
Providing Security to a Smart Grid Prosumer
System Based on a Service Oriented Architecture in

an Office Environment
Alexander Camek, Florian Hölzl, and Denis Bytschkow

fortiss GmbH,
Guerickestrasse 25, 80687 Munich, Germany

Email: {camek,hoelzl,bytschkow}@fortiss.org
http://www.fortiss.org/

Abstract— The transformation of energy systems into smart
grids will provide a lot of new possibilities to all participants.
By upgrading energy distribution nets with information and
communication technologies (ICT) customers and suppliers will
have additional information. It integrates a bi-directional in-
formation transport between both, power supply company and
customer. This real-time data is used to save costs by reducing
energy consumption, to provide a good alignment with fluctuating
renewable energy production, or to actively participate in the
market by offering surplus production. However, ICT systems are
always a subject to potential cyber-attacks and manipulations.
Therefore, securing such systems is one of the most important
objectives. In this paper we conduct the security analysis of our
smart grid prosumer demonstrator, which is implemented using
on a service oriented architecture. We analyze the attackers’
motivations and derive an attacker model. We identify weak
points of our system with respect to the attacker model and the
system architecture. Finally, we propose counter measurements
to improve the case study smart grid system.

Index Terms—Security Analysis, Attacker Model, Smart Grid,
Prosumer, Office Environment, Service Oriented Architecture

I. INTRODUCTION

The increasing integration of renewable energy sources cre-
ates new challenges for the existing electricity infrastructure.
For example, it requires an increased attention and handling
of volatile energy fluctuations in the power distribution nets.
Upgrading the power system with information and commu-
nication technologies (ICT) is considered the right way to
cope with these challenges. A first step is to integrate a bi-
directional information transport between the power supply
company and the customer. This data exchange provides the
opportunity for load balancing, more efficient generation, and
better computer assisted planning. Mechanisms, like demand
side management and demand side response, tackles the road
to an improved energy utilization.

Combining ICT and energy distribution networks led to
the idea of smart grid systems. Classic power producers and
consumers are supplemented by so-called prosumers, which
are able to produce and consume electricity. Prosumer energy
management solutions are complex systems with functional-
ities from building automation, agent-based market partici-
pation, control systems with real-time requirements, as well

as, planning and optimization software. Therefore, modular
and flexible approaches like service oriented architectures
(SOA) in combination with design principles regarding real-
time requirements are well suited to build such systems.

However, new energy management systems will only be
accepted by the customer if the system functionality is reliable
and secure. In this paper, we analyze a SOA-based prosumer
system in the context of the smart grid technology with respect
to its security aspects. We use the Living Lab demonstrator [1]
implemented at the office building of fortiss as a case study.
The demonstrator architecture is based on the SOA paradigm.
This approach was chosen to allow adding new devices flexibly
and improving the system with new services in a plug and
play manner. However, such an open architecture is prone
to attacks like data manipulation, data misuse, and privacy
violations. Therefore, a thorough security analysis must be
part of the development process of such systems. During the
audit every component and their gaps were recorded for deeper
analysis. Then, we deduced matching counter measurements
to close these gaps. Most of the problematic gaps and our
counter measurements are closely related to our demonstrator.
Our experience can be used as a blueprint to provide security
to other SOA-based prosumer systems.

The paper is organized as follows. In Section II we start our
security analysis of the prosumer demonstrator by examining
the motivations of attacks against a smart grid system in
general. In Section III we derive an attacker model from these
motivations. Section IV presents the Living Lab demonstrator
and its architecture. Next, we will analyze the system in Sec-
tion V and propose countermeasures in Section VI. Section VII
concludes the paper.

II. MOTIVATIONS TO ATTACK THE SMART GRID

Attackers can have different motivations against a common
smart grid. An example of a simple attack is the theft of
equipment or devices.

