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Abstract—Weather and life cycles, fuel markets, reliability
rules, scheduled and random outages, renewables and demand
response programs, all constitute pieces of the electricity market
puzzle. In such a complex environment, forecasting electricity
prices is a very challenging task; nonetheless, it is of paramount
importance for market participants and system operators. Day-
ahead price forecasting is performed in the present paper
using a kernel-based method. This machine learning approach
offers unique advantages over existing alternatives, especially
in systematically exploiting the spatio-temporal nature of lo-
cational marginal prices (LMPs), while nonlinear cause-effect
relationships can be captured by carefully selected similarities.
Beyond conventional time-series data, non-vectorial attributes
(e.g., hour of the day, day of the week, balancing authority) are
transparently utilized. The novel approach is tested on real data
from the Midwest ISO (MISO) day-ahead electricity market over
the summer of 2012, during which MISO’s load peak record was
observed. The resultant day-ahead LMP forecasts outperform
price repetition and ordinary linear regression, thus offering a
promising inference tool for the electricity market.

Index Terms—Locational marginal prices, kriging filtering,
machine learning, wholesale electricity market.

I. INTRODUCTION

The smart grid vision entails advanced information technol-
ogy and data analytics to enhance the efficiency, sustainability,
and economics of the power grid infrastructure [16]. In this
context, statistical learning tools are employed in this work
to forecast the day-ahead electricity market. To appreciate the
value of such predictions, consider a typical day-ahead market.
An independent system operator (ISO) collects hourly supply
and demand bids submitted by generator owners and utilities
for the 24 hours of the following day. Compliant with network
and reliability constraints, the grid is then dispatched in the
most economical way. Together with power schedules, the ISO
announces hourly prices for the electricity produced and/or
consumed at specific nodes of the grid. Due to congestion and
losses incurred by the transmission system, these locational
marginal prices (LMPs) are different across the grid.

Apparently, forecasting tomorrow’s LMPs constitutes a
major decision making task for asset owners and market
participants to plan their hedging and bidding strategies [1].
Interestingly, some ISOs recently announce pricing forecasts
too in an attempt to relieve congestion [5]. These forecasts
serve as signals for reliability-ensuring bidding and strategic
planning in short- and long-term horizons, respectively. At
a wider scale, price analytics are important to government

services for identifying the so termed “national congestion
corridors.”

Forecasting schemes reported so far include statistical time-
series analysis approaches based on auto-regressive (inte-
grated) moving average models and their generalizations; see
e.g., [4], [6], [3]. However, these models are confined to linear
predictors, whereas markets involve generally nonlinear de-
pendencies. To account for nonlinearities, artificial intelligence
approaches, such as fuzzy systems and neural networks, have
been also investigated [18], [8], [11], [17]. A nearest neigh-
borhood approach has been suggested in [12]. In [19], market
clearance is assumed to be solved as a quadratic program
and forecasts are extracted based on the most probable outage
combinations. Reviews on electricity price forecasting can be
found in [1] and [14].

In this work, a kernel-based forecasting approach is consid-
ered. Contrary to existing methods, the entire day-ahead mar-
ket, involving all commercial nodes and all hours, is learned
by a single predictor. Using a similarity graph approach,
spatio-temporal pricing correlations are systematically utilized.
Based on the problem specifications, appropriate kernels are
carefully designed and estimated. Furthermore, time and nodal
information is transparently incorporated in the form of non-
vectorial attributes. The forecasting performance of the method
is corroborated by preliminary numerical tests on real data
collected from the MISO market over the summer of 2012.
MISO is one of the largest electricity markets with relatively
high wind penetration. During this specific period, a historical
load record was observed in the geographical area where
MISO operates [13].

The paper is outlined as follows. Electricity market fore-
casting is formulated in Section II, where the novel method is
also presented. The design of kernels is detailed in Section III,
and an efficient algorithm for implementing kernel-based fore-
casting is developed in Section IV. Forecasting results on the
MISO market are presented in Section V, and the paper is
concluded in Section VI.

