attacking device along the path of SCADA 

communication.  The SCADA community must prioritize the 

migration of critical infrastructure to authenticated network 

protocols such as DNP3 with Secure Authentication, tcpcrypt, 

or IPsec. 
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