
Smart Grid Protocol Testing Through
Cyber-Physical Testbeds

Tim Yardley, Robin Berthier, David Nicol, and William H. Sanders
Information Trust Institute, Coordinated Science Laboratory, and Electrical and Computer Engineering Department

University of Illinois at Urbana-Champaign

{yardley,rgb,dmnicol,whs}@illinois.edu

Abstract—Sound cyber security testing is a critical challenge, in
particular for large and complex systems such as the smart grid.
In this paper, we explore the need for, and specific issues involved
in, security testing for smart grid components and standards
and how testbeds play a critical role in that environment. We
present three main problems; the need for a methodology to
define the appropriate tests, the need for a means of comparing
and measuring the security of the system under scrutiny, and the
current lack of tools and instrumentation with which to carry
out those tests. We present work addressing those problem areas
through approaches in methodology, quantification of security,
formal methods, and tool creation. We illustrate our approach
through a case study showing applications of these techniques to
the Advanced Metering Infrastructure (AMI) protocol space and
discuss advances in cyber-physical testbed experimentation that
ease this testing at scale.

I. INTRODUCTION

As evidenced by recent news, cyber-based threats to critical

infrastructure are real and increasing in frequency. From major

game-changers like the Stuxnet, Flame, and Duqu worms, to

less dramatic items like default derivable passwords and other

factory default weaknesses in commonly deployed critical

infrastructure hardware, it is obvious that security problems

exist. Important efforts like the NIST IR 7628 report [14] focus

on providing recommendations for security and laying the

groundwork that helps pave the way towards interoperability

and a more secure smart grid. This groundwork is focused on

standards, guidelines, and recommendations.
The NIST CSWG design principles subgroup spent a con-

siderable amount of time reviewing specifications for many

of the critical smart grid protocols, identifying security and

interoperability issues to be addressed in future revisions. That

review process will have significant value, as long as the

recommendations for corrective actions are carried out by the

standards bodies receiving those results. However, implemen-

tations of these security-reviewed specifications mostly have

not yet been implemented or tested. The testing effort alone is

challenging due to the general lack of a defined methodology

and a prescribed way to quantify security combined with

the constantly evolving threat landscape. To close that gap,

applied research and methods are needed to improve security

quantification and rigorous security assessment, not only for

single components but also for complex systems in which

heterogeneous components constantly interact.
Further, while review of system components is critical, one

must also review the system as a whole in its deployment

environment. Evaluating a system without consideration of

the deployment environment, or the potential changes in that

environment, will likely miss entire classes of configuration

and integration vulnerabilities or deficiencies. Thus, those

considerations need to be taken into account as one approaches

the design, audit, and review of a system and its components.

This problem is further complicated with closed or newly

developed protocols that do not have test harnesses or that

may not have a proven track record. With the rapid evolution of

protocols in the smart grid, and the emerging security controls

on those protocols, this deficiency may often be present.

With the domain of critical infrastructure, cyber-physical

security issues also can have a different type of impact than

traditional cyber security issues. As such, one must look

at the interplay of the cyber-physical domain and how that

interplay is affected in a bidirectional manner. This is key to

the trustworthiness of the system under test and the resiliency

of the critical infrastructure as a whole.

II. FACILITIES

To explore the security of critical infrastructure, one must be

able to replicate the deployment environment with sufficient

fidelity. This is where testbeds have a key role. The University

of Illinois has established an extensive cyber-physical testbed

facility focused on creating a high fidelity representation

of the smart grid. The cyber-physical testbed facility was

designed to be a realistic, flexible, configurable, and easily

customizable environment that is heavily outfitted with power

system communications and control hardware, software, and

simulation systems and intended to enable a pipeline from

fundamental research through transition to industry.

The facility uses a mixture of commercially available prod-

ucts and tools combined with developed research to sci-

entifically experiment with next-generation technologies that

span communications from generation through consumption.

More specifically, these resources are uniquely combined

in a dynamic cyber-physical framework allowing multiple

experiments to utilize the resources at hand and configure

them in varying topologies with minimal assistance. Through

instrumentation and test harnesses, this provides a flexible

framework for security testing and assessment in critical

infrastructure (even beyond smart grid technology).

