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Designing Customized Energy Services Based on
Disaggregation of Heating Usage

Dayu Huang, Marina Thottan, and Frank Feather

Abstract—The deployment of smart meters has made available
high-frequency (minutes as opposed to monthly) measurements
of electricity usage at individual households. Converting these
measurements to knowledge that can improve energy efficiency
in the residential sector is critical to attract further smart grid
investments and engage electricity consumers in the path towards
reducing global carbon footprint. The goal of the reported
research is to use smart meter measurement data to identify
heating and cooling usage levels for a home. This is important to
cost effectively design consumer energy services such as energy
audit and demand response targeted towards improving an
individual household’s heating usage efficiency.

We present a machine learning approach akin to Non-Intrusive
Load Monitoring (NILM) to disaggregate heating usage from
measurements of a household’s total electricity usage. We use
as input 15-minute interval meter data and hourly outdoor
temperature measurements. Our approach does not require a
manual set-up procedure at each house. The method uses a
Hidden Markov Model to capture the dependence of heating
usage on outdoor temperature. Compared to existing methods
based on linear regression, the proposed method provides details
on heating usage patterns and is more flexible to incorporate
other system specific information. Preliminary results based on
synthetic and real-world usage data demonstrate the feasibility
of the proposed approach.

Index Terms—HVAC, Non-Intrusive Load Monitoring, Hidden
Markov Model, disaggregation, energy management service

I. INTRODUCTION

The first step towards smart grid deployment is the installa-

tion of smart meters (sensors) at consumer premises. Smart

meters provide detailed data on an individual household’s

electricity usage: Instead of monthly usage data collected via

manual reading, it is now possible to collect usage measure-

ments at 15-minutes (or shorter) intervals [1]. To realize the

envisioned benefits of smart grid such as energy savings,

increased reliability, reduced cost and improved customer

satisfaction, the collected data needs to be converted into

actionable information for both the consumer and the utility.

The benefit to the end-consumer is a crucial element for the

wide scale adoption of smart meters.

For a residential consumer the heating and cooling usage is

a significant component of the energy consumption (28% of

annual usage in U.S. in 2010 [2] and projected to increase

worldwide), and is a promising avenue for implementing

energy services that optimize the usage and provide benefits
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to the consumer. However, the challenge in designing these

energy services is to extract the heating and cooling usage

from the aggregated meter data without compromising the

privacy of the consumer. We present a machine learning

method that can address this challenge.

The approach presented in this paper provides methodolo-

gies to extract heating usage information from aggregate meter

readings in order to design customized residential energy

services that optimize heating usage. The approach applies to

thermostatically controlled heating appliances, however, it can

be extended to cooling usage. Optimizing heating usage holds

a significant potential for conserving energy and reducing peak

usage. For example, an energy audit can improve the thermal

efficiency of the building and thus reduce usage. Similarly,

demand response programs for the grid [3], [4] can reduce

peak usage by temperately adjusting the cycle of the heating

appliance without significantly reducing the comfort level.

Data analytics plays a critical role to support these energy

audit and demand response services by customizing them to

the individual household usage patterns. For example, the

estimated heating usage of a household could be compared to

other similar households. If the usage is significantly higher

than average, a recommendation for energy audit can be made

to the house owner. In another example, the estimated heating

usage characteristics are used to calculate its demand response

potential. Such information can be used by the utility in

implementing a residential demand response program.

Central to these customized energy services is the estimate

of a household’s heating usage, which includes not only the

average daily energy consumed for heating, but also other

characteristics, such as the number of on/off cycles of the

heating appliances. The latter is important for estimating a

house’s potential contribution to a demand response program

[3], [4]. Typically the measurement of usage is done at a

household level, rather than for individual appliances. This

raises the main technical problem addressed in this paper:

estimating the heating usage from the aggregate usage data

of a household. We address this problem by using Thermo-

statically Controlled Load (TCL) models to develop a Hidden

Markov Model (HMM) for heating usage estimation. Input

to this HMM are: hourly (or sub-hourly) outdoor temperature

readings [5] and 15-minutes aggregate meter readings for the

household.

