
Real-Time Thevenin Impedance Computation
Stefan Sommer Hjörtur Jóhannsson

Department of Electrical Engineering, Technical University of Denmark
Email: shso@elektro.dtu.dk / hj@elektro.dtu.dk

Abstract—Stable and secure operation of power systems be-
comes increasingly difficult when a large share of the power pro-
duction is based on distributed and non-controllable renewable
energy sources. Real-time stability assessment is dependent on
very fast computation of different properties of the grid operating
state, and strict time constraints are difficult to adhere to as the
complexity of the grid increases. Several suggested approaches
for real-time stability assessment require Thevenin impedances to
be determined for the observed system conditions. By combining
matrix factorization, graph reduction, and parallelization, an
algorithm for computing Thevenin impedances an order of
magnitude faster than previous approaches is developed. The
factor-and-solve algorithm is tested with data from several power
grids of varying complexity, and experiments show how the
algorithm allows real-time stability assessment of complex power
grids at millisecond time scale.

I. INTRODUCTION

Efforts on de-carbonizing the power system often imply
a shift from centralized and controllable energy production
to distributed and non-controllable renewable energy sources.
This shift makes stable and secure operation of power systems
an increasingly challenging task.

In traditional power systems, stability could be assessed off-
line and sensitivities to various contingencies established by
running time-consuming simulations. Multiple factors of the
future power system challenge this approach: the complexity
of the power grid will rise with increased de-centralization
resulting in increased computational burden and longer run-
time for simulations; and the power system should be able
to operate under rapidly changing conditions for example
due to inclusion of weather dependent energy sources. Large
fluctuations of the system operating point can be common,
and in combination these factors will likely make the results of
conventional off-line stability assessment obsolete even before
the time-domain simulation has completed. The need for real-
time transient stability assessment has therefore been noted by
several sources [1].

In this paper, a fast algorithm for real-time computation of
Thevenin impedances in complex power systems is developed.
Because several approaches for real-time stability assessment
require knowledge of Thevenin impedances, the algorithm
makes the use of these approaches feasible for complex power
systems at increased time resolution. The factor-and-solve

This work is part of the Secure Operation of Sustainable Power Systems
(SOSPO) project with support from the Danish Strategic Research Council
(DSF).

algorithm can therefore play a key role in concrete imple-
mentations of these transient stability assessment methods.
Theoretical arguments for why poor performance is observed
for previous approaches is given, and parallelism in parts of
the algorithm is exploited to obtain a good balance between
serial and parallel computation. The developed method is
evaluated on several complex power systems showing how a
key property of the power system state can be computed at
millisecond scale and used for real-time stability assessment.

A. Paper Overview

The paper starts with a short description of approaches
to real-time transient stability assessment. In Section III, the
problem of computing Thevenin impedances and previous
computational approaches are described. LU-factorization of
the network admittance matrix and node elimination strategies
are discussed in the following section. The factor-and-solve
algorithm is developed in Section VI and its performance and
validity are evaluated and compared to other approaches in the
last section. The paper ends with concluding remarks.

II. BACKGROUND

Transient stability assessment is challenged both by a shift
in time-scale and by increase in the complexity of power
systems. With conventional power systems and centralized
production, a relatively stable and controllable operating point
allowed off-line stability evaluations to remain valid for hours.
With de-centralization, weather dependence, and reduced con-
trol, stability of the rapidly fluctuating operating point must be
evaluated at a much shorter time-scale, preferably in real-time.

At the same time, the complexity of power systems in-
creases. Renewable energy sources add to the number of
buses in the system, and power systems becomes increasingly
interconnected to even out differences in the production by
e.g. weather dependent sources. It is no longer sufficient to
consider networks regionally due to increasing number of
interconnections across national borders. This in turn requires
real-time computation on networks with thousands of buses
and tens of thousands of branches.

