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Abstract—The energy market is changing as it is undergoing
unbundling, accommodating renewable sources in the grid and
allowing for micro-production to be part of the smart grid. Such
changes will have a major impact on the underlying transport and
distribution infrastructures. These have been traditionally hier-
archical, unidirectional and capillary, though the new smart grid
scenario calls for an infrastructure that has higher connectivity,
that is bidirectional and naturally complex. In this paper, we look
at ways of modeling the distribution grid as a complex network
taking into account all voltage levels, that is, including the last
mile of the grid reaching the end user. We provide and argue
for design principles for such smart grid models and present
results that call for a denser Medium and Low Voltage power
grid. The design principles come from an analysis of an existing
grid portion and consider its evolution into a smart grid.

I. INTRODUCTION

The power grid is one of the great engineering achievements
of the XIX-XX century, being one of the most important
infrastructures that contributes to the economic welfare and
growth of any country. The design has followed a hierarchical
fashion with large generating facilities on top, and an almost
ubiquitous network of cables to distribute the energy to the
geographically dislocated end users. Traditionally, it has been
designed and realized to be managed by a monopolist or an
oligarchy of actors.

Something is though changing both in the way energy
is produced and distributed due to the combined effects of
technological advancements and introduction of new policies.
In the last three decades a clear trend has invested the
energy sector that of unbundling. Unbundling is the process of
dismantling monopolistic and oligarchic system, by allowing
a greater number of partners to operate in a certain role of
the energy sector and market, especially players with the
possibility to produce, sell and distribute energy. The final
goal of unbundling is that of reducing costs for the end users
and providing better services through competition (e.g., [1]).
From the technological perspective, new energy generation
equipment (mainly based on renewable sources) are becoming
more and more accessible, and they are becoming increasingly
convenient and available at both the industrial and the resi-
dential scale [2], [3]. In this coming scenario the main role of
the High Voltage grid may change, while the distribution grid
(i.e., Medium Voltage and Low Voltage end of the power grid)
becomes more and more important, although requiring a major
update. In fact, the energy interactions between end users

will increase and most likely occur at local level, therefore
involving the Low and Medium Voltage Grids. The main actors
of this new paradigm are the end users with production and
consumption capabilities, known as prosumers.

With such a scenario rapidly evolving and with prosumers
incrementing in number, the distribution grid will behave
differently. Thus it is necessary to have new modeling and
simulation tools, which in turn will translate in new design
tools. In order to have a model for the future power grid we
perform an analysis of the actual lower layers of the power
grid and propose design principles to be used when modeling
and designing distribution grids optimized for local energy
exchange and assess the benefits of such design. To achieve
this objective we exploit the tools and principles of Complex
Network Analysis (CNA) [4] that enable to consider the global
statistics of power grid graphs. To be concrete in our proposal,
we use the Medium and Low Voltage networks of the Northern
Netherlands to report on the current state of the lower layers of
the power grid and ground the proposed modeling principles
on our initial analysis [5].

The paper is organized as follows. Section II describes
the motivations for comparing the energy network with other
infrastructures that faced similar evolutions in the past. Sec-
tion III describes the data set used together with some essential
definitions to understand the proposal. The metrics and mod-
eling principles to realize energy distribution infrastructures
more prone to local energy exchange are given in Section IV.
A discussion of the proposal with an evaluation of potential
benefits is presented in Section V; while concluding remarks
are addressed in Section VI.

II. THE LAST MILE PROBLEM

On top of the unbundling process of the electricity distribu-
tion sector, that is still ongoing, new scenarios are emerg-
ing. This is tied to the incorporation of renewables in the
power grid architecture. Such renewables appear both at the
medium/large scale, but also at the micro-scale, that is at
the residential level [3]. The smart grid also calls for energy
neutral neighborhood or villages where delocalized energy
trading will be possible. Such scenario implies small scale
point to point energy exchange where a micro-producer may
sell energy in excess to his/her neighbors. Such evolution
brings us to the main question of the paper: is the current



distribution infrastructure ready for a decentralized genera-
tion/distribution? Especially the Medium and Low Voltage
sections of the grid, can they support and tolerate such model?

