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Abstract—Electric grid is one of the largest interconnected
networks on the earth, and is vital to the operation of modern so-
ciety. Within recent decades, the occurrence of several large scale
power blackouts raised many concerns from different aspects.
For example, the most recent India power blackout in July 2012
affected 620 Million people. Investigating the vulnerability of
electric grids becomes increasingly important and urgent. In this
paper, we study the vulnerability of electric grids from attacker’s
point of view. First, the extended model based on DC power
flow analysis is adopted to simulate cascading failures in electric
grids; then a novel metric, called the risk graph, is proposed
to reflect the hidden relationship among substations in terms of
vulnerability; finally a practical multiple-node attack strategy is
developed and proved to be stronger than the traditional load
based approach on IEEE 57 and 118 bus systems. This work
provided a new point of view toward understanding cascading
failures in electric systems.

Index Terms—Cascading failure, Electric grid vulnerability,
Security, Attack

I. INTRODUCTION

The security and reliability of electric grids have attracted

increasing attentions from different areas after several large-

scale blackouts, such as the cases of North American 2003 [1],

South American 2009 [2] and India 2012 [3]. Today, many

organizations, e.g. IEEE Power and Energy Society (PES),

are devoted to developing the methodologies and tools to

investigate the vulnerability of electric grids.

Large scale power outages are often referred to as cascading
failures [4]. In general, the occurrence of them includes

four sequential steps. First, one or more components (e.g.

substations or transmission lines) partially or completely fail;

second, those failed components shift their load to other

components nearby; third, the new load of those nearby

components are over their capacity, and then those components

become overloaded, fail to work and shift their load to other

surviving components; finally, the failure propagates from

one or a few points to the whole electric grid. Cascading

failures usually caused disastrous consequences. To understand

cascading failures, an efficient perspective is from the attack
point of view, where cascading failures could be simulated

under different models. In reality, attacks might be triggered

by many initial events intentionally, e.g. cyber attacks [5] and

terrorist threats [6], or unintentionally, e.g. natural incidents

[1].

In the current literature, the vulnerability analysis of elec-

tric grids from attack perspective could be conducted under

different models, e.g. pure power flow models [4], [7], [8],

pure topological models [9]–[12] and hybrid models [13]–[15].

Under pure power flow models, the well-known contingency
analysis, also called N − x criterion, is a big family [4],

[7]. Those approaches are mainly employed to identify the

criticality of nodes/links, the protection of which in advance

might inhibit cascading failures. Although single contingency

analysis is doable, multiple contingencies are often compu-

tationally infeasible, even some approaches are exploited to

speed up them [8].

Different from pure power flow models, there is extensive

literature on modeling cascading failures by employing ab-

stract network theories [16], called pure topological models
basically including the recoverable model [9] and the non-
recoverable model [11], [12]. Although pure topological mod-

els are hard to correctly represent power distribution in real

electric systems, they are still very useful to investigate the

vulnerability of electric grids from the attack perspective,

especially providing some metrics to define stronger attacks.

Many metrics have been employed to assist attackers, e.g.

degree and load in [9], load distribution vector (LDV) in [10],

and risk if failure (RIF) in [12]. There is no doubt that the

way to obtain stronger attacks is a significant perspective to

understand cascading failures in electric grids.

In addition to the previous two kinds of models, hybrid
models employ both electric features (e.g. impedance and

power transmission distribution factors (PTDFs)) and abstract

network features (e.g. betweenness). A DC model based hid-

den failure analysis approach [13] was proposed to investigate

the error and attack tolerance of electric grids. Another hybrid

model is well extended from the recoverable model [9], and

called the extended model, which was first proposed in [14]

and further developed in [15]. The work in [15] is to rank

the criticality of nodes/links of an electric grid following

the philosophy of N − 1 criterion. However, investigating

cascading failures under the extended model are promising to

understand how cascading failures occur in electric systems.

The work presented in this paper is aligned with the direction

adopting the extended model to study cascading failures.

In this study, the first goal is to demonstrate how cascad-

ing failures occur under the extended model. Although the

extended model has been adopted to study the vulnerability

of electric grids, it is still incomplete to model cascading

failures. Because none of existing literature has demonstrated

how cascading failures occur under the extended model.