III. APPROACH

Leveraging testbeds is only part of the equation and more

is required than simply having facilities in which to test. In

order to conduct cyber security testing on leading-edge critical

infrastructure systems, traditional approaches to testing must

be adapted and applied with new constraints. The following

subsections lay out the approach by defining the methodology

and approaches to security measurement and describing tools

that are needed to help satisfy the needs of cyber security

testing. The methodology presented in the following subsec-

tions is generally applicable, and also lays the groundwork for

application in the case study.

It is important to draw a distinction between security testing

and the testing of security features. In security testing, one

deliberately tests the ability of a system to withstand attacks,

whereas testing of a security feature is a conformance check

to make sure that the defined behavior happens. In this paper,

we discuss security testing rather than feature testing.

A. Methodology

To accurately identify the appropriate places to test security,

one must go through a series of steps and assess each compo-

nent. For that purpose, each system can be broken down into

1) interfaces, 2) logic, 3) protocols, and 4) environment.

To assess those components, one needs to address them both

individually and in composition. Following is a description of a

generic approach to security assessment that is also applicable

to smart grid assessment. The assessment needs to begin with

a review that results in a hypothesis, followed by testing that

either proves or disproves that hypothesis. Some example steps

of the methodology for security review include the following:

1) Gather system designs and documentation.

2) Identify the components of the system, the protocols

used, and the environment in which it will operate.

3) Gather protocol specifications for protocols used in the

system under test.

4) Assess the system for potential inputs and outputs.

5) Analyze system boundaries in which data are trans-

ferred, or data flow diagrams.

6) Identify the threats to the system and its protocols, and

the potential vectors by which those threats may enter.

7) Analyze any unintended consequences that can affect the

state machine logic.

8) Assess the use of security controls.

9) Assess the use of cryptography, including keys and key

management.

At each phase, observations are made and potential security

problems noted. It is useful to analyze the system from both

the attacker’s and defender’s point of view, as taking both

perspectives can help reveal potential issues. Once those po-

tential issues have been noted and the initial review completed,

the reviewer can begin to create a specific test plan reflecting

the observations. Wherever a potential security issue is noted,

the reviewer should use quantitative or qualitative measures

to make sure that the test cases have adequate coverage of

the system. Coverage metrics will vary depending on the

system, but one example may be based on the number of

input and output interfaces checked and the number of tests

checked at each of those interface points. It is worth noting

that a comprehensive test plan will be derived from the

problem areas and also from the areas that do not directly

represent problems. By taking the approach of classifying

inputs, outputs, transitions, boundaries, and composites of the

components, the reviewer will end up with a complete view of

the system including aspects that may not initially be security

concerns.

Reviewing a protocol is often similar to reviewing a system

in terms of methodology. Evaluating prudent engineering

practices [2] for protocols is also often helpful, as it shows

common pitfalls that help frame the test cases and a thorough

review will eventually result in basic templates of common

pitfalls or test cases with this coverage. One such example is

a review of the Secure Authentication Extensions [8] to the

DNP3 specification that was conducted by the University of

Illinois. This review followed these same type of procedures

as documented above and derived generic principles from that

work [10] to provide guidance to others writing similar au-

thentication extensions in resource constrained environments.

B. Overcoming Hurdles

Due to the varied conditions that security assessments face,

the test environment must be based on the desired test plan.

For example, will the system under test be evaluated from

the perspective of software, hardware, or both? Will the

interfaces to the system be tested from the supplied tools or

via crafted third-party tools that may not implement the same

data verification checks? The answers to those questions shape

the scope of the testing effort and allow the testing plan and

testing environment to be honed further.

One goal of hardware assessment is to discover undocu-

mented or unintentional entry points into the system. Complex

product engineering often unintentionally leaves open paths

that can be used to penetrate a system. Another goal is to

gain additional insight into the workings of the system or to

intercept data or material from the system that can help with

software assessment. In both cases, the approach is similar,

and below we outline some of the important steps of hardware

assessments:

1) Open the hardware; examine and document internal

components.

2) Identify any ports, storage media, chips, communication

buses, headers, or other relevant components.

3) Identify any certifications or listings where one may look

up the engineering diagrams or other public information

regarding the hardware. They may include FCC reposi-

tories, patent filings, UL test results, Google searches for

model numbers, and product data sheets, among others.