Interestingly, there are strong parallels with similar infras-
tructural challenges faced by the Internet in the near past. The
“last mile” problem was a very debated topic in the late 90s
and the early days of 2000 about how to provide the residential
end users with the appropriate amount of bandwidth to enjoy
new contents available on the Internet. The related issues of
the topic ranged from the pure technical, technological and in-
frastructural problems [6] to the more political aspects related
to the ownership of the physical media reaching the customer,
to the business and marketing related aspects [7]. Similarly to
the problem of having peripheral nodes of the Internet being
hungry for bandwidth, in the future smart grid residential users
may be hungry for energy distribution capacity. Such capacity
will be needed to sell and buy according to their energy need
in a totally unbundled and open market. If this is the case, as
we postulate, what is then the model of that infrastructure?
Will it be a more connected and dense network? Will it take
shapes similar to those of the current Internet? How should
we design it?

To answer these questions, we consider tools from the area
of Complex Network Analysis to be the appropriate ones to
model the current and simulate the future power grid. These
tools provide a global view of a complex system and its
statistical properties. These have been used in the past to
answer questions of reliability of the backbone infrastructure
of the power grid (the High Voltage) but can now turn useful
to understand the amenability to total unbundling of a power
grid. So far few studies have applied CNA techniques in the
smart grid framework [5], [8].

III. CNA AS A TOOL

Complex Network Analysis falls in a branch of graph theory
taking its root in the early studies of Erdős and Rényi [9] on
random graphs and considering statistical structural properties
of very large graphs. We make two important assumptions that
distinguish our proposal from previous power grid investiga-
tions with CNA tools: (i) the Medium and Low Voltage are
interesting for the future grid; (ii) it is necessary to consider
weights for the electrical links. First, we adapt the basic CNA
definitions to the modeling of the power grid with weights.

Definition 1 (Weighted power grid graph). A Weighted power
grid graph is a graph Gw(V,E) such that vi ∈ V is either a
substation, transformer, or consuming unit of a physical power
grid, there is an edge ei,j = (vi, vj) ∈ E between two nodes
if there is a physical cable connecting directly the physical
elements represented by vi and vj , a f : E → R associates
a real number to every edge representing the resistance,
expressed in Ohm, of the physical cable represented by the
edge.

An important statistical characteristic of large complex
graphs is the effort it takes on average to go from any
given node to another one. This quantity can be analytically
computed through the weighted characteristic path length.

Definition 2 (Weighted characteristic path length (WCPL)).
The weighted characteristic path length for graph G, Lwcpl is
the median of the means for all (vi, vj) ∈ V of the following
distance

dw(vi, vj) =
∑

es,t

ews,t

such that ews,t is an edge in the minimal weighted path
between vi and vj .

A measure of the average ‘local density’ of the graph is
given by the clustering coefficient, characterizing the extent
to which vertexes adjacent (i.e., connected by an edge) to any
vertex v, known as the neighborhood of v (Γ v), are adjacent
to each other.

Definition 3 (Clustering coefficient (CC)). The clustering
coefficient γv of Γv is

γv =
|E(Γv)|(

kv

2

)

where |E(Γv)| is the number of edges in the neighborhood of
v and

(
kv

2

)
is the total number of possible edges in Γv .

This local property of a node can be extended to an entire
graph by averaging over all nodes of the graph.

To make the study more concrete, we consider the data of
the Medium and Low Voltage power grid of (Northern) Nether-
lands, courtesy of Enexis B.V. The Low Voltage samples sum
up to a total of 663 nodes and a 683 edges; while the Medium
Voltage samples sum up to 4185 nodes and a 4574 edges.
The size of the data set, though being composed by multiple
samples, is about the same or even larger than those used in
other available studies on the (High Voltage) power grid [10],
[11], [12]. In Table I, we report the basic analysis on the data
modeled as a weighted graph. Referring to the table, the first
column is the ID of the Low Voltage sample, the second and
third represent the number of vertexes N (order) and edges
M (size), respectively. The weighted characteristic path length
(WCPL) and the average weight of the edges belonging to the
sample are considered in the fourth and fifth column. Columns
from sixth to tenth represent the same properties for Medium
Voltage samples. For a complete overview of the data set we
refer to [5].