The second goal is to discuss the node attack strategy



(NAS) under the extended model. In this study, the attack
means the failure of one or more nodes simultaneously; while

node attack strategy means how to choose target nodes (TNs).

From the attack performance point of view, the optimal attack
strategy, enumerating all possible node combinations, could

obtain the best attack. However, the optimal approach is

often computationally infeasible. Instead, a novel search based

approach, called the sub-optimal attack strategy, is proposed,

which has low computational complexity and good attack

performance. However, the sub-optimal approach has its own

limitations. In order to develop practical attack strategies,

a novel metric, called the risk graph (RG), is proposed to

reflect the hidden relationship between nodes. Adopting the

risk graph, we propose a novel and fast attack strategy, called

the risk graph based attack strategy, which is tested and

compared with the traditional load based approach on IEEE

57 and 118 bus systems. The simulation results demonstrate

the risk graph based approach is an efficient attack strategy

under the extended model.

The paper is structured as follows. Cascading failures under

the extended model are discussed in Section II. In Section III

we describe the risk graph and node attack strategies in detail.

Simulations and observations are made in Section IV. Finally,

general conclusion is provided in Section V.

II. CASCADING FAILURES UNDER THE EXTENDED MODEL

A. The Extended Model

In this paper, we consider an electric grid as a directed graph

G = {B,L}, where B and L are nodes (i.e. substations) and

links (i.e. transmission lines) sets, respectively. All generators

and all load substations (the substations that delivery power to

customers) are denoted as sets G and D, respectively, where

G ⊆ B and D ⊆ B. In addition, NB , NL, NG and ND are

adopted to represent the number of nodes, links, generators

and load substations, respectively.

We adopt the extended model to simulate the power dis-

tribution in electric grids. The extended model was extended

from the recoverable model by employing electric features.

Generally speaking, it has four major differences from the

recoverable model: (1) the linear model analysis, (2) the

extended betweenness, (3) the electric distance and (4) the

net-ability. We will briefly introduce the extended model by

representing the first two different concepts, which are related

to our work, as follows. The details of the extended model

were discussed in [14], [15].

1) Linear Model Analysis: The power distribution in real

electric systems follows electric theories, e.g. Kirch-

hoff’s law. Power Transfer Distribution Factors (PTDFs)

are computed based on DC power flow [17]. PTDFs

reflect the sensitivities of power flow changes in trans-

mission lines due to the nodal real power injections.

The basis of the extended model is to employ PTDFs

to represent the power distribution in electric systems,

which is absolutely different from adopting the shortest

paths under the recoverable model [9]. In this paper,

Fig. 1. Algorithm diagram of the cascading failure simulator (CFSor) under
the extended model used in this paper.

all PTDFs are calculated by using MATPOWER [17],

a Matlab-based tool for solving power flow analysis

problems.

2) Extended Betweenness: In electric grids, power is trans-

mitted from generators to load substations. The power

flow change in each transmission line caused by each

generator-load substation pair could be calculated from

PTDFs matrix [15]. In other words, the accumulation of

all power on a specific transmission line caused by all

generator-load substation pairs would determine the total

power on this link. The extended betweenness of a node,

e.g. node i, is defined as half of the total summation

of power flow in the links connecting to node i. The

extended betweenness of a node is adopted as its load,

similar to the functionality of betweenness in [9].

B. Cascading Failure Simulator (CFSor)

Adopting the extended model to study cascading failures,

we redefine the concepts of the load, system tolerance and

capacity, which are the basic concepts under pure topological

models [9], [11]. First, the load of a node is defined as

its extended betweenness; Second, the system tolerance is

denoted as α, and has a range from 1.05 to 2 with an

interval 0.05; finally, the capacity of a node is defined as the

multiplication of its initial load with the system tolerance. In

addition, we adopt the percent of failure (PoF) [12] as the

measurement metric to evaluate the damage,

PoF = 1− NB

′

NB
(1)

where NB and N
′
B are the number of surviving nodes in an

electric grid before and after an attack.