Real-time monitoring and control is in particular enabled
by the advent of phasor measurement units (PMUs, [2], [3]).
A few methods have been developed for real-time stability
assessment using PMU data. In [4], an existing method is
adapted for real-time use while [5], [6] propose a entirely
new approach exploiting analytically derived expressions for
stability boundaries [7]. See also [8] for a combined off-
line/on-line approach. The adaptability of existing off-line

approaches to real-time computation and the dependence on
grid complexity is surveyed in [9].

Thevenin impedance calculations constitutes a major com-
ponent of the stability assessment in [6]. Several additional
methods base voltage stability monitoring on local measure-
ments and Thevenin impedances [10], [11], [12], [13].

Computations involving power grids are often performed
on matrices representing the connections and state of the of
the network. Typical computations involves factorizing these
matrices using solvers that are particularly suited for sparse
network computations [14]; relaxation methods [15]; and
graph reduction algorithms [16]. See also [17] for comparison
of factorization and relaxation methods.

A full time-domain simulation will typically simulate a
differential-algebraic system. Thevenin impedance computa-
tions differ by only considering the algebraic part of network
equations and the computational effort is therefore signifi-
cantly reduced. This makes Thevenin impedance computations
applicable as parts in real-time stability assessment methods.
The computational aspects of dealing with this particular
system of equations are different than when using the full
differential-algebraic system, and the algorithm developed here
reflects the real-time requirement.

III. THEVENIN IMPEDANCES

Consider a power grid consisting of N nodes with the
voltage at M ≤ N nodes being kept constant by means
of voltage control equipment. Letting Y denote the system
admittance matrix, the system node voltage equation is

I = Y V . (1)

The M voltage controlled nodes (vcs) and the N −M nodes
of non-controlled voltage (ncs) can be ordered so that the ncs
and vcs are numbered by indices 1, . . . , N − M and N −
M + 1, . . . , N , respectively. The system admittance matrix
then takes the form

Y =

(
Ync Ylink

Y T
link Yvc

)
(2)

where Ync denotes the admittance matrix of only the non-
controlled nc part of the system, Yvc denotes the admittance
matrix of the voltage controlled vc part, and Ylink encodes the
links between the nc and vc parts of the network.

For each node k of the vcs, the aim is to compute the
Thevenin impedance for the node, i.e. the impedance seen
from node k when all vc nodes besides node k node are
shorted. This situation can be modeled by removing all vc
nodes besides k from the system, and the Thevenin impedance
Zth,k can then be obtained by inverting the resulting admittance
matrix. Let Ylink,·k denote the column of the link matrix Ylink

corresponding to the kth node, and, correspondingly, let Y T
link,k·

denote the row of the transpose link matrix corresponding to
the kth node. Letting Y(k,k) denote the kth diagonal element
of Y , define

Yk =

(
Ync Ylink,·k

Y T
link,k· Y(k,k)

)
,

i.e. the admittance matrix with all vc nodes but node k
removed. The Thevenin impedance Zth,k then equals the last
diagonal element of the inverted matrix Y −1

k .
A naive algorithm for computing Zth,k for all vc nodes

would set up and invert Yk for each k = N −M + 1, . . . , N .
This is a very inefficient approach and in practice infeasible
for real-time computation since the number of arithmetic
operations required for inverting a matrix has complexity
O(n3) [18]2. The fact that the upper left (N−M)×(N−M)
submatrix of Yk does not depend on k strongly suggests more
efficient approaches.