LV Sample
#

N M WCPL Edge Average
Weight

MV Sam-
ple #

N M WCPL Edge Average
Weight

1 17 18 2.000 0.698 1 191 207 185.916 12.779
2 15 16 1.429 0.595 2 884 1059 108.011 11.851
3 24 23 3.066 0.739 3 444 486 153.402 8.608
4 30 29 3.087 0.699 4 472 506 163.067 9.217
5 188 191 12.136 0.741 5 238 245 127.258 7.122
6 10 9 3.889 1.648 6 263 288 134.661 13.106
7 63 62 4.162 0.348 7 217 229 187.084 16.382
8 28 27 5.112 0.876 8 366 382 148.058 7.193
9 133 140 7.872 0.583 9 218 232 99.385 7.421
10 124 138 6.407 0.785 10 201 204 126.845 6.850
11 31 30 2.967 0.592 11 202 213 92.060 8.764
12 - - - - 12 25 24 38.084 6.915
13 - - - - 13 464 499 232.475 13.810

TABLE I
MAIN PARAMETERS FOR THE WEIGHTED ANALYSIS OF LOW AND

MEDIUM VOLTAGE SAMPLES.



Due to the relative short length of the Low Voltage networks
cables, the WCPLs for this segment of the network are small,
as well as the average weight of each edge (almost all of
them are below the unit). The situation is different for the
Medium Voltage networks that have higher WCPL since the
cables and thus paths span across wider geographical areas.
The discrepancy can be explained by the different purpose
for which these networks are designed: a bridge network
from High Voltage transmission lines and end user distribution
(Medium Voltage network) and the final end delivery (Low
Voltage network). In fact, both the WCPL and the edge average
weight for Medium Voltage samples are approximately two
orders of magnitude greater than the Low Voltage ones. This
is indeed due to the extension of Medium Voltage cables that
range from hundred meters to kilometers, while Low Voltage
cables extend usually around tens of meters.

IV. MODELING AND DESIGN PRINCIPLES

Based on our previous analysis of the Medium and Low
Voltage networks [5] and the evolution scenario of the smart
grid [13], we can draw design principles for how the future
grid should be modelled and look like if it is to support
decentralized energy trading. The parameters that we consider
do not deal with the low level operating parameters of the
infrastructure (e.g., phase angle), but they rather involve the
global statistical measures captured by CNA.

The clustering coefficient gives a measure of how tight
the bounds between the neighbors of a given node are (see
Definition 3) thus how locally the communication (or energy
transfer) is facilitated by the topology of the network. The
weighted characteristic path length, on the other hand, pro-
vides an indication of the average transport effort between
two nodes. By combining these two values averaged for the
whole graph we obtain an overall measure of how easy it is
to transport energy between any two nodes in a local energy
exchange panorama:

DistAdqN =
WCPLN

CCN

LV Sample # DistAdqN MV Sample # DistAdqN
1 ∞ 1 62809.46
2 ∞ 2 21864.57
3 ∞ 3 28566.48
4 ∞ 4 11990.22
5 ∞ 5 ∞
6 ∞ 6 12044.81
7 ∞ 7 133631.43
8 ∞ 8 ∞
9 707.91 9 ∞
10 737.28 10 76412.65
11 ∞ 11 65757.14
- - 12 ∞
- - 13 645763.89

TABLE II
VALUE OF DistAdqN METRIC FOR SAMPLES BELONGING TO LOW

VOLTAGE AND MEDIUM VOLTAGE NETWORKS.