II. STATE OF THE ART

In general the goal of Residential Energy Services, or Home

Energy Management Services (HEMS), is to basically save

energy at home. There are numerous players in the Residential
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Energy Services market, including utility companies, govern-

ment, standards groups, and manufacturers of infrastructure

equipment such as the smart meters, thermostats and appli-

ances. The most basic form of Home Energy Management is a

home energy audit, which has someone come to the home and

catalog and assess its energy efficiency, including the type of

heating and cooling appliances, ratings of insulation, window

types, and other demographics of the home. These audits are

very extensive and therefore expensive. Most other HEMS are

centered on the smart meter. Some HEMS are stand-alone

solutions that target the consumer directly: the customer uses

a smart thermostat and smart appliances that integrate with

smart meters to monitor usage, learn a customer’s habits, and

then control the thermostat in order to optimize heating and

cooling usage [6]–[8]. Other HEMS are utility-centric, in that

the utility company will use a smart meter infrastructure to

monitor individual customer’s usage and intelligently present

the information and/or provide recommendations. However,

a majority of these solutions simply monitor a customer’s

smart meter and present current and historical usage, along

with trend lines and future usage prediction. There are a

few companies that have sophisticated analysis to compare a

customer’s usage to that of his “neighbors”, where a neighbor

has similar demographics, such as home size [9]. The work

that is most closely related to our approach is the method

in [10] which disaggregates heating and cooling usage using

regression analysis. We use this regression-based method to

benchmark and discuss the performance of the proposed

HMM-based approach.

This paper is organized as follows: Previous work on heat-

ing usage disaggregation is reviewed in Section III. The HMM-

based algorithm is introduced in Section IV and evaluated in

Section V. Its application to energy audit and demand response

is given in Section VI. The paper is concluded in Section VII.

III. PROBLEM DESCRIPTION

Our goal is to disaggregate energy consumption of the

heating appliance from total usage for a house. We focus on

estimating the usage of heating appliance with on/off states

controlled by a thermostat, which is the focus of studies on

residential demand response program [3], [4].

Let y(t) denote the aggregate real power consumption of a

house at time t, and w(t) denote the power consumption of

the heating appliance. Consider meter measurements taken at

sampling interval of length Δ. Denote the aggregate energy

and the energy consumed by the heating appliance at the kth

interval by y[k] =
∫ kΔ

(k−1)Δ
y(t)dt and w[k] =

∫ kΔ

(k−1)Δ
w(t)dt.

Let θo[k] be the outdoor temperature at time kΔ.

In the disaggregation problem, the inputs given to the algo-

rithm are the sequences {y[k]} and {θ[k]}, and the required

output is a sequence of estimates {ŵ[k]} of the true heating

usage {w[k]}, or estimates of other functionals of w(t). For

the energy audit and demand response services, the relevant

estimates are: (1) The average heating power over time T :
1
T

∫ T

0
w(t)dt; (2) The average energy consumed during each

on/off period: 1
N(T )

∫ T

0
w(t)dt, where N(T ) is the number of

times that the appliance is on during [0, T ].
The assumptions needed for the proposed method are:

1) The household of interest has one single thermostatically

controlled heating appliance that switches between an

on and an off state. The heating appliance is turned

on when the indoor temperature is lower than a pre-

set temperature and turned off when it is higher than

another pre-set temperature.

2) The sampling frequency 1/Δ is higher than the fre-

quency that the heating appliance switches between on

and off states.

3) The heating appliance consumes the same amount of

energy during each period that it is on.

The last assumption is only an approximation: The time that a

thermostatically controlled heating appliance stays on and its

power consumption depends on the outdoor temperature. One

possible way to relax this assumption is to explicitly model

this temperature dependence. This will be investigated in the

future.