Consumption of electricity without payment or minimizing
the bill is a possible motivation. Every smart grid component,
especially a node like an office building, is connected to the

TABLE I
ATTACKER CLASSIFICATION

Skill Class Class A Class B Class C Class D

Smart grid knowledge medium high high medium

IT knowledge low medium high high

Technical equipment low medium medium high

Financial resources low low medium high

Possible roles
house owner,

petty criminal, or script kiddie

manufacturer,

service people, or tweaker

device developer,

service people, or hacker

terrorist or

organized crime

smart grid, which is controled by power system operators
providing electricity when needed. An attack can be done by
manipulating the internally connected smart meter to reduce
the payment or by interfering with the communication between
prosumer and Power Company. An advanced communication
attack is a manipulation of the power supplier’s smart grid by
manipulating the prosumer.

Another motivation is based on the business model where
a supplier or equipment manufacturer has equipped devices
with additional functionality only usable by extra payment. An
attacker tries to use this additional functionality by unlocking
the specific or dutiable functionality without this payment.
Even using additional hardware functionality of devices, which
are not supported by the runtime software, can be a target.

Reuse of stolen devices or adding self-crafted components
is also a motivation for an attack. Stolen devices may have
to be reprogrammed to fit into the new environment, but the
effort to do this must be less than the cost to buy the original
part. By adding self-crafted components the user wants to
solve a specific problem, for which there is no solution at
the free market. These unauthorized components can harm the
smart grid by sending wrong data, influencing other system
components, or hindering other components’ operation. Thus,
this kind of self-crafted components can be used to attack
key material, especially to read or to change it, or can be
part of a masquerade attack where these component claim to
be a specific instance with a unique identifier. This is a kind
of authorization violation, because every component has to
be verified to be compatible with other components. Besides
using self-crafted components, a user could manipulate a given
hardware, manipulate the component connections by discon-
necting it, reverse engineering a given hardware, read out
memory, or reprogram the hardware.Simply put, a malicious
user could exchange a device with a manipulated one.

Further attacks are not directly targeted against the usage
of electricity, but against the prosumers’s sensitive informa-
tion. The exchanged data between a customer and the power
company is interesting for attackers. An attack is most often
attempted by a man-in-the-middle attack. Here, an attacker
will wiretap the communication between both parties. He
tries to access sensitive information, such as credit card data,
personal data of a customer, data of a power company, and data
of subsystems. When somebody wiretaps a communication he

could also change the communicated data. This enables the
attacker to manipulate the purchased amount of electricity,
change account data, or even harm the entire system. Thus, the
manipulation is not only done by changing the data, but also
by deleting some specific information or to replay recorded
data in future.

Some attackers, in particular those without malicious in-
tents, want to manipulate the system in order to find security
holes and to help closing them. By exposing security holes
these attackers want to increase their reputation, e.g., in the
scientific community.

Harmful attackers will manipulate the internal system not
only to destroy equipment, but also to injure users. Another
severe attack in this class of motivations is extortion. The
attacker tries to extort a smart grid operator, a supplier, or
a device manufacturer by threatening to uncover some detail
of the system, which is valuable to them.

Finally, intellectual property is a very well paid good for
competitors or new suppliers and, therefore, its receipt is a
motivation. Device manipulation with the goal of analyzing
internals of the system is a way of attack in this respect.

Of course, the motivations given here are not a complete
list of possible attacks against a smart grid system, but were
selected from the perspective of our use case.

III. ATTACKER MODEL

Based on the motivation given in the previous section we
now classify possible attackers into different categories. Such
categorizations have been studied in related work.

Howard and Longstaff [2] provide a common model to
describe computer security incidents. Here, an incident is a re-
lation of an attacker to an objective; the latter is comparable to
our motivations. Their seven attacker categories are primarily
defined from the perspective of computer and network security.
In contrast to our categorization attackers are not divided into
internal and external physical access to the system.