Table II shows the values of the DistAdqN metric for
the samples belonging to both Medium and Low Voltage
networks. One notices that for many samples of the Low
Voltage network the value is infinite. This is a sign of a highly
hierarchical network in which there are no redundant paths

between nodes of the same neighborhood. The situation is in
general different for the Medium Voltage whose samples have
a significant clustering coefficient. In particular, the biggest
samples analyzed (sample #2 with more than a thousand links)
ranks third among the Medium Voltage samples thus being one
of the most adequate for the prosumer-based energy exchange
compared to the others. Thus, we induce the following design
principle.

Design Principle 1: The grid must have finite and small
DistAdqN .

Betweenness describes the importance of a node with respect
to minimal paths in the graph. For a given node, betweenness,
sometimes also referred as load, is defined as the number of
shortest paths that traverse that node.

Definition 4 (Betweenness). The betweenness of vertex v ∈ V
is the number of shortest paths between any two vertexes in
graph G that contain v, i.e.,

b(v) =
∑

v

σst(v)

where σst(v) is the number of shortest paths from node s to
node t traversing v.

Betweenness is very important to identify critical compo-
nents of the power grid network [14], [11]. In fact, the removal
of nodes with the highest betweenness can lead to critical
effects on the whole network connectivity [15]. It is also
important for the future grid scenario.

LV Sample # Average
Betweenness
(<b>)

Standard De-
viation

<b>
N

MV Sample # Average
Betweenness
(<b>)

Standard De-
viation

<b>
N

1 70.588 35.822 4.152 1 2517.005 2894.347 13.178
2 58.533 31.660 3.902 2 17604.973 28074.255 19.915
3 112.952 58.832 3.648 3 9864.189 12675.495 22.217
4 100.571 53.698 4.190 4 13418.669 18130.450 28.429
5 3862.247 4150.371 20.756 5 4632.210 5020.721 18.329
6 30.800 18.659 3.080 6 6163.049 6821.121 23.434
7 384.603 556.776 6.105 7 3914.581 4820.607 18.040
8 156.143 132.856 5.577 8 8050.109 9364.333 21.995
9 1947.684 2433.313 14.664 9 4015.156 4000.672 18.418
10 1206.532 1500.260 9.730 10 4178.925 4697.647 20.791
11 199.677 176.754 6.441 11 3369.208 3251.920 16.679
12 - - - 12 162.720 109.492 6.509
13 - - - 13 10868.931 14403.668 23.424

TABLE III
BETWEENNESS AVERAGE AND STANDARD DEVIATION FOR SAMPLES.

The data in Table III shows values of average betweenness
that rise with the order of the network. Potentially, this is
not a problem if the betweenness is evenly distributed and
there are many nodes that have the high values. The high
value of the standard deviation (third and seventh column in
Table III) shows that the number of paths involved varies
widely, therefore having nodes being more “critical” than
others. To have a general understanding of the criticality
of nodes in the network the fourth and eighth columns of
Table III provide an important indicator. They represent the
ratio between the average betweenness and the order of the
graph.

For the future grid, unlike what happens for the High
Voltage network (e.g., [14], [11]), it is important to have



betweenness values with small variance for all the nodes and
a low value of average betweenness normalized by the order
of the graph. The design principle becomes then the following
one.

Design Principle 2: The grid must have a small be-
tweenness standard deviation and small ratio average
betweenness/graph order.