IV. IMPEDANCES FROM LU-FACTORIZATIONS

The LU-factorization [18], [19] splits a matrix into a product
of a lower diagonal and an upper diagonal matrix, e.g. for the
admittance matrices Y and Yk, factorizations

Y = LU and Yk = LkUk

can be obtained. In particular, the inverse of Yk is given
by Y −1

k = U−1
k L−1

k . It is conventional to let the diagonal
elements of Lk be all 1 which then implies that the Thevenin
impedance Zth,k is given by inverse of the last diagonal
element of Uk, i.e. Zth,k = (Uk,(N−M+1,N−M+1))

−1.
It is shown in [5] that this diagonal element and hence

Zth,k can be recovered from the factorization L,U of the full
admittance matrix Y by the formula

Uk,(N−M+1,N−M+1) = Y(k,k) − L̂k·Û·k (3)

with the last term being the inner product between the entries
1, . . . , N −M of the kth row of L and of the kth column
of U . The advantage of using this relation is that only one
matrix, Y , needs to be factorized in order to compute Zth,k

for all vc nodes, i.e. for all k = N −M +1, . . . , N . Although
Y is larger than Yk, this offers a substantial reduction in
computational effort. In [5], LU -factorization of Y and (3)
is used for computing Thevenin impedances. This method is
analyzed below in order to develop a more efficient approach,
and the method is used as basis for the comparisons in the
experiment section.

A. Sparsity, Ordering and Fill-Ins

Due to the very high sparsity of network matrices, LU -
factorization is in general a very efficient procedure. Though
the worst case performance is O(N3), the complexity is in
practice close to linear [17]3. This complexity can be reached
with appropriate ordering of the matrix rows and columns and
with specialized solvers.

A key factor in achieving close to linear complexity in the
factorization is minimizing the number of fill-ins, non-zero
elements of the factors L and U that are not present in Y .
The number of fill-ins is very dependent on the ordering of
the matrix Y . For network matrices, ordering algorithms like
Approximated Minimum Degree (AMD, [20]) and variants

2Instead of inverting Yk , a linear system could be solved to get the result.
This, however, does not change the O(n3) complexity.

3[17] experimentally assesses the complexity to O(Nα), α ≈ 1.2.

0 200 400 600 800

0

100

200

300

400

500

600

700

800

900

nz = 10174

Y
nc

 Factorization with Elimination

Figure 1. Sparsity patterns of (top) the LU-factorization of the full admittance
matrix Y ordered with the voltage controlled nodes (vcs) to the right; and
(bottom) the LU-factorization of the Ync submatrix after application of node
elimination. The excessive fill-ins in the lower right vc-part of the full
factorization (top) slows down the algorithm. In contrast, the factorization
of the reduced matrix (bottom) can be done with very limited fill-in and
consequently very fast factorization. The factor-and-solve algorithm reduces
both the dimension of the matrix to be factored (in this case from 7917×7917
to 960× 960) and the number of non-zeros in the factors (from 1549093 to
10174) thus providing a great reduction in computational time.

ensure a very low degree of fill-in. The number of both non-
zeros in Y and additional fill-ins are in practice close to
linearly correlated with N which implies the close to linear
complexity of the factorization.

In (2), an ordering with the ncs occurring with lower indices
than the vcs is used. This ordering is required for the relation
(3) that allows the Thevenin impedances to be extracted. To
adhere to this indexing convention, [5] applies AMD ordering
to the submatrices Ync and Yvc individually before combining
them to obtain the full matrix Y as in (2). The result of this
partial ordering strategy is that the upper left part of the factors
L,U becomes adequately sparse but the lower right part of
the factors unfortunately contains a very large number of fill-
ins. This problem that slows down the algorithm considerably
is illustrated in Figure 1. In the next section, a theoretical
explanation for the occurrence of the fill-ins is given, and it is
shown how an improved Thevenin impedance algorithm avoids
this problem.

Figure 2. Elimination of one of two interior nodes in a six node network. The
node to be eliminated has degree three, and with three new branches added
to the reduced network, the total number of branches is kept constant. This
preserves the sparsity. Elimination of nodes with higher degree will result in
an increased number of branches thus reducing sparsity.