A. Previous Work: Non-Intrusive Load Monitoring

Disaggregating individual appliance usage from the aggre-

gate usage of a house is called Non-Intrusive Load Monitoring

(NILM). The main varying characteristics of NILM methods

are: (1) the sampling interval Δ (or sampling frequency); (2)

the appliance information needed, such as historical usage of

individual appliances; (3) the types of appliance whose usage

the method disaggregates. The sampling frequency and appli-

ance information are limited by the data collection procedure.

The NILM method reported in [11] uses the real and reactive

power as signatures of individual appliances. It first detects the

change of aggregate instantaneous power consumption which

signifies the on/off state change of an appliance, and then

matches how much the power consumption changes to the

appliance signatures. The sampling interval in the experiment

reported in [11] is Δ = 1s. When the sampling interval

increases, the probability that two or more appliances change

their power consumption at the same interval increases. For

smart meter measurements of energy consumption collected

at 15 minutes or less frequently, machine learning methods,

such as rule-based algorithm [12] and neural-networks [13]

are used. These methods disaggregate the usage of large

appliances- such as HVAC, water heaters and pool pumps -

by treating the usage of smaller appliances as noise. Other

signatures such as the voltage spectrum or transients, which

are available from higher frequency measurements, also have

been used (see for example [14] [15]). These are not available

with measurements of 15-minutes interval.

B. Previous Work: Linear Regression

The state of the art method to disaggregate heating usage

from total usage measured at 15-minutes or 1-hour interval

and based on linear regression is given in [10]. Define the

difference between the outside temperature, θo[k], and a pre-

determined baseline temperature, θB , as:

d[k] = max{θB − θo[k], 0}.
One possible choice of θB mentioned in [10] is 18.3◦C. Then

y[k] is regressed against d[k] to obtain estimates of β0, β1:

y[k] = β0 + β1d[k].
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The estimated heating usage is then given by ŵ[k] = β̂1d[k],
where β̂1 is the estimate of β1. The key assumption in linear

regression method is that the usage of non-heating appliances

is a constant. It neglects the on/off behavior of appliances, and

is suitable for estimating average heating power.

C. Our solution

The method we propose builds upon existing methods in

NILM. One way to disaggregate heating usage is to first apply

methods described in Section III-A and then identify which

appliance is a heating appliance. The method proposed here

uses the temperature dependence of heating appliance usage

directly in the NILM method to help disaggregate heating

usage: It uses the change of energy consumption as well as its

dependence on the temperature as the appliance signatures.

The proposed method uses HMMs to model energy usage.

HMMs are stochastic models that have the ability to capture

complex dependences between variables. The reader is referred

to [16] for a tutorial. It has been used in some recently

proposed NILM methods [17]–[19].

There are two types of variables in an HMM: observed

variables and hidden variables where the sequence of hidden

variables forms a Markov process. In previous NILM methods,

the hidden variables are used to model the on/off state of

individual appliances. The observed variables are conditionally

independent of each other given the value of the hidden

variables, and they are used to model the electric usage. In

the proposed method, the hidden variable models the on/off

state as well as the indoor temperature seen at the thermostat,

and the evolution of the hidden variables depends on the

outdoor temperature. This allows us to capture the temperature

dependence of the electricity usage. Details of the proposed

HMM method are given in Section IV.

One advantage of using an HMM is its flexibility: Addi-

tional variables can be added to the HMM. For example, if

there is a survey on electric heating appliances in the utility’s

area, then a variable can be added to incorporate this piece of

information. These are important directions to be pursued in

future work.

IV. DISAGGREGATION OF HEATING USAGE

We first describe the TCL model for HVAC, which is then

used to derive the HMM for heating usage disaggregation.

