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Abstract—The electricity grid is evolving from a monolithic 
centralized system to a smart distributed system, composed of 
distributed and renewable generation resources, where power 
supply and demand balancing is needed at a microgrid scale.  In 
this paper, we explore model selection criteria for short-term 
microgrid-level load predictions.  To this end, we experiment with 
five different models in the context of usage traces from six diverse 
sites collected over a period of eight months.   We find that model 
selection is heavily influenced by the variability in the data and 
that models which do not use weather forecast information but 
rely only on historical usage data perform better on sites with 
highly variable loads. 
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I.  INTRODUCTION 

The proliferation of local and renewable electricity generation 
is transforming the electric grid from a centralized system 
where load monitoring, prediction and control are performed by 
utility companies, to a distributed system where microgrids 
composed of individual homes, office buildings, or federated 
groups thereof are becoming active participants in energy 
generation. Accurate short-term load forecasting at the 
microgrid level is thus becoming increasingly more important 
for enabling localized supply-demand balancing of the grid. At 
the same time, forecasting at such small scales is inherently 
much more challenging than the large-scale forecasts typically 
performed by utility companies, due to the much higher 
variability of load relative to its mean. 
 
In this paper, we investigate the effectiveness of three popular 
univariate models (which use load information) and two 
multivariate models (which use both load and weather 
information) in predicting hourly day-ahead electricity usage 
loads, by evaluating their performance in the context of traces 
collected at six different sites over an eight-month period.  We 
find that different sites may require different models for 
accurate forecasting, and that model selection is influenced 
primarily by the variability of the data both in terms of overall 
prediction accuracy and optimizing daily peak prediction. Peak 
under-prediction, in particular, is a critical metric for the 
effectiveness of a prediction model since it could impact the 
effectiveness of demand response measures, trigger expensive 
peaker plant usage, and increase the probability of blackouts. 
With better prediction of peak demand, proper actions such as 
balancing demand and supply, informing customers of critical 

peak events, and issuing attractive demand response pricing, 
can be taken in advance, before the actual peak demand occurs. 
We also find that in the context of our sites, models that do not 
use weather information lead to comparable and often better 
predictions than models that do utilize such information.  
 
The rest of the paper is organized as follows.  We discuss 
related work in Section II.  Section III describes our load traces 
and an analysis of their overall characteristics.  We define our 
models and error metrics in Section IV.  Section V presents a 
discussion of our results, and Section VI outlines our 
conclusions and some possible future directions. 
  

II. RELATED WORK 

Electricity load forecasting has been an important area of 
research over the past several decades.  The vast majority of 
papers in the literature have focused on short-term prediction of 
aggregate load over large sections of the electricity grid, 
representing utility service areas or nation-wide electricity 
usage data (e.g., [1]-[4], [11]-[17]).  With the emergence of the 
smart grid and distributed generation capabilities in recent 
years, the research community has turned to microgrid-level 
forecasting (e.g., [5]).   Forecasting has proven to be difficult, 
since microgrid-scale loads exhibit high levels of variability, 
which we also observe in our study. 
 
Short-term forecasting has been the subject of extensive study 
as well (e.g., [1], [3]). No single short-term forecasting model 
has been shown to perform consistently better than all others, 
which is why we focus on model selection criteria rather than 
trying to find a single model that works well for all sites.   
 
Univariate models that base their predictions on past usage 
history alone and do not take into account weather information 
have been shown to be effective in predicting short-term load 
forecasts (e.g., [1], [2]), which is in concert with our findings as 
well.   
 
In this paper we focus on small-scale short-term forecasts, which 
are becoming increasingly more relevant as renewable 
generation and microgrids become more widespread.  We 
compare the prediction accuracy of five different models across 
a diverse set of sites, and come up with practical model selection 
criteria based on our results. 



III. LOAD TRACES 

We collected power consumption traces from six buildings over 
an eight-month period between August 2011 and April 2012.  
Usage reports were generated at 30-minute intervals, 24 hours a 
day.  We converted the traces into hourly traces and removed 
weekends, holidays, and off-peak hours (6pm to 9am) since the 
loads for those were nearly constant and did not present a 
modeling challenge. 
 