Cascading failures under the extended model are conducted

by using the cascading failure simulator (CFSor) illustrated

in Fig. 1. The CFSor has three major parts. First, initialize

the CFSor and trigger the initial failures. Second, conduct the

failure propagation until no overloading node in the electric

grid. Finally, measure the damage after the failure stops.

III. RISK-GRAPH AND NODE ATTACK STRATEGY

Electric substations are the major components in electric

grids. Their security and safety are strongly related to the reli-



TABLE I
THE TOP TEN STRONGEST NODE COMBINATIONS FOR NSAM

opt , WHERE

M=1,2,3 AND α = 1.2, ON IEEE 118 BUS SYSTEM.

Index
NSA1

opt NSA2
opt NSA3

opt

TNs PoF (%) TNs PoF (%) TNs PoF (%)

1 70 40.7 17,38 49.2 17,38,94 58.5
2 23 38.1 70,98 49.2 17,38,96 57.6
3 38 36.4 38,69 47.5 38,69,94 57.6
4 65 34,8 38,94 47.5 17,38,69 56.8
5 24 33.9 23,98 46.6 30,38,94 56.8
6 19 30.5 38,96 46.6 17,38,82 55.9
7 34 27.1 30,38 45.8 30,38,69 55.9
8 68 27.1 30,65 45.8 30,38,96 55.9
9 30 25.4 70,86 45.8 38,69,96 55.9
10 17 16.1 70,89 45.8 70,88,98 55.1

ability of electric grids. In reality, substations are confronting

various risks, e.g. natural disasters (the fall of trees [1]), cyber

attack [5], and so forth. Hence, investigating the cascading

failures from substations perspective is an urgent task.

Under the extended model, substations are considered as

nodes. We will investigate the vulnerability of nodes by

discussing Node Attack Strategy (NAS). In the context of

studying cascading failures, an attacker’s goal is to identify a

set of target nodes (TNs), whose simultaneous failure causes

large PoF to an electric grid.

The traditional load based NAS is well studied under pure

topological models and shown to be a strong approach [9],

[11]. We will adopt this approach as a reference approach.

Under the extended model, if an attacker wants to choose the

M target nodes, the load-based NAS, denoted as NASM
load,

works as follows,

* NASM
load: The nodes with the top M largest load will be

chosen as target nodes.

A. Sub-optimal Node Attack Strategy

For an attacker, the strongest NAS is no doubt the exhaustive

search, also called as the optimal NAS and denoted as NASM
opt,

* NASM
opt: Choose the M nodes, whose simultaneous fail-

ure yields the largest PoF under a given system tolerance

(α), as the target nodes.

Although the NASM
opt yields the best attack, it is very time-

consuming and mostly computationally feasible. Take IEEE

118 bus system as example. If we launch five-node attack

(M = 5), there are 118!
5!(118−5)! = 174, 963, 438 candidate

combinations for NAS5
opt. In addition, the time of calculating

PTDFs of IEEE 118 bus system once needs an average 0.01

second by using Matlab under Window 7 OS with 4 GB

memory and dual-core i5 CPU (2.4GHz each), which means

only computing the PTDFs of all combinations approximately

needs 20 days.

Although NASM
opt is mostly computationally infeasible, it

is still doable when M and NB are proper. For example, if

the size of a power grid network, NB , is more than moderate,

such as NB ≥ 300, the number of target node, M , should

be small, such as M ≤ 4. We conducted the experiments by

using NASM
opt on IEEE 118 bus system, where M is set to be

1, 2, 3 and α is set to be 1.2. In Table I, the top ten strongest

node combinations are shown. An interesting observation is

made.

Procedure 1 Obtain the round recommended combination set
(RRCS) and choose target nodes (TNs) for NASM

subopt.

1: Give a system tolerance (e.g. α = 1.2) and the number of TNs (i.e. M ).
2: //Choose the TN for NAS1

subopt or do the initialization of the iteration.

3: for i = 1 : NB do
4: Using the CFSor, launch one-node attack by removing node i under given α,

then record the PoF caused by this attack.
5: end for
6: if M == 1 then
7: Choose the node with the largest PoF as the TN for NAS1

subopt.