V. SCHUR COMPLEMENT AND NODE ELIMINATION

With system loads represented by their admittance values,
no current enters the nodes of non-controlled voltage (ncs),
and the network equation (1) can be stated as(

0
Ivc

)
=

(
Ync Ylink

Y T
link Yvc

)(
Vnc

Vvc

)
. (4)

Using the Schur complement [21], [16]

S = Yvc − Y T
linkY

−1
nc Ylink

of Yvc, the vc-part of the solution to (4) can be obtained by
solving the reduced system Ivc = SVvc. The Schur complement
can in addition be obtained by successively eliminating nodes
from the system and creating reduced admittance matrices. For
each node to be eliminated as illustrated in Figure 2, the new
admittance matrix is given by the formula

Y new
(i,j) = Y(i,j) −

Y(i,N)Y(N,j)

Y(N,N)
, (5)

and S is the matrix resulting from eliminating all ncs. Confer
[16] for more information on node elimination and network
reduction.

A. Why Y Should Not Be Factored

When eliminating nodes, branches are added to the resulting
network, and in the completely reduced network consisting of
all vcs, all pairs of nodes are in general connected by branches.
The Schur complement S is therefore a dense matrix.

In [22], [23], it is observed that if a matrix with the block
structure (2) is LU -factored, the product of the lower right
blocks Lvc, Uvc of the factors L,U corresponding to the vcs
provide the Schur complement of Yvc directly, i.e. S = LvcUvc.
This provides a way to compute and factor S but it also
explains why the large number of fill-ins are observed when
computing Thevenin impedances with the method of [5] that
uses factorization of the full matrix Y : because S is dense, the
factors Lvc and Uvc will in general not be sparse4, and Lvc, Uvc

are precisely the lower right blocks of the factors L,U where
the excessive number of fill-ins occur. Indeed, any fixed bound
on the maximum node degree in both Lvc and Uvc would imply
that the number of non-zeros in S would grow linearly with

4The product of sparse matrices can be dense. However, if the node degree
of the networks represented by the factors is limited, the product will be
sparse.

the number of vcs, i.e. M . Since S is dense, the number of
non-zeros grow quadratically, nnz(S) ≈ M2, implying that
no such bound can exist.

VI. FACTOR-AND-SOLVE THEVENIN IMPEDANCE
ALGORITHM

Here, a fast algorithm for computing Thevenin impedances
is derived that avoids factorization of the full admittance
matrix Y and that thereby avoids the excessive fill-in in the
Schur complement part of the factors. The resulting algorithm
is denoted factor-and-solve relating to its composition of two
individual steps.

The algorithm is derived by coupling a variant of the
relation (3) with the structure of left-looking LU-factorization
algorithms. First, a close variant of (3) for computing
Uk,(N−M+1,N−M+1) uses Yk instead of Y . Using the fac-
torization Yk = LkUk,

Uk,(N−M+1,N−M+1) = Y(k,k) − L̂k,(N−M+1)·Ûk,·(N−M+1)

(6)
where the notation in the rightmost term denotes the inner
product between entries 1, . . . , N −M of the last row of Lk

and of the rightmost column of Uk. The advantage of using
this formula is that L̂k,(N−M+1)· and Ûk,·(N−M+1) can be
obtained from a factorization Ync = LncUnc of the nc-part of
Y only.

Iterations of left-looking LU-factorization algorithms [19]
are now considered. With this class of algorithms, the N −
M + 1 columns in a factorization Yk = LkUk are computed
iteratively from left to right, i.e. starting with column 1 and
ending with column N −M + 1. At each step j, the upper
left (j − 1)-block of Lk is used to compute the first j − 1
entries of the jth column of Uk. In particular, computation of
N −M entries of the rightmost column uses only the upper
left (N −M)-block of Lk, i.e. the block representing the ncs.
Writing this last step of the algorithm explicitly, the N −M
first entries of column N −M + 1 of Uk satisfies

LncÛk,·(N−M+1) = Ŷlink,·k (7)

where Ŷlink,·k denotes the first N −M entries of the column
Ylink,·,k. The vector Ûk,·(N−M+1) is therefore computed with
a triangular forward solve using the factorization of Ync only.
Similarly, the first N −M entries of row N −M + 1 of Lk

can be obtained by the equation

UT
ncL̂

T
k,(N−M+1)· = Ŷ T

link,k· (8)

again using only the factorization of Ync. Thus, using (6),
Uk,(N−M+1,N−M+1) can be obtained from two forward solu-
tions using the factorization of Ync.