In the examples included in this paper, site names and locations 
are not specified, and the absolute values of the loads are not 
shown, but are normalized relative to the maximum load for 
each site, in order to protect the privacy of the information as 
requested by our data source.   
 
Our sites include both office buildings and factory buildings 
and thus present a diverse mix of load patterns (Fig. 1).  Some 
sites display a strong seasonal behavior, with a marked increase 
in energy use during the summer and winter months, e.g., Sites 
B, E, and F, corresponding to heavy use of air conditioning and 
heating respectively (Fig. 2).  Others show partial seasonality 
with an increase in energy use only during the summer but not 
during the winter, e.g., Sites A, C, and D.    

 
Figure 1 Normalized hourly power consumption for all sites over the 
period August 2011 – April 2012.  

 
Figure 2 Hourly variations of normalized load vs. temperature for all 
sites over the period August 2011 – April 2012.  
 

The relationships between load and temperature at different 
sites indicate that while some sites depend on electricity for 
both their air conditioning and heating needs, others use other 
sources of energy for heating (e.g., gas).  Furthermore, some 
sites exhibit a much lower increase in usage due to temperature, 
e.g., Site C, indicating that air conditioning constitutes a lower 
portion of their overall electricity usage than at other sites, e.g., 
Site E. 
 
We also observe that sites differ in the normalized ranges of 
load they use over time, with Sites B, E and F experiencing 
ranges that are roughly twice the size of the ranges of the other 
sites (Fig. 1).  Sites B and D on the other hand display the 
highest variability of load for a given temperature (Fig. 2).  In 
addition, the highest variability in the loads at sites that rely on 
electricity for air conditioning (e.g., Sites E and F) occurs in 
late summer and early fall (Fig. 1), which we attribute to 
varying numbers of employees being on vacation and dealing 
with the beginning of the school year. 
 
Table 1 shows the ratio of the standard deviation and the mean 
of the hourly loads at each site, with Site E showing the most 
pronounced variations, with a standard deviation of 28% of its 
mean load.   

Site Std/Mean (%) 
A 10.5 
B 16.7 
C   6.4 
D 11.3 
E 28.0 
F 21.5 

 
Table 1 Ratio of the standard deviation and mean of the hourly loads 
from all six sites for the entire measurement interval. 

 
Figure 3  ACF of hourly loads for Site E. 

 
Figs. 3-4 show the Autocorrelation function (ACF) and Partial 
Autocorrelation function (PACF) of the hourly loads at Site E.  
High correlation of the load time series at 1, 5 and 10 hour lags 
can be observed in both ACF and PACF. The ACF and PACF 
functions for loads for the other sites showed a similar trend.  
The 1-hour lag indicates the correlation between the loads of 
consecutive hours, while the 5-hour lag indicates the correlation 



between morning, mid-day and evening loads.  Finally, the 10-
hour lag indicates the correlation of loads across days. 

 
Figure 4  PACF of hourly loads for Site E. 

IV. PREDICTION MODELS 

We selected five load forecasting models for our study since 
they have been shown to perform well for day-ahead hourly 
load predictions.  These are ARMA (Autoregressive Moving 
Average) [6], ARIMA (Autoregressive Integrated Moving 
Average) [6], Multiple Regression [18], Double Exponential 
Smoothing [1], and Random Forest [9].  
 

Site MAPE for training sets (%) MAPE for test sets (%) 
A   3.2   3.4 
B   8.1   8.6 
C   2.6   2.7 
D   5.7   5.9 
E 12.9 13.6 
F 8.7 9.1 

 
Table 2 Results from k-fold cross validation for the Multiple 
Regression model. 
 
The deviations in model-predicted hourly loads and peak daily 
loads from the observations are quantified in terms of Mean 
Absolute Percentage Error (MAPE) of hourly loads:  
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where tt PP ˆ,  are the observed and predicted power at time t, 

and n is the number of observations. 
 