4) Download and analyze firmware. Firmware analyses go

from simple plain test extraction to full decompilation,

depending on the type of firmware and the way the

firmware is stored.

Hardware is often one of the more complex portions of an

assessment, and this often holds true for smart grid assess-

ments as well. With a move towards interoperability, this cre-

ates some standardization and eases the path for assessments

in some cases but the platforms and implementations on which

these systems are based still varies greatly. The hardware may

also be hardened, making it more resistant to attack and more

difficult to assess beyond the protection mechanisms.

C. Measuring Security

An important step of sound security assessment is identifi-

cation of metrics that enable evaluation and comparison. If a

metric offers only pass or fail conclusions, it must have had

precise criteria in order to be reproducible and unambiguous.

Definition of criteria and qualitative or quantitative ways to

compare results is a difficult research challenge that has not

yet been fully addressed by the security testing community.

We next present some of the latest approaches.

A simple approach is to use guidance [13] such as that pro-

vided by NIST as the bar against which security is measured.

For instance, lets suppose the protocol specification states that

an implementer must use AES family encryption schemes

with key lengths of no less than 256 bits. Therefore, the

criterion by which to compare the protocol specification and

its implementation against is straightforward. Namely, when

comparing the implementation to the specification, anything

other than AES-family encryption and less than 256-bit key

length would not be adequate. Since the NIST guidance allows

128, 192, or 256-bit keys the use of 256bit keys in this example

would pass that test as well. Unfortunately, many security tests

cannot be directly evaluated with that type of clear criteria.

Metrics based on system behavior are likewise context sensi-

tive, and must be interpreted with respect to assumptions about

the system, its vulnerabilities, and attackers. For example, one

may have sensitive information in a data historian and want

some measure of how well protected the historian is from

unauthorized access. This will be a function of protection

mechanisms such as firewalls and access control mechanisms.

Measures that focus on connectivity while under attack make

sense. For example, assuming that unauthorized access to the

historian is prohibited by the standard protection mechanisms,

a measure of security is the minimum number of penetra-

tion/compromises needed by an external attacker to reach the

historian. To quantify the metric for any given system, one

needs a fairly detailed model of the system and its protection

mechanisms.

As another example, one might wish to quantify the re-

siliency of a network facing smart grid device to an attack. A

number of metrics may play a role in this assessment. How

intense an attack (in terms of the bandwidth to the device

for instance) can be sustained before the device simply fails

due to overload, if it so fails? Or, what is the probability

of a non-conforming packet affecting the device? System

metrics such as these lend themselves well to being evaluated

experimentally in a testbed.

Other approaches include using formal methods as a way

to verify the coverage of specific security properties. While

formal methods are extensively used to design and check

critical hardware implementations [9], [11], their use in se-

curity quantification has been fairly limited, mainly because

the state space to explore is often too large (e.g., unbounded

protocol security is undecidable in theory [19]). However,

recent efforts in the specific domain of intrusion detection

have led to interesting strategies for measuring security [17].

We successfully applied those strategies to verify that checkers

built for a specification-based intrusion detection system for

AMI [4] were sufficient to provide the necessary coverage for

the security policy driving them. In other words, under well-

defined assumptions, it is not possible for an attacker to violate

the security policy without being detected by the checkers.

We performed the successful verification by building formal

models of the checkers and the security policy and developing

a theorem and proof to show that all possible network traces

that respect the checkers will also respect the security policy.

Those models were implemented as functions and data struc-

tures in a formal framework. We used ACL2, a software tool

that combines a programming language based on Common

Lisp, a logic, and a theorem prover. ACL2 automates most

of the proof effort using techniques such as rewriting and

mathematical induction. The advantage of formal methods is

that they force the precise definition of all the assumptions

and offer strong mathematical guarantees about the results.

On the other hand, to apply formal methods one must put

extensive effort into learning the formal specification language

and the proof system and understanding the correct abstraction

level needed for a particular security evaluation. Moreover, use

of formal methods does not prevent inaccuracies between the

formal model and the implementation from producing security

issues. As a result, one should combine formal methods with

other methods like experimental testing, instead of relying

solely on a pure mathematical approach.