With the above computation, all matrices and operations
involved are sparse and the fill-in producing factorization
of the full admittance matrix Y is completely avoided. In
addition, the triangular matrices used for the forward solves
are not dependent on k, and the factorization of Ync must
therefore be done only once. Due to the sparsity, the forwards
solves are each computationally lightweight, and they can in

addition be computed completely in parallel. In the sequel, the
factorization of Ync is denoted the factorization step and the
forward solutions (7),(8) the forward solve step. The algorithm
for computing Thevenin impedances with this approach is
listed in Algorithm 1. Though the experiments section will

Algorithm 1 Factor-and-solve Thevenin impedance algorithm.
Lnc, Unc ← factorization of Ync

for k = N −M + 1→ N do � for each vc possibly in
parallel

Ûk,·(N−M+1) ← solve(Lnc,Ŷlink,·k)
L̂T
k,(N−M+1)· ← solve(UT

nc,Ŷ T
link,k·)

Uk,(N−M+1,N−M+1) ←
Yk,(k,k) − L̂k,(N−M+1)·Ûk,·(N−M+1)

Zth,k ← U−1
k,(N−M+1,N−M+1) � Thevenin impedance

node k
end for

show that the forward solve step can dominate the runtime,
the completely parallel nature of the loop over all vcs makes
speeding up this step straight-forward by splitting the compu-
tation of several compute cores. In contrast, the factorization
step is hard to parallelize and therefore in reality the limiting
factor of the algorithm. This step is analyzed below.

A. Node Elimination and Factorization Speed

The factorization step of Algorithm 1 consist of the LU-
factorization of Ync. The KLU solver [14] is used for the
factorization in contrast to e.g. [5] which uses UMFPACK [24]
when factoring Y . The sparsity of the network matrices are
so high that KLU being a left-looking solver performs better
than a right-looking multifrontal methods such as UMFPACK.

KLU is a state-of-the-art and very optimized solver, and
it is therefore inherently difficult to improve the factorization
speed. Nevertheless, it turns out that the execution time of the
factorization step of Algorithm 1 can be reduced by using that
only the solution to (6) is needed for which factorization of the
full submatrix Ync is not required. Instead, node elimination
prior to factorization is performed in order to reduce the matrix
size. This part of the factor-and-solve algorithm is denoted the
node elimination step.

Successive node elimination using the update formula (5)
produces an equivalent network matrix that has fewer nodes
but potentially is less sparse. For simulation of large resistor
networks, several methods elimination parts of the system is
used to reduce the size of the network as much as possible
without producing to much fill-in [25], [26].

For the applications considered here, node elimination can
speed up the computation but only if careful consideration is
taken with respect to the amount of fill-ins and the time used
for elimination. Due to the efficiency of KLU, the algorithm
can be quite relaxed in removing only a relatively limited
number of nodes. This is done with a simple fill-in reducing
strategy: the algorithm scans through the ncs removing a node
only if it is connected to less than 4 other ncs and if the fill
introduced in the link matrix Ylink is limited. Since removing

nodes of degree 3 or less does not introduce fill-ins, this
strategy ensures that the number of non-zeros in Ync does not
increase during the process, confer Figure 2. The number of
non-zeros in Ylink will in general increase but the number of
added fill-ins is controlled by a fixed limit.

It will be shown in the experiments section that the applica-
tion of node elimination prior to running Algorithm 1 reduces
the computational effort for the factorization step by a factor
of 2-3.