8: Goto the last step of the procedure.
9: else

10: Choose the nodes with the top P largest PoF as the candidate nodes and put
them into SC . Meanwhile, choose the nodes with the top R largest PoF as the
1th RRCS and put them into S1

RRC
11: end if
12: //Start the iteration, and obtain Sm

RRC under given Sm−1
RRC

.
13: for m = 2 : M do
14: for i = 1 : R do
15: Get the ith combination in Sm−1

RRC
, denoted as Ci.

16: for j = 1 : P do
17: Get the jth candidate node in SC , denoted as nj .
18: Combine Ci and nj to get a new candidate combination.
19: end for
20: end for
21: Using the CFSor, conduct multi-node attack for each new candidate combination

(R× P in total), and record all PoF.
22: Choose the new combinations with the top R largest PoF as the mth RRCS,

and put them into Sm
RRC .

23: end for
24: The node combination in SM

RRC , which can cause the largest PoF, are the TNs

for NASM
subopt.

25: The procedure ends

In Table I, the highlighted node or node combinations

illustrate that the top strongest combinations for NASm
opt

(m ≥ 2) are mainly obtained by joining some of the top

strongest combinations for NASm−1
opt with another critical

node. For instance, the first node in the node combinations

for NAS2
opt (i.e. node 17, 70, 38, 23 and 30) are all from

the top ten strongest nodes for NAS1
opt; the first two nodes

of the node combinations for NAS3
opt (i.e. node combinations

{17, 38}, {38, 69}, {30, 38} and {70, 88}) are almost from

the top ten node combinations for NAS2
opt, except {70, 88},

which occurs just once. This observation is reasonable. If a

node combination for NASM−1
opt could cause large PoF, the

new node combination by adding another critical candidate

node to this node combination probably yields larger PoF for

NASM
opt, though the new node combination might not be the

strongest one for NASM
opt.

Inspired by the above discussions, a novel sub-optimal

search based NAS, denoted as NASM
subopt, is proposed. Before

discussing the algorithm of NASM
subopt, we have three state-

ments. First, the algorithm procedure mainly consists of M
rounds, including one initial round and M−1 iterative rounds.

Second, in each round (e.g. mthround), the top strongest

node combinations are chosen as the round recommended
combination set (RRCS), denoted as Sm

RRC . Finally, there are

two important parameters, P and R, in this algorithm, which

are adopted to control the initial size of candidate node set,

denoted as as SC , and the size of RRCS, respectively.

Suppose an attacker wants to launch attacks by adopting

NASM
subopt, Procedure 1 shows the steps to obtain target nodes

for NASM
subopt. From Procedure 1, we know that NASM

subopt



TABLE II
AN REALIZATION OF THE RECOMMENDED COMBINATION SET ON IEEE 118 BUS SYSTEM.

Index S1
RRC S2

RRC S3
RRC S4

RRC S5
RRC S6

RRC S7
RRC S8

RRC

1 70 17,38 38,17,94 38,17,94,69 38,17,94,69,103 38,69,94,30,103,7 38,69,94,30,103,7,98 38,69,94,30,103,7,98,99
2 23 70,98 38,17,96 38,17,96,69 38,17,96,69,103 38,17,94,69,103,98 38,69,94,30,103,7,33 38,69,94,30,103,11,98,99
3 38 38,69 38,69,94 38,69,94,30 38,69,94,30,103 38,17,94,69,103,99 38,17,94,69,103,98,99 38,69,94,30,103,11,98,33
4 65 38,94 38,17,69 38,69,30,96 38,17,94,69,98 38,17,94,69,103,33 38,17,94,69,103,98,33 38,69,94,30,103,11,99,33
5 24 23,98 38,94,30 38,17,69,82 38,17,94,30,7 38,69,94,30,103,11 38,17,94,69,103,99,33 38,69,94,30,103,7,98,50
6 19 38,96 38,17,82 38,17,69,103 38,69,30,96,103 38,69,30,96,103,7 38,69,94,30,103,11,98 38,69,94,30,103,7,98,47
7 34 70,89 38,69,30 38,17,94,103 38,17,94,69,106 38,17,94,69,103,96 38,69,94,30,103,11,99 38,69,94,30,103,7,98,99
8 68 70,86 38,69,96 38,17,94,66 38,17,94,69,33 38,17,94,69,103,29 38,69,94,30,103,11,33 38,69,94,30,103,7,98,87
9 30 70,112 38,96,30 38,17,96,103 38,17,94,69,117 38,17,94,69,103,31 38,69,94,30,103,7,96 38,69,94,30,103,7,98,93