A. TCL model

The following TCL model and its discrete time version have

been used in [3], [4], [20], [21] to describe the evolution of

the temperature seen at the thermostat θ(t):

d

dt
θ(t) = −1

τ
(θ(t)− θf (t)− u(t)θg) (1)

where θf (t) is the target temperature that θ(t) approaches

when the heating appliance is off, and θg is the additional

heat gain when it is on. The binary-valued u(t) is the on/off

state of the heating appliance: u(t) = 1 when it is on, and

u(t) = 0 when it is off. The on/off state is determined by how

θ(t) compares to lower and upper set-points of the thermostat

θl and θu: u(t) does not change if θl < θ(t−) < θu; u(t) = 1
if θ(t−) ≤ θl, and u(t) = 0 if θ(t−) ≥ θu.

This TCL model is the basis for the HMM used in the

disaggregation algorithm. The thermal dynamics of a house

is more complicated than (1). Simulating a house’s heating

requires detailed models with a large number of variables and

parameters. Our approach is not to fit a simulation model to the

usage data. The heating usage is inferred from the usage data

directly and the TCL model is used to distinguish the heating

usage from other usages that do not depend on temperature.

In statistical inference, it is well-known that a simpler model

is preferred when only limited amount of data is available.

B. HMM

The HMM used for the disaggregation algorithm is depicted

in Figure 1. The sequences{z[k]} and {r[k]} model the usage

of heating and non-heating appliances, respectively. The total

usage y[k] is given by y[k] = z[k] + r[k]. Rather than using

z[k] and r[k] directly as the variables of HMM, we use the

difference between two consecutive values: Define Z[k] =
z[k]− z[k−1], R[k] = r[k]− r[k−1], Y [k] = y[k]− y[k−1].
The observed variable of the HMM is Y [k] = Z[k] +R[k].

X[k-1]

U[k-1]

Z[k-1]

R[k-1]

Y[k-1]

X[k]

U[k]

Z[k]

R[k]

Y[k]

X[k+1]

U[k+1]

Z[k+1]

R[k+1]

Y[k+1]

... ...

Fig. 1. Hidden Markov Model for heating usage disaggregation.

The change of non-heating usage {R[k]} is modeled as

an i. i. d. sequence of symmetric Gaussian mixture random

variables with s0+2s1 components, where the s0 components

model the change of aggregate usage of small appliances and

s1 components model that of large appliances. The density

function is given by

fR[k](r) =

s0+2s1∑
v=1

αv
1√
2πσ2

v

exp{− (r − μv)
2

2σ2
v

},

where the coefficients {αv} satisfying
∑s0+2s1

v=1 αv = 1 are

the probabilities of individual Gaussian components. The pa-

rameters μv and σv are the mean and variance of the vth com-

ponent. The following constraints are imposed so that the re-

sulting density function is symmetric: μv = 0 for 1 ≤ i ≤ s0,

μs0+2i−1 = −μs0+2i and σ2
s0+2i−1 = σ2

s0+2i for 1 ≤ i ≤ s1.

We now describe the modeling of heating usage. The

change of the heating usage Z[k] depends conditionally on the

state variable pair (X[k], U [k]) The real-valued variable X[k]
models the temperature seen at the thermostat at time kΔ.

The two-dimensional vector U [k] ∈ {0, 1}2 models heating

gain from the heating appliance at time interval k − 1 and

k. U [k]1 = 0 and U [k]2 = 1 indicates that the heating

device is off during [(k − 1)Δ, (k − 2)Δ) and is on during

[kΔ, (k − 1)Δ).1 The value of (X[k], U [k]) depends on the

value of (X[k − 1], U [k − 1]) and θo[k]. The transition

probability is given by:

Pr{U [k]2 = 1|X[k − 1] = x}
= (1− η)χ{x ≤ Tl}+ ηχ{x > Tl},

1The HMM has been extended to the case where U [k]i takes more than 2
values. We only describe the case of binary value due to the limited space.



4

Pr{X[k] ∈ A|X[k − 1] = x, U [k]2 = u}

=

∫
x′∈A

1√
2πσ2

X

exp{−
(
x′ − [λx+ (1− λ)θo[k] + ug]

)2
2σ2

X

},

where χ is the indicator function, η is close to 0.