In [3] attackers are categorized according to their physical
access to the target and their skills. Chinnow et al. [4] classi-
fied their attackers based on the physical access to the smart
meter, e.g., the billing component between the Living Lab
and the power supplier. They distinguish between outsiders
(no physical access) and insiders, which are classified into
homeowners and energy provider employees.

Based on the given motivations we classify our attackers
into four skill classes, as given in Table I:

1) Class A: includes technically unskilled persons search-
ing for a low-risk opportunity to steal and sell some devices,
or to attack and change systems. This attacker possesses low
technical equipment and uses by experts pre-crafted tools. The
members of this category have only minor financial resources.
The house owner is part of that category. House owners
normally know what kind of equipment is installed and how
it is organized. They can use their knowledge to improve the
usage of the system. We also add the petty criminal to this
category. He normally steals devices and wants to sell these.
Script kiddies [5] who attack systems only for fun without
special knowledge fit in this category. They want only to
improve their reputation, but their attacks will harm the system
and after those attacks the system is left in an unusable mess.

2) Class B: contains technically low skilled persons who
have already attacked systems with weak security, and may
have been caught for one of their attacks. This kind of attacker
is cunning and experienced. The person only attacks smaller
systems or systems with weak security. They possess some
technical equipment, where special tools are part of. The
members of this category have only minor financial resources.
Device or system manufacturers are part of that category. We
also add service people to this category, because they know
about the system and possess the needed special tools. In this
category we also put tweakers who try to improve devices by
changing the software or added hardware.

3) Class C: covers technically high skilled persons who are
specialized in attacking systems. Sometimes they use members
of our other classes as a help. We put normal developers of
devices or infrastructure in this category. Sometimes these
people want to increase their reputation or learn something
new, known as hackers. But mostly these people attack for
money or harming the company. Additionally, service people
who are paid by house owners to tune or tweak the system are
also part of this category. They know the system and can use
insider knowledge. They have the tools and special equipment
to perform the attack. The goal of this attacker class is to use
their knowledge to improve their personal benefit.

4) Class D: includes technically high skilled or trained
persons who have substantial resources. Additionally, the
attacker uses members of our other classes as help. One can
interpret this category as terrorists or mafia members. We
define this category for criminal organizations. The goal of
this attacker class is to do a maximum of impact by harming
the prosumer, and getting the highest possible outcome, such
as money or terror.

Furthermore, we distinguish between restricted and unre-
stricted physical access of the attacker (Table II). An attacker
with unrestricted access to smart grid devices can manipulate,
replace, or remove them directly. Attackers with restricted ac-
cess to those devices can manipulate the system only through
the ICT infrastructure, i.e., they can interfere with the normal
operation or even shut it down.

TABLE II
PHYSICAL ACCESS

Physical Access unrestricted restricted

Possible roles

house owner, tweaker,

petty criminal,

manufacturer,

device developer, or

service people

script kiddie, hacker,

organized crime, or

terrorist

IV. CASE STUDY

In order to evaluate the threats to all smart grid concerning
parties and identify counteractive measures we will focus on a
prosumer system based on SOA principles. SOA systems are
currently used in several research demonstrators. An overview
of different smart energy management systems and details of
the implementation of our Living Lab demonstrator is provided
in Koss et al. [1]. This system is representative for a smart
grid system in an office building with its facility owners, its
employees, and its service assistants. The demonstrator is an
ideal case study, since it is prone to a large variety of attack
scenarios. In order to provide a consistent security analysis
in this paper the hardware setup and system architecture is
summarized next.

A. Hardware Platform

The Living Lab prosumer system is integrated into an office
building.It is equipped with four different types of devices as
shown in Figure 1.

Energy production and storage components manage the
self-produced electricity. A photovoltaic system on the roof
produces up to 5 kW power. Batteries store that energy and
provide the possibility for a set of offices and a meeting room
to run in independent mode for several hours.

Sensors and actuators, typically found in the domain of
building automation, provide data about the environment and
enable user interactions. They use wireless communication
based on the EnOcean technology.