10 17 70,116 70,98,88 38,69,94,26 38,17,94,69,98 38,17,94,69,103,50 38,69,94,30,103,7,50 38,69,94,30,103,7,98,95
11 31 30,38 38,17,83 38,69,94,5 38,69,94,30,11 38,17,94,69,103,16 38,69,94,30,103,7,63 38,69,94,30,103,7,98,97
12 80 30,65 38,69,82 38,17,69,83 38,69,30,96,7 38,17,94,69,103,47 38,69,94,30,103,7,47 38,69,94,30,103,7,33,96
13 64 70,16 65,30,94 38,17,69,92 38,17,94,69,29 38,17,94,69,103,113 38,69,94,30,103,7,99 38,69,94,30,103,7,33,50
14 61 70,74 65,30,96 38,69,30,82 38,17,94,69,16 38,17,94,69,103,9 38,69,94,30,103,7,13 38,69,94,30,103,7,33,99
15 37 70,91 70,98,93 38,17,96,66 38,17,94,69,47 38,17,94,69,103,10 38,69,94,30,103,7,35 38,69,94,30,103,7,33,86
16 69 38,82 70,98,95 38,69,94,25 38,17,94,69,9 38,17,94,69,103,18 38,69,94,30,103,7,86 38,69,94,30,103,7,33,87

needs to do P×R×(M−1)+NB cascading failure simulations

to obtain its best attack. Theoretically, the computational

complexity of NASM
subopt is P ×R× (M − 1) +NB . When

investigating multi-node attack, the computational complexity

of NASM
subopt, at the worst case (P = R = NB), is appropri-

ate to O(M(NB)
2), which is much lower than O((NB)

M ) of

NASM
opt.

B. The Introduction of Risk Graph

Although the sub-optimal NAS could sharply reduce the

computational complexity of the search based approaches, it

still has two limitations. First, the sub-optimal NAS is not

suitable for real-time attack, because it still needs lots of time

to do search, especially when NB is large. Second, NASM
subopt

needs to estimate the system tolerances before attacks, which

is nearly impossible in reality due to many reasons. In this

subsection, we propose a novel metric, called the risk graph
(RG), which can yield better attack strategy.

The risk graph is inspired by the round recommended com-
bination set (RRCS). One realization of the RRCS is shown in

Table II, from which we make an insightful observation that

there are some fixed patterns of the occurrence of certain nodes

or node combinations, e.g. node 38 and node combination

{38, 17}. Studying this hidden relationship between candidate

nodes may help people to understand the vulnerability of

electric grid networks.

An risk graph is constructed as follows,

1) First, given α, M , R and P , conduct the sub-optimal

approach in Procedure 1, and obtain the intermediate

results, the round recommend combination set (RRCS)

represented as S1
RRC , ..., S

M
RRC .

2) Check the RRCS (An example is shown in Table II). If

a node occurs in the RRCS, this node becomes a vertex

of the risk graph. In addition, each vertex has a vertex
occurrence frequency (VOF), defined as the number of

the corresponding node appears in the RRCS.

3) Add an edge between each pair of vertexes and set

its initial weight to be zero. The weight of an edge is

referred to as the edge occurrence frequency (EOF).

4) Examine the RRCS and update the EOF of all edges.

Suppose a pair of nodes, say node i and node j, appears

in a combination that has m nodes, increase the EOF

Fig. 2. The risk graph on IEEE 118 bus system, where the system tolerance,
α, is set to be 1.2. This figure is visualized by Gephi [18].

of the edgei−j by adding 2
m(m−1) . For example, for

the combination {38, 17, 94}, the EOF of three edges,

edge38−17, edge38−94 and edge38−94, are increased by

1/3. As another example, assume node 38 and node

17 appear simultaneously in three node combinations:

{38, 17}, {38, 17, 94} and {38, 17, 94, 69}, the EOF of

edge38−17 is 1 + 1/3 + 1/6 = 3/2.