VII. EXPERIMENTS

In this section, the speedup provided by the factor-and-
solve Thevenin impedance algorithm, its absolute runtime, and
its validity is evaluated. In particular, the experiments will
show that the Thevenin impedance of all generators for power
systems of considerable sizes can be established in less than 3
ms. In addition, the runtime of the serial and parallel parts
of the algorithm will be explored in order to evaluate the
achieved overall efficiency, and a great reduction in size and
number of non-zeroes for the matrix to be factored will be
observed. The factor-and-solve algorithm will be compared
to the method of [5], that, to the best of our knowledge,
is the only computational method for computing Thevenin
impedances described in the literature. The validity of the
algorithm is ensured by measuring the differences between the
methods. For all experiments, it is observed that the results
are equal up to numerical precision showing that the new
algorithms produces correct results.

The experiments are performed on admittance matrices
generated from test systems included in the PSS R©E-30.05

and MATPOWER [27] network simulation packages. The
test systems include the US west-coast (1648 buses, 2602
branches) and US east-cost (7917 buses, 13014 branches)
power grids along with 6 additional systems ranging from
2383 to 3120 buses6.

The runtime is tested on a 3.2GHz Intel Core i7 hexa-core
desktop CPU. In accordance with [5], UMFPACK [14] is used
for factoring the full admittance matrix with the reference
method, and KLU [14] is used for the factorization step of
Algorithm 1. The main loop of the algorithm is parallelized
using six threads, and the node elimination step uses AVX
vector instructions to exploit fine-grained parallelism.

Figure 3 shows for each test system the runtime of
the original Thevenin impedance algorithm employing LU-
factorization of the full admittance matrix, the runtime of
the factor-and-solve algorithm without node elimination, and
the factor-and-solve algorithm with node elimination prior
to the factorization. For all three approaches, the runtime
of the initial symbolic pre-factorization step is left out of
the measurements because this step only needs to be done

5http://www.energy.siemens.com/us/en/services/
power-transmission-distribution/power-technologies-international/
software-solutions/pss-e.htm

6The packages includes test systems that are considerably smaller. The
runtime for these systems are negligible with the developed algorithm and
therefore not included in the evaluation.

10
−4

10
−3

10
−2

10
−1

10
0

nr. busses / nr. vc nodes (8 grids)

tim
e

(s
.,

lo
g−

sc
al

e)

Algorithm Comparison, Thevenin Impedances

1648/
313

2383/
327

2736/
280

2737/
255

2746/
379

2746/
388

3120/
349

7917/
1325

Full LU−factorization (UMFPACK)
Factor−and−solve (KLU)
Factor−and−solve (KLU + node elimination)

Figure 3. Computation time for determining Thevenin impedances using the
full LU-factorization ([5], red), the factor-and-solve algorithm (black), and the
factor-and-solve algorithm with node elimination (blue). Evaluation performed
on 8 power grids ranging from 1648 buses to 7917 buses with between 313
and 1325 voltage controlled nodes. Note the logarithmic scale on the time
axis. For the largest system, the new method is roughly 80 times faster than
the previous approach.

once for each network. The timings are performed just on
the computational parts leaving out the time used for initial
copying of data, and the obtained timings are averaged over a
large number of runs. Please note the logarithmic scale on the
vertical axis and the achieved approximately 80 times speedup
on the largest system with the factor-and-solve algorithm
compared to the previous method.

In Figure 4, the runtime of the three different parts of
the factor-and-solve algorithm is plotted: node elimination,
factorization, and forward solve. It is seen that a relatively
large portion of the computational effort is spend on the
forward solve. It is important to relate this to the fact that
the forward solve step can be run in parallel. For the results
here, all 6 cores of the test machine are used. If a reduction
in runtime is needed, a machine with more cores will allow
the runtime of the forward solve step to be reduced to less
than the runtime used for the reduction and factorization. In
addition, there is room for more optimization of the code used
for computing the forward solutions.