We compute MAPE for peak predictions by locating the actual 
daily peak load for each day and its time of occurrence, and 
comparing its magnitude to that of the predicted load at the 
same date and time, to estimate the percentage daily peak error. 
The percentage errors in model-predicted daily peaks are then 
averaged to produce a mean peak error.   In particular, 
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where MAPEpl is the MAPE for peak loads; tpltpl PP ˆ,  are the 

observed and predicted loads, respectively, at the time of 
occurrence of observed daily peak load, tpl, and np is the 
number of peaks used for testing the model. 
 
We use the same method to compute under-prediction errors by 
averaging the errors across all days for which the peak is under-
predicted. 
 

A. Multiple Linear Regression 

We use a multiple linear regression model to establish the 
relationship between the load (response variable), and 
temperature and hour of the day (predictor variables). Data 
analysis of the hourly loads and air temperatures for all sites 
showed that loads vary with temperatures and hour of the day.  
Air temperature is treated as a numeric variable, while hour of 
the day is treated as a categorical variable. 
 
Pi, the power consumption at hour i, can be expressed as: 

iiii btataP ++= 2
10 ,    (3) 

where ti is air temperature at time i, and bi is a constant 
computed for each hour of the day.  
 
A k-fold cross validation with k=18 is used to test the validity 
of the model. In the k-fold cross validation, the data is divided 
into k equal data sets, where the kth set was used for testing and 
all the remaining sets were used for training, thus testing all k 
sets.  Each set consists of 10 days of hourly loads. 
 
Table 2 shows the MAPE for the training and test sets from the 
18-fold cross-validation of the multiple linear regression model 
for the different sites.  The errors in the model predictions for 
both the test and training sets are high for Site E, which has the 
highest standard deviation of hourly loads. The difference 
between training and test errors is less than 1% for all sites, 
indicating that the multiple linear regression model used does 
not overfit the data.  
 

B. SARMA and  SARIMA 

Linear regression models capture the relationship between 
predictor and response variables but do not account for all the 
dynamics seen in the time series.  Autoregressive Moving 
Average models on the other hand use internal structure such as 
autocorrelation and seasonal variation seen in past data to make 
future predictions.  A general ARMA model can be represented 
as follows: 

εθφ tt BBP )()( = ,    (4) 

where Pt and ε t  are the power usage and noise at time t, 

respectively.   
 
The Autoregressive (AR) polynomial, )(Bϕ , is defined as 

follows:  
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The Moving Average (MA) polynomial, )(Bθ , is defined as 

follows:   
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where p and q represent the orders of the AR and MA 
polynomials respectively, and B is the backward shift operator 

( tnt
n PPB −= ). 

The addition of differencing to the ARMA model leads to the 
development of ARIMA models that accounts for the non-
stationarity in the time series.  A general ARIMA model can be 
defined as follows: 

εθφ t
d

t BBP )()( =∇ ,    (7) 

where )(Bϕ and )(Bθ  are the same as in (5) and (6) and the 

differencing operator 
d∇ is defined as follows: 
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d

t
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The dependence on past power loads tends to be more 
pronounced at multiple seasonal lags, e.g., power consumption 
varies with hour of the day and day of the week. Multiplicative 
Seasonal ARIMA models (SARIMA) have autoregressive and 
moving average polynomials with seasonal lags embedded in 
them.  The SARIMA (p,q,d,P,Q,D,s) model can be expressed as 
follows:  
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and  
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where )( sBφ  and )( sBθ  are the AR and MA components of 

the seasonal part, and  
D

s∇ is the differencing component of 

the seasonal part.   The multiplicative SARMA can be obtained 
by removing the differencing parts in  (9).  The optimal   
parameters, p and q for ARMA and p, q and d for ARIMA are 
chosen by comparing values of the Akaike Information 
Criterion (AIC) [5],[6], computed for a range of model 
parameter values.  
 