Small-world networks (SW), proposed by Watts and Strogatz
in [10], own two important aspects at the same time: character-
istic path length close in value to the one of a random graph
(RG) (CPLSW ≈ CPLRG), but a much higher clustering
coefficient (CCSW � CCRG). Small-worlds are a better
model than random graphs to model social networks and other
phenomena and thus a candidate for modeling the power grid
too. We investigate this property for Northern Netherlands
Medium and Low Voltage network samples. To make the
comparison genuine, random graphs are generated with the
same number of nodes and edges as the real samples, imposing
the resulting graphs not to have disconnected components.
The values are presented on columns four-five (Low Voltage
samples) and nine-ten (Medium Voltage samples) of Table IV.
We note how the CPL (for this type of analysis the graph
must be considered unweighted) of the grid samples is on
average twice as big as the random generated samples, thus
comparable to the definition of small-world graph according
to [10]. The clustering coefficient of the grid samples is
almost always smaller than the result obtained for the random
generated samples; this completely contradicts the definition
of small-world graph according to [10]. Watts and Strogatz
[10] impose the following condition to the graphs they study:
N � k � ln(N) � 1 where N is the number of nodes,
k is the number of edges per node. Such a condition is not
satisfied by the Northern Netherlands samples and generally
it is not satisfied by power grid networks as pointed out by
Wang et al. in [8]. Interestingly, the same condition is also
not satisfied by the Western States High Voltage power grid
Watts and Strogatz use in [10] and Watts analyzes in [16],
while the results for CC and CPL satisfy the conditions for
a small-world network. Another study (i.e., [17]) considering
the European High Voltage power grid shows that the small-
world phenomenon is not shown by all the considered Grids,
since especially the smaller (in terms of order and size) Grids
fail to satisfy the CC condition.

In a future grid in which energy exchange is primarily
performed inside and between neighborhoods is important to
have a low CPL and a CC that is higher than a random graph
(with same order and size). Therefore to have an efficient local
distribution we consider a third principle:

Design Principle 3: The grid must be a small-world
graph.

V. DISCUSSION

The design principles just defined look at the evolution of
the power grid into an “autonomous system” or “Internet of

LV Sample
#

CPL γ CPLRG γRG MV Sam-
ple #

CPL γ CPLRG γRG

1 3.313 0.00000 1.688 0.13726 1 8.990 0.00296 5.079 0.00225
2 3.000 0.00000 2.358 0.00000 2 9.527 0.00494 6.010 0.00170
3 4.228 0.00000 3.091 0.05508 3 10.858 0.00537 6.163 0.00333
4 4.449 0.00000 2.242 0.05778 4 17.174 0.01360 5.700 0.00106
5 17.878 0.00000 4.345 0.00532 5 11.580 0.00000 4.234 0.00595
6 2.223 0.00000 1.167 0.26667 6 12.311 0.01118 5.368 0.01080
7 5.404 0.00000 2.904 0.03175 7 10.241 0.00140 5.391 0.00121
8 5.000 0.00000 2.945 0.04762 8 14.546 0.00000 5.249 0.00405
9 11.366 0.01112 4.172 0.01482 9 10.915 0.00000 5.856 0.00539
10 7.070 0.00869 3.540 0.02914 10 15.257 0.00166 5.503 0.00491
11 4.357 0.00000 1.969 0.07475 11 12.891 0.00140 5.217 0.08750
12 - - - - 12 5.500 0.00000 5.084 0.00000
13 - - - - 13 12.703 0.00036 5.390 0.00209

TABLE IV
COMPARISON OF METRICS BETWEEN UNWEIGHTED SAMPLES AND

RANDOM GRAPHS.

Energy” (as sometimes the smart grid is referred to) rather
than one with a central design and operator. This is similar to
what has happened more than a decade ago for the Internet.
In fact, we agree on the vision for the future energy grid more
similar to the Internet with its self organizing behavior, rather
than the strictly hierarchical system that it is nowadays [?],
[2], [3]. To compare the evolution that we forecast for the
power grid, it is useful to take a closer look at the Internet
with the lenses of CNA between the late 90s and early 2000s
(e.g., [18], [19], [20], [21]).

The Internet at Autonomous System (AS) level (i.e., con-
sidering the Internet network by its subnetworks managed
by different administrative authorities) is characterized by a
general consensus in the scientific literature to be characterized
by a probability distribution for the node degree that follows a
power-law (i.e., P (k) = αk−γ) [18]. Power-law distributions
are very common in many real life networks both created by
natural processes (e.g., food-webs, protein interactions) and
by artificial ones (e.g., airline travel routes, computer chip
wiring, telephone call graphs), [4]. Broadly speaking it means
that nodes with high degree have a small, but still particularly
significant probability to exist.