Because the forward solve step can be parallelized, the serial
parts of the algorithm are in reality the true bottlenecks. In
Figure 5, the runtime of the serial parts are plotted in order to
evaluate the benefits of the node elimination step. Employing
node elimination results in a 2-3 times speedup for this part of
the algorithm. In total, the factor-and-solve algorithm reduced
the dimension of the matrix to be factorized for the largest
test system from 7917× 7917 (the full admittance matrix) to
960 × 960 (the non-controlled part of the admittance matrix
after node elimination). At the same time, the number of non-
zeros in the factors is reduced from 1549093 to 10174.

VIII. CONCLUSION

Real-time calculation of Thevenin impedances is important
for several suggested approaches to stability assessment. In the
paper, theoretical arguments for why excessive fill-in occurs

0

0.5

1

1.5

2

2.5

3
x 10

−3

nr. busses / nr. vc nodes (8 grids)

tim
e

(s
.)

Time Usages, Thevenin Impedances

1648/
313

2383/
327

2736/
280

2737/
255

2746/
379

2746/
388

3120/
349

7917/
1325

LU−factorization
Node elimination
Forward solve

Figure 4. The time consumed for the three different parts of the factor-and-
solve algorithm: factorization (blue), node elimination (green), and forward
solve (red). The forward solve step parallelizes completely and the runtime
can thus be reduced by employing more computational cores.

0

0.5

1

1.5

2

2.5
x 10

−3

nr. busses / nr. vc nodes (8 grids)

tim
e

(s
.)

Algorithm Comparison, Factorization and Node Elimination

1648/
313

2383/
327

2736/
280

2737/
255

2746/
379

2746/
388

3120/
349

7917/
1325

Factor−and−solve (KLU)
Factor−and−solve (KLU + node elimination)

Figure 5. Runtime for the factor-and-solve algorithm excluding the forward
solve step, without node-elimination (black) and with node-elimination (blue).
Node elimination results in a speedup of a factor 2-3 for this part of the
algorithm.

in the factorization used for previous approaches to calculat-
ing Thevenin impedances are given. These insights lead to
an improved algorithm that achieves an order of magnitude
speedup and that allows parallelization of the computationally
heavy part of the algorithm. Additional saving in computation
time is in achieved by using node elimination prior to the
factorization step.

The performance of the factor-and-solve algorithm is eval-
uate on admittance matrices representing large and complex
power grids. Comparison with previous approaches shows
approximately 80 times speedup for the largest power system.
In addition, it is determined how the different steps of the
algorithm affect its performance and how the runtime can be
controlled using parallelization of the forward solve step. As a
result, for these systems, the Thevenin impedance computation
is no longer a bottleneck for real-time transient stability
assessment.

REFERENCES

[1] F. Li, W. Qiao, H. Sun, H. Wan, J. Wang, Y. Xia, Z. Xu, and P. Zhang,
“Smart transmission grid: Vision and framework,” IEEE Transactions
on Smart Grid, vol. 1, no. 2, Sep. 2010.

[2] A. G. Phadke and J. S. Thorp, Synchronized Phasor Measurements and
Their Applications, 1st ed. Springer, Sep. 2008.

[3] A. Phadke and R. de Moraes, “The wide world of wide-area measure-
ment,” IEEE Power and Energy Magazine, vol. 6, no. 5, Oct. 2008.

[4] M. Glavic and T. Van Cutsem, “Wide-area detection of voltage instability
from synchronized phasor measurements. part i: Principle,” Power
Systems, IEEE Transactions on, vol. 24, no. 3, Aug. 2009.

[5] H. Jóhannsson, “Development of early warning methods for electric
power systems,” Ph.D. dissertation, Technical Univ. of Denmark, 2011.

[6] H. Johannsson, R. Garcia-Valle, J. Weckesser, A. Nielsen, and J. Os-
tergaard, “Real-time stability assessment based on synchrophasors,” in
PowerTech, 2011 IEEE Trondheim, Jun. 2011.