The ARIMAX model (ARIMA with Exogenous input) was not 
included in our analysis since it only allows a linear 
dependence between load and temperature to be modeled, while 
their actual relationship is quadratic (Section IVA).  
 

C.  Random Forest 

Random Forest [9] builds 500 de-correlated regression trees 
and then averages them. Each regression tree is constructed by 
classifying data based on temperature and hour of the day; leaf 
nodes contain predicted values.  Random Forests are easy to 
train and tune and hence implemented in many software 
packages.   
 

D. Double Exponential Smoothing 

Simple Exponential Smoothing uses a weighted average of past 
observations to make forecasts about the future, where the 

weights decrease exponentially depending on the coefficient of 
smoothing parameter.  Simple exponential smoothing is widely 
used in many disciplines due to its simplicity, but performs 
poorly for forecasts of time series with seasonal variations. The 
Holt-Winters method [7], [8] uses three equations, one each for 
level, trend and seasonality.  Variations of the Holt-Winters 
method exist depending on whether an additive or 
multiplicative approach is used for modeling the seasonality 
[10].  
 
The work in [1] extended the standard Holt-Winters 
exponential smoothing to accommodate two seasonal cycles in 
the electricity demand series which involved introduction of an 
additional smoothing equation for the extra seasonal part.  
 
The k step-ahead double exponential smoothing load forecast, 
Pt(k), from the origin time t is given by the following equations 
[1]: 
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where St and Tt are smoothed level and trend and Dt and Wt are 
the seasonal indices for the intra-day and intra-week seasonal 
cycles, respectively. The smoothing parameters α, γ, δ and ω 
are estimated from the training data and φk in (11) is the 
adjustment for  the first-order autocorrelation. . We set the two 
seasonal parameters as follows: s1=10 hours (one working day) 
and s2=50 hours (5 working days) for all sites.   
 

V. RESULTS  

In this study, we compare the prediction accuracy of the five 
models described in Section IV, across all six microgrid-scale 
sites (Section III) in terms of MAPE for hourly load 
predictions, MAPE for daily peak load predictions and MAPE 
for daily peak load under-predictions.  
 

A. Model Training 

We performed a series of experiments to determine the 
minimum amount of training data needed for achieving good 
prediction accuracy and determined that for hourly day-ahead 
forecasts, all five models had negligible improvements in 
prediction accuracy with more than 40 days of training data.  
Therefore we decided to use a 40-day rolling window for 
training data. The day-ahead forecast is computed for the 
remaining 143 days in our trace starting with the 41st day.  

B. Discussion 

All the models performed well in terms of MAPE for day-ahead 
hourly load predictions at the sites with low standard deviations 



relative to their mean (Table 1), i.e., Sites A, C and D (Fig. 5).  
Moreover, the performance of all models, with the exception of 
SARMA (which performed worse than the others) is 
comparable, indicating that model selection for sites with low 
variability is not critical, and thus the simplest and least 
computationally intensive model should be selected.   

 
Figure 5 Comparison of MAPE of day-ahead hourly load predictions 
across all models and sites. 

 
Figure 6 Comparison of MAPE of daily peak load predictions across 
all models and sites. 

 
Figure 7 Comparison of MAPE of daily peak under-prediction across 
all models and sites. 
 
The behavior of the models is quite different for the sites 
exhibiting high daily and seasonal load variations, i.e., Sites B, 
E, and F.  Prediction errors are higher overall, which is to be 
expected. In addition, SARIMA performs noticeably better than 
the other models, and in Sites B and E, all models that do not 
use weather information (SARIMA and Double Exponential 

Smoothing) but rely on load level history perform better than 
those that do.  This is not surprising as both of these sites 
exhibit high variability with respect to temperature (Fig. 2). 
 