Regarding notation, lower- (upper-) case boldface letters
denote column vectors (matrices); calligraphic letters stand
for sets; and (·)T denotes transposition. The symbol :=
stands for variable definition. Symbols � and ⊗ denote the
matrix entry-wise multiplication and the matrix Kronecker
product, respectively. The operation vec(A) transforms a
matrix to a vector by stacking its columns. The following



Kronecker product properties will be needed throughout:
(P1): (A⊗B)

−1
= A−1 ⊗B−1

(P2): (A⊗B)
T
= AT ⊗BT

(P3): vec(AXB) =
(
BT ⊗A

)
vec(X) and

(P4): (A⊗B)(C⊗D) = (AC)⊗ (BD).

II. FORECASTING METHODS

To formulate the electricity price forecasting problem, a
simple model is described first, based on which subsequent
generalizations are built on. As in typical inference problems,
data are partitioned into features and targets (a.k.a. regressors
or predictors and responses or predictions). Data over a pre-
vious time period are provided as training feature/target pairs.
Given these data, a predictor aims at finding the target values
for future target variables based on the known corresponding
features.

Consider the power grid as a network of N commercial
pricing nodes (CPNs). The training and test periods comprise
T1 and T2 time intervals, respectively. In the day-ahead market
setup considered here, the interval is naturally an hour. The
training period may potentially include all available historical
price values, and T2 = 24 refers to the following day.

Hourly nodal prices are stored row-wise in matrices Yi of
dimension Ti × N for i = 1, 2 corresponding to the training
and the testing phase, respectively. Predictor (feature) variables
are collected in P×1 vectors stored in matrices {Xi}2i=1, with
dimensions compatible with Yi’s. A naive forecasting method
would adopt the model

Yi = XiW +Ni, i = 1, 2 (1)

where W is the P ×N matrix of prediction coefficients. Note
that the n-th columns of Yi’s and W, yi,n and wn, correspond
to the n-th CPN and its prediction coefficients, respectively.
Further, each node’s forecast is a linear function of the same
P -dimensional feature vector.

A. Linear Prediction

An ordinary least-squares (LS) predictor yields the forecast
ŶLS

2 := X2X
†
1Y1, where † denotes matrix pseudo-inverse.

To avoid overfitting, a regularized LS alternative (a.k.a.
ridge regression predictor) relies on

ŵR
n := argmin

wn

‖y1,n −X1wn‖22 + λR‖wn‖22 (2)

where n = 1, . . . , N , and λR > 0 denotes the regularization
parameter. The prediction coefficients {ŵR

n}Nn=1 in (2) can
be found in closed form as

(
XT

1 X1 + λRIP
)−1

XT
1 y1,n, or

equivalently, XT
1

(
X1X

T
1 + λRIT1

)−1
y1,n for all n. Hence,

the day-ahead ridge forecast is given by

ŶR
2 := X2X

T
1

(
X1X

T
1 + λRIT1

)−1
Y1. (3)

A Bayesian interpretation of ridge regression assumes:
(A1) Columns of the Ni’s in (1) are standard Gaussian,
independent across nodes and training/testing phases; and
(A2) All wn’s are zero-mean white Gaussian with variance

λ−1
R . Under these assumptions, ŶR

2 is the minimum mean-
square error (MMSE) prediction of the day-ahead prices.
Notice though that both the LS and ridge predictions are de-
coupled across nodes, and are restricted to be linear functions
of the data. To model more complex dependencies, kernel
prediction methods are pursued next.

B. Kernel Prediction

Vectorial feature data stored in {Xi}2i=1 affect price fore-
casts via blocks of the so-called Gramian matrix Kv = XXT ,
where XT := [XT

1 XT
2 ]. Note that the (t1, t2)-th entry of

Kv is the inner product between feature vectors of two time
instances; i.e., [Kv]t1,t2 = xT

t1xt2 . In order to allow for
general nonlinear feature/target relationships, the idea is to
use [Kv]t1,t2 = k(xt1 ,xt2), where k(·, ·) is a chosen kernel
function capturing the similarity between features.