Smart meters are connected via IP-based communication
and provide a stream of data about the power consumption
and grid properties, such as the power flow, the power factor,
and the current frequency.

The last group of devices is used for thermal management.
They control the heating system and, for example, the air-
conditioning system in the server room.

Sensors and actuators send information about their status as
events to the backbone software system. The events are stored
in a data base and analyzed by server applications to carry
out certain actions. User interfaces visualize the system status
to users and can be used to trigger actions, such as turning
lights on and off. Depending on the user and his role (e.g.,
employee or facility manager), the user interface provides only
restricted options. For example, an employee can only control
the devices in the room, which is assigned to him.

Fig. 1. The Living Lab components with their information and energy flow

Fig. 2. The service-oriented architecture of the Living Lab.

B. System Architecture

As depicted in Figure 2 the system architecture has three
distinct layers encapsulating different functionalities.

The Device Layer serves as the connection between hard-
ware devices and the software layers. Wrappers are used to
communicate with devices and translate device-specific and
proprietary protocols to a common internal system protocol.
New devices can be attached in a plug-and-play manner to the
system by providing suitable wrappers.

The Communication Layer provides the messaging mech-
anism within the system. The demonstrator uses Apache
ActiveMQ to implement this layer, which again uses the
Java Messaging Service and the SOA protocol for message
encoding. To increase the performance of the system the
communication is currently based on events.

The Processing and Control layer provides the advanced
functionalities of the system. The persistency services stores

the system status data, which is used by the rule system to
decide appropriate actions. The rule system implements a large
part of the smartness of the system. It allows the configuration
of automation rules, such as automatically turning off the lights
when no one is detected in the room. More advanced rules
can be created by the users with their respective permissions.
The location manager serves to represent relationships between
components of the system, such as sensors and actuators.

V. SECURITY ANALYSIS OF THE LIVING LAB

In the previous section we introduced our case study system
and its architecture. We explained the used hardware and their
specific roles in the system. The architecture defines each
software element and their interconnections. As the next step
we analyze our use case with respect to possible security
breaches based on our attacker model. Therefore, we described
all possible attacks with attack trees [6], [7]. For simplicity we
omit our attack trees and describe only the found attacks in
close relation to our system architecture.

A. External weak points

In our office environment there exists only two connections
from the Living Lab system to the outer world. The costs
of defending the system against Class D attackers outweigh
the benefits. Therefore, we take into account only Class C
attackers with restricted physical access (Table II).

The two way meter in Figure 1 connects to the outer grid
and deals with the payment. An attack against this system
will harm the connection to the power supplier. When the two
way meter is under the control of an attacker it is possible
to provide wrong data to the system. This will lead to wrong
measurements, and then cause wrong control commands at
dependent subsystems.

A second external security problem is shown in Figure 2,
where a Connector coordinates the communication to external

systems. By this, we allow other external systems to query
and read measurements given by our office environment. This
connection will allow an attacker to enter and attack the
system. Eventually an attacker could also hinder others to read
measurements by an denial of service attack (DoS).

B. Internal weak points

In the previous section we used only the Class C at-
tacker from our model. Here we apply Class A, B, and C
attackers with unrestricted physical access. As internal attacks
we exclude social engineering and physical access, such as
cutting wires, rearranging connections, removing hardware,
destroying hardware, and vandalism. We assume our system
as operationally unsafe when an attacker accesses our system.
With this condition we start our analysis at the lowest level in
the system architecture (Figure 1).

At the Device Layer we use sensors to collect data and
actors to complete commands. Sensors and actuators are
mostly small devices with low CPU power and memory
amount. Additionally, most of these devices are powered by
low energy supplies, e.g., batteries or energy harvesting. These
devices only support weak authentication schemes and simple
cryptographic mechanism, due to low computation and power
support. This allows an attacker to integrate a self-crafted
device and, if necessary, masquerade it as an original one.
To avoid that, the security of these devices must be increased.
But, increasing security implies a rising energy consumption.
Otherwise, it is possible to integrate security solutions into
small devices [8]. But, these are special solutions and are
implemented in a device-specific manner. Thus, a sensor or
actuator supplier will not invest in such solutions, because
they are expensive and licensing costs may be higher than the
price of the device.