D. Leveraging Testbeds to Build Tools

What has been described so far could be characterized

as a “whiteboard” style of analysis that consists mostly of

a thinking and information-gathering exercise. Indeed, the

methodology described earlier has focused on hypothesis defi-

nition, quantitative, and qualitative analysis. Here, we focus on

the instrumentation and supporting environment that is needed

to realize a realistic testbed for critical infrastructure testing.

The deployment of critical infrastructure testbeds (e.g., [1])

has been key to understanding the needs for sound instrumen-

tation and the impact of cyber attacks on that infrastructure.

The University of Illinois has built such a testbed [3], [15]

with unique capabilities that allow for the union of simulation,

emulation, and real equipment to mix varying degrees of

fidelity, scalability, and flexibility.

Recent testbed expansion has been focused on automated

configuration and instrumentation to support and facilitate

secure testing both locally and through federated resources

that are geographically distributed. By extending the DETER

[18] framework, the Illinois testbed has brought cyber-physical

instrumentation capabilities into the DETER framework and

leveraged that new capability with other testbeds around the

nation. This allows an experimenter to utilize power specific

equipment in the same way that cyber equipment is leveraged.

Further, Illinois has added a high fidelity power simulation

resource, the Real-Time Digital Simulator, as a resource to

projects internal to the Illinois testbed. These cyber-physical

resources are key to providing the high-fidelity and realistic

environment by which systems are tested for security concerns

and the impact of those issues on the physical systems to which

they are connected.

One common roadblock to building realistic representations

of the smart grid is that in most situations, these critical

systems are designed to be deployed in hardened environments

and connected solely in the way they were designed. However,

in general they are not designed to be scientifically observable,

instrumented for research, or connected in the non-standard

ways that researchers may need. This poses an issue as

researchers need to compose the system differently as they test,

derive new protection schemes or more advanced reliability

strategies.

Testbeds therefore need to reach deeper into systems than

is generally done in production and provide connections that

are generally not present in those systems. Naturally, deep

understanding of the systems must be developed to provide

that; in some cases, special relationships with the vendors

may be required. A testbed creates an ideal platform for

custom tools, test harnesses, instrumentation, and frameworks

that aim to provide interoperability between systems. One

such example is providing a bridge between power simulation

software and network simulation software, allowing for cyber-

physical coupled simulation experimentation.

Another major issue is that of providing the necessary

fidelity at scale. To address grid scale problems on critical

infrastructure, one needs an environment that is not only high-

fidelity and realistic enough to validate research of appropriate

scale. An expensive and unrealistic solution would be to build

a duplicate smart grid to test everything without impacting

the production system. Another solution would be to look at

the problem in pieces, replicating only what is needed for

the problem under consideration, but this piecemeal approach

is cumbersome and eventually ends up in the same problem

area as the first. Yet another option is to build microgrids that

represent the case under consideration, but at a smaller scale.

While that approach has value, there are unsolved problems

such as addressing scale or build out issues associated with

supply-chain and engineering costs of deploying real hard-

ware. Simulation can help in some cases, but it suffers from

the problem that models are not always available, accurate, or

capable of running in real time at the necessary scale. Finally,

there are the approaches of emulation and coupling of hard-

ware and simulation together, which round out and address

some of the previously mentioned faults. Emulation brings

its own issues in software complexity and coupled hardware-

software simulation often requires deep understanding and

custom interfacing beyond original design to work.

With each type of research, the balance between scale

and fidelity has to be weighed against the need for speed.

The problem is challenging even in a single experimentation

domain. In cyber-physical systems like the smart grid, where

two domains are operating simultaneously, the interactions

between them make the inter-relations even more complicated

and even more difficult to handle. The testbed at Illinois is

advancing the state of the art in this area. This is done by

leveraging real equipment in both representative configura-

tions and individual components, virtualization technology for

emulation and simulation, increasing the accuracy of model

behavior used in simulation, and developing interconnections

between systems that previously could not be connected.