The day-ahead electricity market forecast can be thought
of as a function whose arguments are the available vectorial
features along with timestamp and nodal information. To infer
such a function, pairs of arguments and prices {ζl, yl}Ll=1 are
provided as historical data. The function argument is the triplet
ζl := (xl, tl, nl) ⊂ X×T ×N , where X ⊂ R

P , T is the space
of time instants, and N is the finite set of CPNs. The desired
prediction function is a mapping f : X ×T ×N → R. Hence,
different from the typical approach, where per node predictors
are trained, a single model capturing the whole pricing network
is pursued here.

Based on this formalism, electricity market forecasting can
be posed as the regularization problem

min
f∈H

L∑

l=1

(yl − f(ζl))
2 + λK‖f‖2H (4)

where L := NT1 is the number of training data, H is the
space in which f lies, and ‖f‖H is the induced norm in
that space [2]. The sum in the cost of (4) is an LS data
fitting component, while the induced norm offers a regularizer
effectively constraining f to lie in the selected space, while at
the same time enabling generalization over unseen data. These
two components are balanced via λK > 0, which is typically
set via cross-validation [9].

The pertinent questions in the present context of electricity
price forecasting are: (Q1) how can the function space be
selected; and (Q2) how the functional optimization in (4) can
be practically solved. Statistical learning suggests selecting
first a kernel function k(ζl, ζm) capturing the similarity be-
tween the application-specific features. If k(·, ·) is a symmetric
and positive definite function, meaning that the kernel matrix
constructed as [K]l,m := k(ζl, ζm) is positive definite for any
feature collection, then it uniquely defines a reproducing kernel
Hilbert space (RKHS) of functions. The latter is the family of
functions expressible as f(ζ) =

∑∞
i=1 k(ζ, ζi). The celebrated

Representer’s Theorem asserts that when H is an RKHS, the
minimizer of (4) takes the form [9]

f̂(ζ) =
L∑

l=1

k(ζ, ζl)α̂l. (5)



In other words, the wanted prediction function can be ex-
pressed as a finite linear combination of kernel functions
evaluated only at the training points.

By exploiting (5), it can be shown that the functional
optimization in (4) can be equivalently solved by estimating
the vector of coefficients in (5) via the quadratic program

α̂ := argmin
α

‖y1 −K11α‖22 + λKα
TK11α (6)

where K11 is the L × L kernel matrix evaluated over the
training points. The vector α uniquely minimizing (6) is
readily found in closed form as

α̂ = (K11 + λKINT1
)
−1

y1. (7)

Having acquired α̂, the fitted function can be evaluated at any
other point. Specifically, (5) dictates that at any new point
ζnew, the predicted function value is f̂(ζnew) = kT

newα̂, where
knew is an L×1 vector with entries k(ζnew, ζl). By stacking all
function evaluations for tomorrow’s market, the price forecast
can be compactly expressed as

ŷK
2 := K21α̂ (8)

which addresses (Q2). Responding to (Q1) requires specifying
the kernels, which is the topic considered next.

III. KERNELS FOR (NON)-VECTORIAL DATA

This section deals with constructing kernels tailored for
electricity market forecasting. Recall that the kernel function
k(ζl, ζm) is a measure of similarity. Since ζl comprises vec-
torial features xl, time instances tl, and nodal information
nl, kernels for each of the three components are individually
defined first. With the component-wise kernels respectively de-
noted by kv(xl,xm), kt(tl, tm), and ks(nl, nm), the collective
kernel is constructed as their product

k(ζl, ζm) := kv(xl,xm)kt(tl, tm)ks(nl, nm). (9)

If the three factors are valid kernels, i.e., symmetric and
positive definite functions, then their product in (9) is certainly
a valid kernel too [2].

A. Kernels for Vectorial Data

Regarding kv(xl,xm), a simple choice is the linear kernel
xT
l xm. More complex nonlinear relationships can be captured

by other vectorial kernels, such as the polynomial, the sigmoid,
the Gaussian, or spline kernels [2], [9]. In this work, the
Gaussian kernel

kv(xl,xm) = exp
(
−ν‖xl − xm‖22

)

will be adopted with bandwidth parameter ν > 0.
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Fig. 1. A similarity matrix across the days of the week K7. Its entries
have been empirically estimated as the correlation coefficients between daily
MISO pricing signals from the summer of 2011. Observe the correlation over
successive days.