Vázquez et al. in [19] study the evolution of the Internet
AS between 1997 and 1999. The interesting result is the quasi-
static evolution of the properties characterizing the network in
the various years despite an almost doubling in network order
and size. It is nonetheless interesting to note a small increase
in both average node degree (from 3.5 to 3.8) and clustering
coefficient (from 0.18 to 0.24) while a shrink in the path
length (from 3.8 to 3.7). This general tendency of shrink in
the network diameter is highlighted by Leskovec et al. in [21],
[22]. The authors find that the average path length (about
3.7 and 3.8) is the same as the average path length found
by Vázquez [19] in a comparable period (December 1999
and January 2000 respectively) although the data set analyzed
in [22] is bigger especially in terms of links (more than double
compared to the study in [19]). This is quite reasonable if
you think that with economical and geographical constraints
it is easier to realize local connections (i.e. towards neighbors’
nodes) rather than adding more long distance connections.

Network betweenness is another parameter considered.
Vázquez [19] shows how the average betweenness of the
samples analyzed is quite small, between 2.2 and 2.4 times



the order of the graph, compared to the maximum attainable
values for this metric which grows with the square of the
number of nodes. Although the betweenness probability dis-
tribution has a power-law trend (i.e., an hint to the presence in
the Internet AS of some hierarchy) on average the betweenness
is quite small around two or three times the order of the graph,
this entails to a general even proportion of “load” among
nodes.

From these results one can see that the Internet AS has
shown a general evolution and shrinking in its topology while
more and more “last mile” users have joined to make use of its
information contents. We envision a similar overall tendency
for the distribution grid of the future.

To evaluate the principles expressed in Section IV we
refer to a set of metric that we proposed in [5] and that
we have applied to synthetic network growth in [13]. These
metrics establish a relationship between topological aspects
of the power grid and the costs in electricity distribution.
In particular, in [5] two fundamental aspects are considered
which influence the energy distribution costs: losses (defined
as α metric) and network reliability/capacity aspects (defined
as β metric) which are combined together to assess the
performance of the Northern Netherlands Medium and Low
Voltage samples.

Network layer Category Order
Low Voltage Small ≈20
Low Voltage Medium ≈90
Low Voltage Large ≈200
Medium Voltage Small ≈250
Medium Voltage Medium ≈500
Medium Voltage Large ≈1000

TABLE V
CATEGORIES OF MEDIUM AND LOW VOLTAGE NETWORK AND THEIR

order.

Here we resort to those same metrics and compare networks
generated according to the principles just exposed (Section IV)
to evaluate the benefits they bring in reducing the electricity
distribution costs, compared to the current Medium and Low
Voltage networks. We have categorized the samples to be
used for the smart grid Medium and Low Voltage network
based on the order of the networks: Small, Medium and
Large, see Table V. The other parameter that we impose
is the average node degree 〈k〉 ≈ 4 which is the smallest
value that guarantees the satisfaction of the design principles
proposed and does not imply a flooding of edges in the
network that in a power grid corresponds to cables to be
laid. The synthetic networks that we generate satisfy the three
principles mentioned (cf. Table VI). In fact, the networks are
generated according the small-world model described in [10],
[16] (here we have considered a rewiring probability p = 0.4),
they have a finite and small DistAdq and limited betweenness
as shown in Table VI. Another essential aspect to be remarked
is that the metrics proposed in [5] require weighted graphs
with weight representing the physical properties of the cables
(i.e., resistance and supported current). In order to have these
parameters for the synthetic samples generated, we have
realized a statistical analysis of the samples to extract the
statistical distributions of the types of cables and lengths used

on real samples [13]. Therefore we can apply these results to
the synthetic networks generated.

Sample Type DistAdq Avgerage Betweenness (<
b>)

Standard De-
viation

<b>
N

LV Small 0.88 24.900 16.296 1.245
LV Medium 2.36 235.244 153.693 2.614
LV Large 9.32 683.780 480.771 3.419

MV Small 142.51 897.568 586.278 3.590
MV Medium 166.89 2043.600 1441.782 4.087
MV Large 190.17 4762.808 3223.705 4.763

TABLE VI
DESIGN METRICS VALUES FOR SYNTHETIC SMALL-WORLD NETWORKS.