At the Communication Layer EnOcean is used to collect
all sensor data. EnOcean is a proprietary protocol, which
we use in a pre-2012 version. Every security breach at the
protocol layer will allow an attacker to tamper data or to
influence actuators by providing wrong control data. EnOcean
provides a developer kit, which allows encoding or decoding
of data. In a normal setup the developer kit is used to
program applications. However, it can be used by an attacker
to listen to communication (e.g., eavesdropping), to send data,
and to intercept messages. Replay attacks are also possible,
since EnOcean supports only an easy mechanism for nonce
generation. To increase the security, in 2012 a new protocol
version [9] was introduced and the standard was adapted
to [10]. This new protocol reduces replay attacks by inserting
a rolling code into the telegram, but this is not enforced. Based
on the protocol layer and the developer kit it is easy for an
attacker to integrate self-crafted sensors or actuators into the
system and manipulate data.

All collected data is transmitted from EnOcean, Energy
Production & Storage, Smart Meters per office, and Thermal
Management Systems to their Wrapper components and ser-
vices by TCP/IP upon a non-secure IP layer. Thus, an attacker
can use known IP exploits to attack the system. This enables

eavesdropping, data tampering, and message manipulation.
With known TCP/IP SYN flooding it is possible to generate
DoS, which will block the Building Energy Backbone and all
reliant services.

At the next level we use Apache ActiveMQ as a message
broker for building the Building Energy Backbone or Service
Bus for the device layer and the control layer. Every com-
ponent or system user exchanges data through this message
broker without authentication and authorization. This allows
an attacker to attack components, influence user settings, and
cause confusion. Besides, Apache ActiveMQ is also known to
be prone to Cross Site Scripting (XSS)1 and Cross Site Request
Forgery (XSRF)2. XSS and XSRF are computer security
vulnerabilities. XSS enables an attacker to inject client-side
scripts to bypass access controls. XSRF forces an end user to
execute unwanted actions.

The center of our ICT architecture, namely the Processing
and Control Layer, resides above the Building Energy Back-
bone (Figure 1). It consists of a database, a user interface, and
server applications, which use sensor information to calculate
control commands. We use MySQL as a database. An attacker
could use zero-day-exploits or specific attacks, e.g., Structured
Query Language (SQL) injections or buffer overflows. SQL
injections try to convince an application to run SQL code
that was not intended. When a program is writing data to a
buffer and overruns the buffer’s boundary to write in adjacent
memory, this is called a buffer overflow. After a successful
attack it is possible to generate wrong data, leak information,
or raise privileges.

An attacker could also compromise the User Interface (UI).
This allows him to manipulate environment settings and to
tamper control commands. For example the Stuxnet malware
manipulated the UI without user’s awareness. It attached
additional control commands to the later deployed source code.
In our system a malware could change settings silently before
the data is transferred to Server Applications. These settings
will be propagated to the Processing and Control Layer. Thus,
it is possible to change our system rules, influence the sensor
and actuator wrappers, and manipulate the remaining services.

On part of our server applications is the RuleSystem. Adding
special crafted rules by an attacker can harm the system, such
as executing wrong commands, changing privilege, or shutting
down the system.

VI. COUNTERMEASURES

After the security audit of our Living Lab system we
now describe the countermeasures. We improved our system
security by closing the problematic gaps. Our counter measure-
ments are closely related to our demonstrator, but are reported
here to be used by others as a blueprint to provide security to
their SOA-based prosumer systems.