B. Kernels for Timestamps

Careful kernel design for time data or timestamps can
potentially capture the cyclostationarity inherent to electricity
demand and consequently price. One should first recognize
that the datum tl carries two pieces of information: the day
of the week dl, and the hour of the day hl. Moreover, the
similarity between two timestamps should be decreasing with
respect to their time lag. Prices corresponding to days spaced
apart should be less correlated than prices between the same
or consecutive days. These considerations motivate

kt(tl, tm) = kd(dl, dm)kh(hl, hm)β|dl−dm| (10)

whose factors are described next.

The kd(·, ·) factor models pairwise similarities across days
of the week. Since this factor has discrete support, it is
simply defined by a 7 × 7 matrix K7. It can be shown that
kd(·, ·) is a valid kernel function, provided K7 is positive
definite [9]. The entries of K7 can be selected according
to the designer’s prior knowledge. Alternatively, they can be
estimated as the correlation coefficients of historical market
prices over the seven days of the week; see e.g., Fig. 1.
Likewise, the kh(hl, hm) factor captures pairwise similarities
across hours of the day. This function can be defined by a
24×24 matrix K24, as the one empirically estimated in Fig. 2.

The last factor in (10) models an exponentially decaying
similarity between two time instances, and intends to incorpo-
rate the nonstationary characteristics of the electricity market.
Parameter β > 0 is a decaying parameter that should be
selected close to 1 yielding an effective memory of 1/(1−β)
days. Finally, as with (9), the product of kernels is also a valid
kernel.
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Fig. 2. A similarity matrix across hours of the day K24. Its entries have been
empirically estimated as the correlation coefficients between hourly MISO
pricing signals from the summer of 2011. Day and night patterns can be
easily distinguished.

C. Kernels for Nodal Information

Pricing signals exhibit spatial correlations. Selecting kernels
to account for not only temporal but also spatial patterns
requires understanding the spatial structure of the market.
Spatial correlations could be mainly attributed to the transmis-
sion infrastructure together with line and generation outages.
But since the electrical topology is unavailable, other spatial
similarity measures should be considered. In this paper, the
information of the local balancing authority (LBA) that each
CPN belongs to is exploited as a topology surrogate. The
presumption here is that nodes belonging to the same LBA
should experience similar prices. In addition, nodes controlled
by neighboring authorities are expected to have prices corre-
lated more than nodes controlled by non-adjacent ones.

To rigorously model spatial dependence and incorporate it
in the prediction scheme, a graph-based inference approach
is adopted; see also [10]. CPNs are considered as vertices of
a similarity graph, connected with edges having non-negative
weights. Edge weights are chosen proportional to the similarity
between incident nodal prices. Edges in the same LBA are
assigned unit weights; edges across nodes from different LBAs
receive weight 0.5; and all other edges are zero. All weight
values are stored in an N × N symmetric adjacency matrix
A. Even though edge weights are selected in a rather ad hoc
manner, cross-validation could yield more meaningful values.

Having constructed the similarity graph, its normalized
Laplacian matrix is defined as L := IN − (D1/2)†A(D1/2)†,
where D is a diagonal matrix having the row sums of A across
its main diagonal; see e.g., [10]. A kernel matrix capturing
the similarity across the pricing network is the regularized
Laplacian

Ks := (L+ sIN )
−1 (11)

where sIN for s > 0 has been added to ensure that the kernel

is strictly positive definite [15].

IV. EFFICIENT IMPLEMENTATION

Even though coupling price forecasts across time and nodes
is beneficial from an inference perspective, the derived pre-
dictions ŷK

2 in (8) are computationally challenging. Indeed,
the ridge predictor in (3) requires inverting a T1 × T1 ma-
trix, whereas the kernel one in (6)-(8) involves inverting the
NT1 × NT1 matrix K11 + λKINT1

. Assuming a market of
1, 000 CPNs and a training period of three weeks (around 500
hours) leads to a 5·105×5·105 K11 matrix. Such a big matrix
is not only hard to invert, but also non-trivial to store.