To further explore possible differences in performance between 
the different models, we look at MAPE for daily peak 
predictions (2).  We observe that daily peak errors (Fig. 6) are 
slightly lower than the overall errors (Fig. 5), and that the 
difference between temperature-based and load history-based 
models is no longer present for Sites B and E (as it was with 
overall error).  This is because peak loads are more strongly 
correlated to temperature than non-peak loads at temperature-
sensitive sites, since peak loads typically occur at relatively 
extreme temperatures.  Another difference between the two 
types of errors can be observed at Site D, where the temperature 
based models perform noticeably worse in terms of peak error.  
This is not unexpected as this site displays the weakest 
relationship between load and temperature across all of our 
sites and the relationship between peak load and temperature is 
not as strong (Fig. 2).   

 
Figure 8 Daily peak error at Site B. Positive errors indicate under-
predictions and negative errors indicate over-predictions. 
 
Peak under-prediction is an important aspect of prediction 
accuracy and is thus a critical model selection criterion.  Since 
unexpected peak demand may lead to the need to use expensive 
peaker power plants, or potentially to blackouts, peak under-
prediction error is even more critical than peak prediction error 
in evaluating prediction model performance.   
 
We explore the possibility that under-prediction accuracy might 
help us differentiate between the different models next. The 
results for peak-under prediction are similar to the ones for 
peak prediction with respect to the relative performance of the 
temperature-based and load history-based models (Fig. 7).  
However, especially in sites with high variability (e.g., Sites B 
and E), the peak under-prediction errors are noticeably higher 
than the overall peak prediction errors.  Upon closer inspection 
of the data, we find that under-prediction errors dominate the 
overall peak prediction accuracy for all sites, with some sites 
showing an especially strong bias (e.g., Figs. 8-9).  This 
indicates that our models, while optimizing for overall 
prediction accuracy and peak prediction accuracy, are not 
aggressive enough in estimating peak usage and tend to 
underestimate it as a result.    



We also observed that under-prediction accuracy has a seasonal 
component for some sites and models.  For example, peak 
under-prediction errors dominate peak errors at Site E for the 
SARIMA model during the cold season but not during the 
summer and late spring months, when over-prediction is more 
prevalent (Fig. 9). This could be due to the higher variability in 
the loads during winter months, for which load variations due 
to temperature tend to be highest (Fig. 2) thus making it 
difficult to predict peak loads.   

 
Figure 9 Daily peak error at Site E.  Positive errors indicate under-
predictions and negative errors indicate over-predictions. 
 
Our observations provide some practical insights for prediction 
model selection, which we summarize below: 
• Given comparable prediction accuracy across a set of 

models, the simplest model, i.e., the one with the least 
required inputs (e.g., weather forecast), configuration (e.g., 
model parameter settings), and computational requirements 
(e.g., compute resources), should be preferred. 

• For sites with low variability, prediction accuracy is high 
across a variety of different models, and the simplest model 
should be used (see bullet above). 

• Load-history based models should be used for sites and 
seasons during which:  
o Load does not change in response to temperature. 
o Load changes in response to temperature but there is 

high variability of load in response to a given 
temperature.  

• Temperature-based models should be used when: 
o Prediction is performed for sites and seasons for which 

load changes in response to temperature, and the 
variability of load in response to temperature is low. 

o Predicting peak-time usage for sites and seasons 
during which load changes in response to temperature 
(e.g., a temperature-based model should be used 
between 3 and 5pm). 

 

VI. CONCLUSIONS AND FUTURE WORK 

We used five models to perform day-ahead hourly and daily 
peak forecasts of electricity loads at six microgrid sites, and 
derived prediction model selection criteria for load prediction 
based on our findings. In addition, we found that SARIMA 
performs slightly better than the other four models and that 

models that do not utilize weather-related information perform 
comparably or better than the models that do use this kind of 
information.  This simplifies the modeling problem and 
eliminates the reliance on weather forecast information, which 
is sometimes difficult and costly to obtain, and may also be 
inaccurate.  
 
Peak under-prediction is an important metric for evaluating 
model performance as it plays an important role in reducing 
electricity generation costs.  We find that prediction results 
across all sites and models are dominated by under-prediction 
errors.  This is an important result, which we plan on exploring 
further in future work.   
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