IV. CASE STUDY: ADVANCED METERING

INFRASTRUCTURE (AMI)

Having discussed general methodology, security measure-

ments, and the applicability of testbeds, we now present a

case study on application of those techniques to Advanced

Metering Infrastructures (AMI) of the kind being deployed

around the world. We illustrate the efficacy of the techniques

through the description of tools and instruments that have been

used to conduct AMI security research. The methodologies

discussed above have been applied by other groups as well, as

evidenced by an AMI Penetration Test Plan published recently

by NESCOR [16] and a multi-vendor attack methodology

paper from Pennsylvania State University [12]. Further, sev-

eral studies [5], [6] have been published showing the threat

landscape faced by AMI deployments.

First, it is important to understand the complexities of the

AMI space. At the highest level, an AMI architecture consists

of a smart meter, an aggregator, a head-end, the software

running on each of the components, and the communications

links among those components. While this decomposition

appears to be simple, challenges arise from the heterogeneous

mix of software, hardware, firmware, protocols, and func-

tionalities that are deployed in the architectures in order to

provide observability and controllability under a variety of

abstraction levels. In some cases, there are even provisions

for access to and integration of third parties, such as the

third-party model in the AMI-SEC specification. Moreover,

protective solutions including cryptography, access control,

and key management are used with different modalities and

configurations throughout the system.

Communication links are another example of complexity.

Meters often have home-area-network interface (e.g., ZigBee)

for interfacing with consumers, combined with medium-length

radio interface for communication with other meters via mesh

communication or with aggregation nodes (e.g., via ANSI

C12.22 protocol [7]). Additionally, a meter will often have

an optical port for physical interfacing, an LCD panel for

human interfacing, and computer interfaces for debugging

purposes. Following the communication path towards the

utility network, we find that the aggregators have a medium-

length radio interface to communicate with meters, and a

provision for long-haul communications that can use a variety

of technologies (e.g., Ethernet, fiber, GSM, CDMA, PLC, or

others). The goal of the aggregators are to take the localized

data collection and bring it to the head-end, and to forward

control commands from the head-end to the meters. The head-

end is the main software package handling command and

control for interaction with the meters, including aggregation

of metering information for billing purposes.

A. Problems

Several issues become apparent in the analysis of new archi-

tectures like AMI. Such systems are designed for production

use and tend not to be instrumented in a way that exposes

controls that allow for deep testing. Further, these systems are

designed to be secure, and security itself often makes testing

more difficult. Since the AMI architecture has only recently

been adopted, the associated knowledge base is limited and

often not available to people who are not involved in creating,

operating or installing the systems. Most of the usable tools

that exist are the ones that were utilized during development

of the system or developed as part of the deployment or

operational processes. Access to those tools is sometimes

limited, and often they are available only in executable format,

which makes it difficult to adapt them for testing purposes.

Standards are another concern in emerging architectures. As

standards are formed, systems built around them can become

interoperable from a standards point of view but still have

incompatible configurations or different maturity levels, or

include nonstandardized functions. Even in areas that are

standardized, there are sometimes implementation decisions

that can result in different security behaviors.

Likewise, the implementation of systems is often affected

by individual manufacturers’ choices. For example, the com-

munication technologies, routing methods, and authentication

mechanisms chosen by a particular manufacturer are all po-

tential entry points in a security assessment of that company’s

AMI. They also present security testing problems, as commu-

nication with one AMI may be different from communication

with another.

B. Tools

After we defined our objectives and methods, our next

step towards analysis and testing of AMI device security was

to develop a set of tools that could empower researchers

and testbed operators to rapidly instrument systems and start

collecting metrics. The unavailability of a toolset for analyzing

the specific protocols and components of AMI pushed us to

develop custom applications. For example, when this work

started, the well-known wireshark analyzer could not be used,

as it did not include a dissector for the ANSI C12.22 com-

munication protocol. There was a user contributed patch to

provide that support however our environment was looking

for a more nimble solution. Note, the most recent version of

wireshark now includes a dissector for AMI.

Our efforts were focused on creation of two primary tools:

1) a multi-platform protocol dissector library that can collect

and analyze AMI traffic in various locations in the network,

and 2) an AMI visualization framework that can be used to

gain situational awareness, quickly grasp the behavior of com-

ponents, and present results to non-experts. Note that while a

protocol dissector and application specific visualization tool

are not novel approaches in networking, no such tools that

met our needs were readily available for the c12.22 protocol.