The dependence between Z[k] and U [k] is given by

Z[k] = μ̌(U [k]2 − U [k]1) + ε[k]

where ε[k] is a Gaussian random variable of mean 0 and

variance σ2
Z .

C. Algorithms

The parameters that appear in the HMM are divided into

two groups: The first group includes Tl, λ, μ̌, {αv, μv, σ
2
v};

The second group includes σ2
X , σ2

Z , g, η. The second group are

the same for all houses, and given the availability of training

data can be optimized to minimize the estimation error. The

first group on the other hand, varies with different houses and

are estimated from the usage data.

The disaggregation algorithm computes the maximum-

likelihood estimates of Tl, λ, μ̌, {αv, μv, σ
2
v} and {U [k]} . The

estimate of heating usage is given by ŵ[k] = μ̌U [k]2.

The maximum-likelihood estimation of λ, μ̌, {αv, μv, σ
2
v}

and U [k] uses the well-known Baum-Welch algorithm [22],2

which is guaranteed to converge to a local optimum. The same

estimation procedure is repeated with different choices of Tl

and the one yielding the maximum likelihood value is used.

V. EVALUATIONS

In this section, the proposed disaggregation algorithm is

applied towards two problems: detection of the existence of

electric heating and estimation of heating usage per household.

A. Data preparation

Two data sets are used in the experiment: The first data

set is real-world data. It is used in the detection problem. It

includes two weeks of electricity usage of 76 houses in winter,

measured at 15-minutes sampling interval, hourly temperature

measurements at a weather station, and a survey filled out by

the consumer that describes what type of heating appliance is

used. The survey data is converted to a binary label indicating

whether the house has electric or non-electric heating. Among

the 76 houses, 47 of them were labeled as having electric

heating. Hourly temperature is interpolated to obtain out-door

temperature at 15-minutes interval.

The second data set is synthetic. It is created for the

estimation problem to evaluate the accuracy of the heating

usage disaggregation, since the real-world data set does not

include the ground truth of heating usage. The synthetic data

includes the usage of 100 virtual houses generated as follows:

The electric heating usage of a virtual house is simulated using

HAMbase-S software [23], and the non-heating usage of a

virtual house is obtained by taking the real-world usage of

houses with non-electric heating.

The simulation of electric heating usage uses the one-zone

building model given in [23], in which multiple difference

2We use the standard procedure of the Baum-Welch algorithm, see the
tutorial [16] for details.

equations are used to compute the thermal dynamics, and the

thermal resistance of the walls are chosen so that the lumped

thermal resistance is within the range given in [4, Table 1].

The heating appliance has only on and off states controlled by

a thermostat. Only one heating usage sequence is simulated

and used for all the virtual houses. Modeling the impact of the

outdoor temperature on the power and efficiency of the heating

appliance, and creating more than one sequence of electricity

usage by simulating houses with different thermal parameters

will be pursued in future research.

The non-heating usage is obtained from the real-world usage

data from 100 real houses labeled as non-electric heating.

These houses are evenly divided into two groups according to

the size and value of the house and the year when it is built.

One group includes larger, newer and more expensive houses

and the other group includes smaller, older and less expensive

houses. The reason to consider two groups instead of one is

based on the observation that on average larger houses have

higher non-heating electricity usage than small houses.

B. Detection of electric heating

Currently about a half of the houses in the Unites States

built after 2000 are heated using electricity, and newer houses

are more likely to have electric heating [24]. The information

whether a house uses electric heating is useful, for example,

in HEMS in which a household’s usage is compared against a

selected group of other households to provide feedback on its

consumption, since houses heated using electricity generally

have higher electricity usage than others.

In this detection problem, the input is the total usage and

temperature, and the output is whether the house has electric

or non-electric heating. There are two types of errors: type I

error in which a house without electrical heated is incorrectly

detected as electric heating, and type II error in which a house

with electric heating is detected as having no electric heating.