5) Finally, delete the edges with EOF as zero and the

vertexes that are sole.

The risk graph based on Table II is shown in Fig. 2,

generated by Gephi [18]. In the risk graph, the size and color

of a vertex is decided by its VOF. And the width and color

of a edge is determined by its EOF. The bigger (wider) and

redder a vertex (or edge) is, the larger its VOF (or EOF) is.

C. Risk-graph Based Node Attack Strategy

The construction of a risk graph is mainly affected by two

factors, the system tolerance (α) and the parameters (P and

R) of NASM
subopt. The former is major factor, and the later

is minor factor. That is, the risk graph under a certain α is

probably different from under another α. In order to obtain a

robust risk graph, we first generate the single risk graphes

under different system tolerances, and then average those

single risk graphs to obtain the average risk graph (ARG).

In this study, an ARG is obtained by two steps. First, generate

single risk graphs under α from 1.05 to 2 with an interval

0.05 (There are twenty α in total.). Then, average those twenty

single risk graphs, where the “averaging” means (1) the VOFs



(EOFs) of a vertex (an edge) appearing in more than one

single risk graphs are added together, (2) divide the new VOFs

(EOFs) by the number of single risk graphs (20 in this study).

The figure of an ARG is similar to that in Fig. 2.

The ARG of an electric grid network has two advantages,

robust to the system tolerance and reflecting the hidden combi-

nation relationship among candidate nodes. Those advantages

are helpful to find practical attack strategies. In this study,

we propose a novel attack strategy, called the risk graph
based attack strategy, based on the ARG of an electric grid.

Suppose an attacker has already obtained the ARG of an

electric grid, the risk graph based attack strategy, represented

as NASM
riskgraph, is conducted as follows,

* NASM
riskgraph: When M = 1, choose the node with

the largest VOF as the target node for NAS1
riskgraph.

Otherwise, the M target nodes for NASM
riskgraph are

chosen from the ARG by meeting with two restrictions.

First, each pair of nodes has a direct edge between them,

which means there are
M(M−1)

2 edges between those

M nodes. Second, the summation of all EOFs of those
M(M−1)

2 edges is maximum.

In this section, we mainly discuss the motivation and

construction of the risk graph. The comparisons among the

attack strategies mentioned above are made in Section IV.

IV. SIMULATION RESULTS

We used Matlab to implement the simulations, including

modeling the extended model, modeling cascading failures and

attacks. The proposed attack strategies are tested and compared

with other approaches on IEEE 57 and 118 bus systems [19].

The observations and discussions are made in detail in the

following two subsections.

A. Simulation Results for the Optimal and Sub-optimal Attack
Strategies

In this subsection, the comparison between the optimal

and the proposed sub-optimal approaches are made. The two

approaches are tested on IEEE 57 bus systems. Fig. 3 shows

the comparison, in which the horizontal axis and the vertical

axis represent the the number of target node and the percent-

of-failure, respectively. In addition, the solid blue-pentagram

curve represents NASM
opt and the dashdot red-plus curve

represents NASM
subopt. Due to computational complexity of

NASM
opt, M is set to be less than 5 for NASM

opt. The M for

NASM
subopt is set to be less than 8. Meanwhile, α is set to be

1.2 for both approaches.

Two observations are made from Fig. 3. First, the attack

performance of NASM
subopt can compete with that of NASM

opt,

especially when M is small. In Fig. 3, the attack performance

of NASM
subopt is exactly equal to that of NASM

opt, when

M = 1, 2, and just a little weaker at M = 3, 4, 5. When

M > 5, form the computational complexity comparison made

in subsection III-A, we know NASM
opt is computationally

infeasible, but the proposed approach, NASM
subopt, is doable

and could obtain good attack performance. Second, as M
increases, the curves in Fig. 3 go flat and probably arrive at
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Fig. 3. The comparison between NASM
opt and NASM

subopt on IEEE 57

bus system, where the system tolerance (α) is set to be 1.2.

their upper bounds. Thus, studying cascading failures at small

M values will be more meaningful than at large M values.