To efficiently implement (6)-(7) and facilitate cross-
validation, the particular problem structure should be ex-
ploited. Note first that finding α̂ does not necessarily require
inverting K11 + λKINT1

, but rather solving the linear system
(
Ks ⊗K11

vt + λKINT1

)
α̂ = y1. (12)

Define first the T1 × N matrix Â so that α̂ = vec(Â).
Using (P3) from Section I, the linear equations in (12) are
equivalently expressed as K11

vtÂKs + λKÂ = Y1, or,

K11
vtÂ+ λKÂK−1

s = Y1K
−1
s . (13)

Interestingly, (13) is an instance of the Sylvester equation that
has been widely studied in the control literature, and can be
efficiently solved using the Bartels and Stewart algorithm [7],
already implemented in MATLAB’s lyap function.

Having acquired Â, the price forecast is provided by ŷK
2 =

K21â, or more efficiently as

ŶK
2 = K21

vtÂKs. (14)

V. FORECASTING THE MIDWEST ISO (MISO) MARKET

The forecasting performance of the novel kernel-based
predictors is evaluated in this section. To this end, real data
from the day-ahead MISO electricity market are used. The data
are related to the summer period of 2012, where a new MISO
load demand peak record was observed [13]. The related
commercial pricing model consists of N = 1, 732 nodes. Day-
ahead hourly LMPs are collected for the period June 1 to
August 31, 2012, a total of 2,208 hours.

Regarding the feature data used, vectorial data at time
instant tl were collected in the vector xl = xtl , and included:

• The day-ahead LMPs across MISO for the same hour
during the previous operating day.

• The aggregate over the MISO region wind energy pro-
duction forecast. Apart from the same hour, the previous
and the next hour were also included to model volatility
in wind production. Moreover, wind can be considered a
rough surrogate for weather conditions too.

• The hourly regional (East, West, and Central) load fore-
cast. Again, the loads predicted for one hour before and
after the hour of interest were also included. To capture
the time coupling across hours due to ramp constraints
considered in unit commitment.
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Fig. 3. The RMSE performance for the three forecasting methods tested. The
evaluation period ranges from the 46th (July 17, 2012) to the 92nd (August
31, 2012) day of the summer period.

Mainly due to scheduled and random outages in trans-
mission lines and generators, the electricity market is non-
stationary; hence, to capture time variability, each day’s predic-
tor is trained independently using the feature/price data from
the last three weeks. Important model parameters, namely, the
Gaussian kernel bandwidth ν, the Laplacian matrix regularizer
s, regularization parameters λR and λK, and the forgetting
factor β need to be tuned. To tune these parameters, market
data are divided in two parts. The first 46 days were used
only for parameter tuning. For the remaining 46 days, the
aforementioned parameters were fixed, and predictors were
again trained based on their previous three weeks.

Three forecasting methods were tested: (i) a naive repetitive
forecast that simply repeats yesterday’s prices; (ii) the ridge
regression forecast of (3); and (iii) the novel spatio-temporal
kernel-based predictor of (8). The evaluation metric used was
the residual mean-square error (RMSE) ‖y2 − ŷ2‖2/(24N).
Using the initial 46-day period, the parameters were set to
λR = 1, 000, λK = 1, ν = 1 · 10−4, β = 0.999, and s = 1.

Fixing parameters to the aforementioned values, the fore-
casting results obtained for the second half of the summer
period in the MISO market are depicted in Fig. 3. The
initial fluctuations experienced by all methods can be at-
tributed to high temperatures. Interestingly, the naive forecast
outperforms the linear ridge regression-based predictor. The
novel spatio-temporal kernel-based forecast however attains
consistently the lowest RMSE.

VI. CONCLUSIONS

Undoubtedly electricity market forecasting is a challenging
yet instrumental task for the smart grid operation. A novel
machine learning-based approach was developed. Viewing
the market as a properly defined graph, spatial correlations
were indirectly modeled using information from balancing
authorities. Time and calendar information can capture cyclo-
stationarity as well as holiday effects on the market. Gaussian
kernels on a multitude of numerical attributes model nonlinear

dependencies, and avoid the curse of dimensionality. The novel
price prediction algorithm operates on data publicly available,
even though additional data can be readily incorporated. An
efficient implementation was proposed that facilitated applica-
tion of the method to the MISO 1,732-CPN network. Including
additional data sources, deriving more efficient algorithms, and
inferring other useful market quantities are some of the future
research directions of this work.