The performance of a detection algorithm is characterized by

the probabilities of these two errors:

Type I error probability=
Number of Type I errors made

Number of houses with no electric heating
,

Type II error probability=
Number of Type II errors made

Number of houses with electric heating
.

A threshold test is applied to the output of disaggregation

algorithms: A house is detected as electrically heated if the

estimated average heating power is larger than a threshold.

The threshold dictates the trade-off between the two errors.

The error probabilities using HMM and linear regression

methods, with varying thresholds, are depicted in Figure 2.

In addition the threshold test is applied directly to the raw

aggregate usage to obtain a baseline error. In Figure 2, the

extreme right is a low threshold, where every house is detected

as having electric heating, while the extreme left is a high

threshold where no houses are detected as electrically heated.

Three observations are made: First, detection using either

disaggregation algorithm performs better than that using raw

usage; Second, the probability of error for the linear regression

method is almost the same for 15-minutes and 1-hour measure-

ments; Third, the HMM method is worse than linear regression

at one end of the curve and better at the other. So from a
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purely detection perspective, the linear regression method is

favorable, considering its low computational complexity and

less stringent requirement on the sampling frequency.

The best method and best threshold value also depends on

the cost of a mis-diagnosis. For example, to classify a house as

having electric heating when it actually is non-electric (Type I

error), might result in a foolish recommendation that the house

participate in a demand response program. Similarly, a missed

detection (Type II error), i.e., the house is diagnosed as not

having electric when it actually does, would result in a lost

opportunity. In general we want to balance the two error types

and choose a threshold somewhere in the middle, for example,

where the curve is closest to the lower left corner of the graph.

It is observed from the usage data that some electrically

heated houses consume very little electricity during the night,

indicating that the heating might be manually turned off.

Future work will exploit the flexibility of the HMM to incor-

porate such information to improve the detection performance.

C. Estimation of heating usage

The disaggregation algorithm estimates heating usage. Us-

ing synthetic data, the accuracy of the algorithm is evaluated

by its estimation error, which is defined as:

Estimation error = |1− (
∑
k

ŵ[k])/(
∑
k

w[k])|.

Table I shows estimation errors for HMM and linear re-

gression methods. The results are the mean and 1 standard

deviation, and are categorized by the type of house (larger /

smaller houses), and the sampling interval (15-minutes / 1-

hour). The house type is described in Section V-A. As seen

in the table, the HMM method had lower error, especially for

tight sampling (15 minute).

Three observations are made: First, the estimation error of

the HMM method increases with lower sampling frequency,

while the linear regression method is insensitive to the sam-

pling frequency. The reason is that the HMM method uses the

difference Y [k] = y[k]− y[k − 1] to infer the on/off event of

the heating device and thus is affected by how the frequency of

the on/off event compares to the sampling frequency. With 1-

hour sampling, the second assumption of the HMM method is

violated, and the usage in two or more consecutive on-periods

sometimes is lumped together.

Second, the error of the linear regression method is larger

for larger houses which have higher non-heating usage, com-

pared to those of smaller houses.This is due to the linearity of

the regression method. The error of the HMM method does not

significantly depend on the amount of non-heating usage since

the model explicitly accounts for this. Third, the HMM method

with 15-minutes data is more accurate than linear regression.

Regression HMM
Larger Houses, Hourly 0.909 +/- 0.477 0.730 +/- 0.100
Larger Houses, 15 Min 0.901 +/- 0.479 0.274 +/- 0.153
Smaller Houses, Hourly 0.669 +/- 0.270 0.669 +/- 0.205
Smaller Houses, 15 Min 0.681 +/- 0.284 0.361 +/- 0.159

TABLE I
ERROR OF ESTIMATION METHODS.

VI. ENERGY SERVICES

We describe applications of the heating usage disaggrega-

tion algorithm to demand response and energy audit services.