Figure 1 represents a comparison between the real samples
and the synthetic generated networks, for the Medium Voltage
networks. One notices that the networks generated satisfying
the design principles score always better than the real samples
for the α and β metrics. As described in [5], α and β are
the aspects of topology that directly influence the cost of
electricity distribution, therefore a reduction in the metrics
should bring to a reduction of the costs for electricity for
the end user. We consider a quadratic relationship between
α and β and their influence on electricity distribution price
(f(α, β)). On average the benefit related to the α metric
between the generated sample and the physical one is about
50% while it is about 30% for β metric. However, one aspect
that must not be underestimated is the added connectivity that
the synthetic networks have: usually the Northern Netherlands
samples have an average of about 〈k〉 ≈ 2, while the small-
world networks generated have values around 〈k〉 ≈ 4 which
implies a double number of cables. This additional investment
cost in the infrastructure must be taken into account and these
costs need to be considered in a proper amortization plan for
such a long lasting infrastructure, which is beyond the scope
of this paper.

Fig. 1. Comparison between Northern Netherlands Medium Voltage samples
and synthetic networks satisfying design principles.

VI. CONCLUSION

There are many signs of the ongoing evolution of the
power grid. The most extreme vision of a completely free
infrastructure where anybody can trade energy implies that the
underlying topology will be affected too. We propose to use
Complex Network Analysis and Design as a tool for managing



such a future grid. This tool has been used in the past, in its
unweighted form, to analyze the resilience of the High Voltage
backbones. Here, we propose to use a more refined form for
the lower layers of the power grid, to address a possible future
“last mile” problem. Based on the analysis provided here and
the results of [5], [13], we have defined three measures and
design principles that have to be satisfied when designing the
future power grid.

Naturally, the approach proposed here does not want to
substitute the traditional approaches used by power engineers
in designing and realizing power distribution systems [23]
that have indeed proven to be successful given the general
reliability of electric systems in the developed countries. The
methods here proposed want to give additional metrics to
analyze and then help to design and simulate accordingly
a distribution infrastructure that is ready for distributed end
user energy exchange. Using graph theory in the design of
distribution systems is not completely new, several studies
have incorporated graph theory elements in operation research
techniques for grid planning [24], but never as we do using
graph theory combined with global statistical measures.

We envision a future for the distribution grid that might
face the same type of evolution the Internet network has faced
from the early stages to a much more massive spreading
to people. In that scenario people were more “hungry” for
information and services provided by the new network. In
a smart grid enabled scenario people might be “hungry” of
more energy exchanges that take place at local scale and
hardly or not at all involve the transmission grid (i.e., High
Voltage network). We envision a Medium and Low Voltage
grid more dense locally with higher clustering parameters
and smaller values for weighted paths connecting the nodes.
At the same time the network should have a more equal
hierarchy in network betweenness that can reduce average
betweenness in relation to the number of nodes. To achieve
this goal we have presented useful metrics for distribution
companies to assess current Grids and optimize them for
future distributed energy generation and exchange. We have
shown how these principles are beneficial in reducing costs of
electricity distribution related to topology. We have proven the
goodness of these principles by generating synthetic networks
that comply to the presented design principles and enable a
reduction in the parameters influencing electricity distribution
costs.

We stress once again that we do not claim the principles
here presented are “the only rules” to be followed by the
power engineers in designing the Medium and Low Voltage
power system of the future. We consider this work and the
design principles described more in the scope of high level
planning of distribution infrastructures. Distribution companies
and policy makers can therefore evaluate how topology of the
grid can influence the price of local electricity distribution and
how this can be mitigated by topologies that satisfy certain
properties. Our study will continue towards the simulation
of the evolution of the current grid into topologies that are
optimized for distributed energy exchange for the smart grid

following the design principles here presented.
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