The comparison is also conducted on IEEE 118 bus system,

and the observation is similar to that in Fig. 3. Due to space

limitation, we do not show that figure in this study.

In summary, the attack performance of the sub-optimal

approach can compete with that of the optimal approach,

and the computational complexity of NASM
subopt is much

lower than that of NASM
opt. Thus, NASM

subopt can substitute

NASM
opt, when the optimal approach is unreachable.

B. Comparison among Different Attack Strategies

In this subsection, the proposed sub-optimal and the risk

graph based approaches are compared with the traditional load

based approach. IEEE 57 and 118 bus systems are adopted as

the testing data, and the results are shown in Fig. 4 and Fig.

5, respectively. Within those two figures, the horizontal axis

represents the number of target node, and the vertical axis

represents the percent-of-failure. In addition, the dashdot red-

plus curve, solid green-star curve and solid magenta-square

curve represent NASM
subopt, NASM

riskgraph and NASM
load,

respectively. From Figs. 4 and 5, we make the following

observations and discussions.

First, from the attack performance point of view,

NASM
riskgraph is very close to NASM

subopt, but much stronger

than NASM
load. In Figs. 4 and 5, the curves representing the

attack performance of NASM
riskgraph is pretty close to the

curves representing NASM
subopt, especially when M ≤ 5.

Meanwhile, the curves representing NASM
load are much lower

than previous two types of curves.

Second, as M increases, a sharp drop in the curves repre-

senting the performance of both NASM
riskgraph and NASM

load

occurs. The reasons why the drop happens are different. The

load based approach dose not concern the speciality of the

cascading failures under the extended model. The specialty

is that cascading failures will quickly stop when the whole

electric grid is broken into more than one balanced subgrids.

The target nodes chosen by NASM
load usually have higher

load, knocking down which might cause the cascading failure

procedure to stop just after the a few rounds, which can not

cause serious damage to the power grid referring to the PoF.

Different from the load based approach, the risk graph based

approach choose its target nodes from the ARG. As we know,

the ARG can perfectly reflect the combination between a pair
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Fig. 4. The comparison among NASM
load, NASM

riskgraph and NASM
subopt

on IEEE 57 bus system, where the system tolerance α is set to be 1.2.
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Fig. 5. The comparison among NASM
load, NASM

riskgraph and NASM
subopt

on IEEE 118 bus system, where the system tolerance α is set to be 1.2.

of nodes, but can not show the strongest combinations when

M is large (e.g. M > 3). Thus, the sudden drop in the curves

representing NASM
riskgraph may occur at large M .

Finally, the risk graph based attack strategy is a good

choice to launch real-time attacks to electric grids. From the

computational complexity perspective, when a ARG are done,

which can be constructed off-line, the computational com-

plexity of NASM
riskgraph is O(1), which is much lower than

O(M(NB)
2) of NASM

subopt and close to O(1) of NASM
load.

From the attack performance perspective, NASM
riskgraph is

very close to NASM
opt at small M values and a little weaker

at larger M values. However, NASM
riskgraph is much stronger

than NASM
load referring to POF.

V. CONCLUSION

In this paper, we adopt the extended model to investigate the

cascading failures in electric grids. We first propose a search

based sub-optimal attack strategy and use it as the substitution

of the optimal attack strategy. Then, a novel metric, called

the risk graph, is proposed to show the hidden relationship

of nodes. Finally, a novel risk graph based attack strategy is

proposed. We compare the proposed approaches with other

ones on IEEE 57 and 118 bus systems, and conclude that the

risk graph based approach is a good choice to launch real-time

attacks under the extended model.

There are three important future directions along this topic.

First, link failures are more frequent than node failures in

practice. Adopting the extended model to study link failures

or joint link/node failures will be desirable to study the vul-

nerability of electric grids. Second, studying the vulnerability

of the large-scale power grids, e.g. the entire North America

Electrical Infrastructure data, will be more meaningful. Fi-

nally, visualizing the cascading procedures will help people to

understand how cascading failures propagate in electric grids.
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