The main two requirements in our case for both tools were

rapid prototyping and easy maintainability. Those require-

ments are particularly important in a testbed environment in

which research needs are very dynamic and the personnel

involved have a wide range of backgrounds. As a result,

we chose to develop the traffic dissector in Python, and the

visualization solution in Processing. Both of those languages

have a proven record of rapid development speed, ergonomy,

and flexibility. Further, as these tools were developed, special

attention was put on making the tools not only leveragable for

research but also applicable for use by Industry for increased

field awareness and security engagement.

The architecture of the dissector is straightforward, parsing

the TCP/IP and C12.22 structures and outputting the data

payload as a parsed data feed. This is then used as input

into the state machine which provides the flow structure to

track node behavior over time outputting its results via syslog.

This state machine uses an API to enable other applications

or modules to extract network-level and application-level in-

formation. For instance, a module that we implemented to

build a specification-based intrusion detection sensor includes

a C12.22 state machine that can track meter state transitions

based on C12.22 requests and replies recorded from network

traces. Constraints on those transitions allow the system to

automatically trigger alerts when the behavior of a node starts

to deviate from the normal behavior profile. The entire Python

codebase of the tool, including the intrusion detection system,

represents less than 2,000 lines of code.

The visualizer receives syslog output directly from one or

more C12.22 dissectors and interprets the logs to extract the

network node and flow information. As shown in Figure 1,

nodes and flows are represented with a simple connected

particle system of dots and lines. The particles float on

the visualization canvas and a gravitational force simulation

enables the particles to adopt a clear layout automatically. A

color-coding scheme and a legend help to identify the types

of network nodes so that one can immediately differentiate

meters from relays and the collection engine.

C. Application

As mentioned above, formal methods were used to verify

the specification-based intrusion detection system for AMI.

The same methods could be applied in security testing as

well. Each test case would be viewed as an attack, and each

goal of resiliency, reliability, or prevention would be viewed

as the policy. Strong mathematical guarantees about the results

should add value to the testing. Each checker from the IDS

is a potential testing point that could be used to inform a test

plan for the protocol. The definition of the security policy for

Fig. 1. Interface of the AMI visualization tool designed to analyze
interactions in the mesh network

the IDS is also a potential guideline for the criteria by which

the test plan is evaluated.

Experimental verification was leveraged in the testing and

creation of the protocol dissector, visualization framework,

and specification-based intrusion detection system to verify

adherence to the specification and the ability to parse real

data feeds from a variety of sources. Further, these tools

are also used as a core piece involving wireless spectrum

analysis to reverse engineer proprietary mesh communication

and investigate attack surfaces on AMI systems, continuing the

investigation of AMI security assessment. As intended, these

tools have allowed the testbed researchers to rapidly augment

the functionality to adapt to new research and to prove out

new theories as they go forward with research and assessment

of systems. This work continues to be a catalyst for further

studies into attack trees and response mechanisms for AMI.

In our work with the AMISEC and NIST CSWG working

groups, as well as other projects, we have been exposed to

numerous proposed AMI architectures and conducted eval-

uations at both theoretical and practical levels. Application

of the methodology laid out above for the protocol, system,

architecture, and hardware has proven to be useful both in this

context and in many other smart grid domains.

V. CONCLUSION

Security testing involving complex cyber-physical systems

like the smart grid has required a combination of methodology,

quantification, and testbed environments to drive tool creation

to assist in the evaluation of the systems under test. This paper

presents an approach to security testing methodology and

illustrates the use of testbeds in developing tools for cutting-

edge systems. The testbed at the University of Illinois offers a

realistic environment providing state-of-the-art cyber security

testing capabilities for current systems as we demonstrated

through a case study in AMI. In addition to that, this paper

also addresses problems in security testing and testbed creation

for critical infrastructure and demonstrates progress in tackling

those challenges through tool creation.

VI. ACKNOWLEDGMENT

This material is based upon work supported by the De-

partment of Energy under Award Number DE-OE0000097.

The authors also thank Jenny Applequist for her editorial

assistance.

REFERENCES

[1] National SCADA Test Bed (fact sheet). Available at http://www.inl.gov/
scada/factsheets/d/nstb.pdf.