REFERENCES

[1] N. Amjady and M. Hemmati, “Energy price forecasting - problems and
proposals for such predictions,” IEEE Power Energy Mag., vol. 4, no. 2,
pp. 20–29, Mar./Apr. 2006.

[2] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY: Springer, 2006.

[3] A. J. Conejo, M. A. Plazas, R. Espinola, and A. B. Molina, “Day-ahead
electricity price forecasting using the wavelet transform and ARIMA
models,” IEEE Trans. Power Syst., vol. 20, no. 2, pp. 1035–1042, May
2005.

[4] J. Contreras, R. Espinola, F. J. Nogales, and A. J. Conejo, “ARIMA
models to predict next-day electricity prices,” IEEE Trans. Power Syst.,
vol. 18, no. 3, pp. 1014–1020, Aug. 2003.

[5] Electric Reliability Council of Texas (ERCOT), “Ercot launches
wholesale pricing forecast tool,” July 11, 2012. [Online]. Available:
http://www.ercot.com/news/press releases/show/26244

[6] R. C. Garcia, J. Contreras, M. van Akkeren, and J. B. C. Garcia, “A
GARCH forecasting model to predict day-ahead electricity prices,” IEEE
Trans. Power Syst., vol. 20, no. 2, pp. 867–874, May 2005.

[7] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore,
MD: John Hopkins University Press, 1996.

[8] A. M. Gonzalez, A. M. S. Roque, and J. G. Gonzalez, “Modeling and
forecasting electricity prices with input/output hidden Markov models,”
IEEE Trans. Power Syst., vol. 20, no. 1, pp. 13–24, Feb. 2005.

[9] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Series in
Statistics, 2009.

[10] E. D. Kolaczyk, Statistical Analysis of Network Data, Methods and
Models. New York, NY: Springer, 2010.

[11] G. Li, C. C. Liu, C. Mattson, and J. Lawarree, “Day-ahead electricity
price forecasting in a grid environment,” IEEE Trans. Power Syst.,
vol. 22, no. 1, pp. 266–274, Feb. 2007.

[12] A. T. Lora, J. M. R. Santos, A. G. Exposito, J. L. M. Ramos, and
J. C. R. Santos, “Electricity market price forecasting based on weighted
nearest neighbors techniques,” IEEE Trans. Power Syst., vol. 22, no. 3,
pp. 1294–1301, Aug. 2007.

[13] Midwest Independent System Operator (MISO), “New market peak
demand record set in miso region,” July 25, 2012. [Online]. Avail-
able: https://www.midwestiso.org/AboutUs/MediaCenter/PressReleases/
Pages/NewMarketPeakDemandRecordSetinMISORegion.aspx

[14] M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric
Power Systems: Forecasting, Scheduling, and Risk Management. New
York: IEEE-Wiley Interscience, 2002.

[15] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in
Proc. of the Annual Conference on Computational Learning Theory and
Kernel Workshop, ser. Lecture Notes in Computer Science, B. Schölkopf
and M. Warmuth, Eds. Springer, 2003.

[16] U.S. Department of Energy, “Smart grid research and development,
multi-year program plan (2010-2014),” Sep. 2011.

[17] L. Wu and M. Shahidehpour, “A hybrid model for day-ahead price
forecasting,” IEEE Trans. Power Syst., vol. 25, no. 3, pp. 1519–1530,
Aug. 2010.

[18] L. Zhang, P. B. Luh, and K. Kasiviswanathan, “Energy clearing price
prediction and confidence interval estimation with cascaded neural
network,” IEEE Trans. Power Syst., vol. 18, no. 1, pp. 99–105, Feb.
2003.

[19] Q. Zhou, L. Tesfatsion, and C.-C. Liu, “Short-term congestion forecast-
ing in wholesale power markets,” IEEE Trans. Power Syst., vol. 26,
no. 4, pp. 2185–2196, Nov. 2011.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /OK
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