In particular, we show how the algorithm can be used to

estimate the demand response potential of a house. We also

discuss deployment considerations.

A. Demand Response

Consider the demand response program in which the utility

directly changes the on/off state of heating appliances to tem-

porarily change the heating usage, and thus provides demand

response to the grid. To maintain consumer’s comfort level,

the heating appliance only responds to the control signal if the

indoor temperature is within the deadband [θl, θu]. Therefore,

the potential contribution of a household to a demand response

program depends on its heating usage characteristics.

The disaggregation algorithm can be used to estimate in-

dividual households’ potential contribution. The utility could

then apply targeted advertisement or give higher incentives

to those houses with high potentials to encourage them to

participate in demand response.

One important metric of the demand response service is the

power capacity over a required duration, i.e., the amount of

power that the demand response service can provide consis-

tently over this time interval. Contribution of each household

to the power capacity is limited by both the average heating

power as well as the average energy consumed during each

on/off period. Assuming that the same amount of power

capacity must be provided for both increasing and decreasing

demand, we use the following formula based on [4] to estimate

the potential contribution of a house:
potential of a house = min{Average heating power,

Average energy consumed in each period

Duration as a demand response resource
}.

The required duration as a demand response resource is

determined by the type of services it provides. Here we

consider a duration of 2 hours for load following. The HMM-

based disaggregation algorithm is applied to estimate the

average energy consumed in an on-period and the average

heating power for the 47 electrically heated houses in the real-

world data. A house is recommended to participate in demand

response if its estimated contribution is larger than a threshold.

Varying the threshold leads to different number of recom-

mended houses, as well as different total power capacity and
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Fig. 3. Total power capacity (left) and average power capacity per house
(right), as a function of the number of houses recommended.

average power capacity contributed per house, as depicted in

Figure 3. If the cost of demand response program includes

both fixed cost per customer and payments according to actual

contributions, then both the total capacity and the average

capacity per house should be considered in designing and

optimizing the demand response program.

B. Energy Audit

Disaggregation algorithms give the estimated heating usage

for individual houses. This information can be used to provide

feedback to consumers on how they compare to other similar

households. Appropriate comparison group for a household

may be based on the size or age of the house. Such groupings

can be identified using public information. Thus it is possible

to provide consumers with information on the amount of

savings they may get from an energy audit.

C. Deployment considerations

Data Availability: The disaggregation algorithm requires

individual meter usage and outdoor temperature data. We have

shown that the performance of the HMM method depends

crucially on the sampling frequency. Therefore, it is important

to find the optimal sampling frequency prior to deploying

this method. The optimal sampling frequency depends on

the typical on/off cycle of heating appliances, which can be

estimated from a survey, or collecting and analyzing high-

frequency usage data from a few representative homes.

Computation: The computational complexity of both the

HMM and linear regression methods increases linearly with

the number of data samples. The HMM method’s computa-

tional complexity per data sample is much higher than that

of linear regression, and depends on the number of iterations.

However this is not a big concern for energy services where

the disaggregation algorithm is applied off-line. Moreover, the

rich literature on HMM can be leveraged to find approximate

methods with smaller computational complexity.

Consumer Population: Consumer characteristics such as

people migration, especially those living in rented places

could lead to different usage patterns for the same meter.

The learning for the disaggregation algorithm is specific to

a particular consumer’s usage pattern.

VII. CONCLUSION AND FUTURE WORK

We have developed an HMM-based algorithm to estimate

individual household heating usage from aggregate smart

meter data. We have shown how these estimates can be used

to design customized energy services that benefit the end-

consumer. Even though linear regression based approaches can

solve the detection problem it is necessary to have sophisti-

cated methods like HMM to delineate the usage patterns in

an intelligent manner. This is essential to create customized

energy services for different consumer groups. Similar meth-

ods can be extended to extract other information, such as AC

or pool pump usage. We are currently pursuing mechanisms

to identify appropriate aggregation groups of households for

different types of energy services.
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