[2] M. Abadi and R. Needham. Prudent engineering practice for crypto-
graphic protocols. IEEE Transactions on Software Engineering, 22(1):6–
15, 1996.

[3] D. C. Bergman, D. Jin, D. M. Nicol, and T. Yardley. The virtual
power system testbed and inter-testbed integration. In Proceedings of the
2nd Conference on Cyber Security Experimentation and Test, CSET’09,
page 5, Berkeley, CA, USA, 2009. USENIX Association.

[4] R. Berthier and W. Sanders. Specification-based intrusion detection
for advanced metering infrastructures. In Proceedings of the 17th
IEEE Pacific Rim International Symposium on Dependable Computing
(PRDC), pages 184–193. IEEE, 2011.

[5] D. Grochocki, J. H. Huh, R. Berthier, R. Bobba, W. H. Sanders,
A. A. Crdenas, and J. G. Jetcheva. AMI Threats, Intrusion Detection
Requirements and Deployment Recommendations. In Proceedings of
the 3rd IEEE International Conference on Smart Grid Communications
(SmartGridComm), Tainan City, Taiwan, Nov. 5-8, 2012, to appear.

[6] Florian Skopika, Zhendong Maa, Thomas Bleiera, and Helmut Grneisb
A Survey on Threats and Vulnerabilities in Smart Metering Infrastruc-
tures In International Journal of Smart Grid and Clean Energy, vol. 1,
no. 1, September 2012, pp. 2228 ISSN: 2315-4462

[7] ANSI C12.22: Protocol specification for interfacing to data communi-
cation networks. National Electrical Manufacturers Association, 2008.

[8] DNP3 Users Group Technical Committee. DNP3 secure authentication
specification version 2.0, DNP users group documentation as a supple-
ment to volume 2 of DNP3. Technical report, DNP Users Group, 2008.

[9] D. Hardin, E. Smith, and W. Young. A robust machine code proof
framework for highly secure applications. In Proceedings of the
Sixth International Workshop on the ACL2 Theorem Prover and its
Applications, pages 11–20. ACM, 2006.

[10] H. Khurana, R. Bobba, T. Yardley, P. Agarwal, and E. Heine. Design
principles for power grid cyber-infrastructure authentication protocols.
In Proceedings of the 2010 43rd Hawaii International Conference
on System Sciences, HICSS ’10, Washington, DC, USA, 2010. IEEE
Computer Society.

[11] H. Liu. Formal Specification and Verification of a JVM and its Bytecode
Verifier. PhD thesis, The University of Texas at Austin, 2006.

[12] S. McLaughlin, D. Podkuiko, S. Miadzvezhanka, A. Delozier, and
P. McDaniel. Multi-vendor penetration testing in the advanced metering
infrastructure. In Proceedings of the 26th Annual Computer Security
Applications Conference (ACSAC), pages 107–116, New York, NY,
USA, 2010. ACM.

[13] National Institute of Standards and Technology. NIST 800-
57: Recommendation for key management - part 1: General.
Available at http://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57-Part1-revised2 Mar08-2007.pdf.

[14] National Institute of Standards and Technology. NIST IR 7628:
Guidelines for smart grid cyber security. Available at http://csrc.nist.
gov/publications/PubsNISTIRs.html#NIST-IR-7628.

[15] D. M. Nicol, C. M. Davis, and T. Overbye. A testbed for power system
security evaluation. Int. J. Inf. Comput. Secur., 3(2):114–131, Oct. 2009.

[16] J. Searle, G. Rasche, A. Wright, and S. Dinnage. Avail-
able at http://www.smartgrid.epri.com/doc/AMI-Penetration-Test-Plan-
1-0-RC3.pdf.

[17] T. Song, C. Ko, C. Tseng, P. Balasubramanyam, A. Chaudhary, and
K. Levitt. Formal reasoning about a specification-based intrusion
detection for dynamic auto-configuration protocols in ad hoc networks.
In Proceedings of the Fourth International Workshop on Formal Aspects
in Security and Trust, pages 16–33, 2006.

[18] USC ISI. DETER Project. http://deter-project.org.
[19] S. Whalen, M. Bishop, and S. Engle. Protocol vulnerability analysis.

Technical report, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