[7] H. Jóhannsson, J. Østergaard, and A. H. Nielsen, “Identification of
critical transmission limits in injection impedance plane,” International
Journal of Electrical Power & Energy Systems, vol. 43, no. 1, 2012.

[8] Y. V. Makarov, P. Du, S. Lu, T. B. Nguyen, J. Burns, and J. Gronquist,
“Wide-area dynamic security region,” in NAPS, 2009, Oct. 2009.

[9] T. Weckesser, H. Jóhannsson, S. Sommer, and J. Østergaard, “Investi-
gation of the adaptability of transient stability assessment methods to
real-time operation,” in IEEE PES ISGT Europe, Berlin, 2012.

[10] S. Corsi and G. Taranto, “A real-time voltage instability identification
algorithm based on local phasor measurements,” IEEE Transactions on
Power Systems, vol. 23, no. 3, Aug. 2008.

[11] L. Warland and A. Holen, “Estimation of distance to voltage collapse:
Testing an algorithm based on local measurements,” in PSCC, Sevilla,
2002.

[12] I. Smon, G. Verbic, and F. Gubina, “Local voltage-stability index
using tellegen’s theorem,” in IEEE Power Engineering Society General
Meeting, 2007, Jun. 2007.

[13] K. Vu, M. Begovic, D. Novosel, and M. Saha, “Use of local measure-
ments to estimate voltage-stability margin,” IEEE Transactions on Power
Systems, vol. 14, no. 3, Aug. 1999.

[14] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, a direct
sparse solver for circuit simulation problems,” ACM Trans. Math. Softw.,
vol. 37, no. 3, Sep. 2010.

[15] M. Ilic’-Spong, M. L. Crow, and M. A. Pai, “Transient stability
simulation by waveform relaxation methods,” Power Systems, IEEE
Transactions on, vol. 2, no. 4, Nov. 1987.

[16] F. Dorfler and F. Bullo, “Kron reduction of graphs with applications to
electrical networks,” IEEE Transactions on Circuits and Systems, 2011.

[17] F. Pruvost, T. Cadeau, P. Laurent-Gengoux, F. Magoules, and F.-X.
Bouchez, “Numerical accelerations for power systems transient stability
simulations,” in 17th Power System Computation Conference, 2011.

[18] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
To Algorithms. MIT Press, 2001.

[19] T. A. Davis, Direct Methods for Sparse Linear Systems. SIAM, Sep.
2006.

[20] P. R. Amestoy, T. A. Davis, and I. S. Duff, “Algorithm 837: AMD, an
approximate minimum degree ordering algorithm,” ACM Trans. Math.
Softw., vol. 30, no. 3, Sep. 2004.

[21] F. Zhang, Ed., The Schur Complement and Its Applications, ser. Numer-
ical Methods and Algorithms, 2005, vol. 4.

[22] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, Apr.
2003.

[23] Y. Saad and M. Sosonkina, “Distributed schur complement techniques
for general sparse linear systems,” SIAM J. SCI. COMPUT, vol. 21,
1997.

[24] T. A. Davis, “Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern
multifrontal method,” ACM Trans. Math. Softw., vol. 30, no. 2, Jun. 2004.

[25] J. Rommes and W. H. A. Schilders, “Efficient methods for large resistor
networks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 29, no. 1, Jan. 2010.

[26] Z. Ye, D. Vasilyev, Z. Zhu, and J. Phillips, “Sparse implicit projection
(SIP) for reduction of general many-terminal networks,” in IEEE/ACM
International Conference on Computer-Aided Design, Nov. 2008.

[27] R. Zimmerman, C. Murillo-Sanchez, and R. Thomas, “MATPOWER:
steady-state operations, planning, and analysis tools for power systems
research and education,” IEEE Transactions on Power Systems, vol. 26,
no. 1, Feb. 2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