1http://www.cvedetails.com/cve/CVE-2011-4905/
2http://fusesource.com/issues/browse/MB-670

A. Countermeasures against external weak points

Our Two Way Meter reads only the electricity consumption
data given by the power meter. For data integrity we use a
plausibility check. This analyzes the data whether it contains
values in a given range. Besides that, we check timestamps
to ensure that the given data is valid at the current time.
As the meter is a legacy component we have to rely on the
manufacturer’s security mechanism.

We use the Connector as a security gateway. This compo-
nent acts as a proxy for connections with the periphery of our
system. It hinders attackers to get access to the internal system,
because they must bypass the proxy first. The proxy prevents
attackers also from collecting information about the system
internals. Even a denial-of-service (DoS) attack affects only
the proxy so that the internal system is operating normally.

Additionally, the proxy generates a token for every external
client per session. This token is used as an authentication
of an external user and allows an external client to receive
system specific data. When the token is invalid or no token is
presented we shut down the communication link immediately.
We also use tokens to avoid cross site attacks. As a downside
of proxy solution it is impossible to have end-to-end commu-
nication between an internal component and an external one.

Our proxy authorizes external clients with an access control
system, which is based upon policies and user-specific trust
levels. Authorized and trusted clients can access original
system data. These clients can use the system data to collect
data for statistical reasons or for billing purposes. On the other
hand authorized, but untrusted, users are not allowed to access
original data. In this case we provide semantically correct
values by using format preserving encryption (FPE) [11]. The
client will use the data and perform its calculation without
noticing that the data only looks original. Since the client’s
data processing cannot distinguish original from masqueraded
data, clients cannot derive their trust level from the observed
data.

B. Countermeasures against internal weak points

In previous section we provided countermeasures against
external security threats. Now, we introduce our solutions
against internal security threats based on the analysis. We
proceed from the lowest architecture level, the Device Layer,
upwards.

At the Device Layer we use sensors and actuators, which
have their identifiers burned into the ROM. This makes it in-
feasible to give these devices system-specific unique identifiers
and change the identifiers in a random time period. In contrast,
changing the identifiers would allow to recognize immediately
when a device has been replaced or added to the system.
However, since we built our system mainly from components
of the shelf (COTS), we cannot apply such intrusive changes
to the device.

In other words our devices are black boxes, which have to be
used as they are provided. Thus, we decided to use wrappers
to decouple devices from the system layer. These wrappers
are used to translate device specific protocols to our common

Fig. 3. Enhanced Living Lab demonstrator architecture with components [15]

infrastructure protocols, e.g., IP. Moreover, the wrappers can
apply sanity and consistency checks to the data provided by
the black box devices, e.g., data is validated against a defined
range of expected values. Based on this behavior model and
the validation results, the system decides whether a device
operates normally or data must be discarded until the problem
has been fixed.

At the Communication layer we use the specific protocol
security of EnOcean. For the IP communication we migrated
from the plain version to the IPsec one with ESP mode [12].
This migration affected our Service Bus, which uses Java
Message Service. Here, we had to change our configuration
and implementation to send all messages over IPsec. With
this step towards an IPsec system a key management system is
needed. The introduction of a key management system will be
done in a future version of our system. To avoid TCP/IP SYN
floods and other IP or TCP/IP attacks we adopt the solutions
given in [13].

Currently, our Service Bus allows connections of unauthen-
ticated components or users and it does not prevent unautho-
rized data access. Thus, we use the Pluggable Authentication
Module (PAM) [14] framework for authentication. PAM is a
mechanism to integrate low-level authentication schemes into
applications. The authentication at the application layer can
be written independent of the underlying schemes. We imple-
mented the PAM concept by using the Java Authentication and
Authorization Service (JAAS).

After an integration of authenticated components we also
have to guarantee that system privileges are correctly eval-
uated. System privileges are realized by a role-based access
control as described in [15]. The evaluation of privileges is
done by different authorization services. We use the Apache
CXF framework, because it supports interceptors.

Interceptors [16] are similar to filters and can modify the
communication between the server and a client without their
notice. Interceptors can be activated on demand and can then
augment or change messages if necessary.

Figure 3 shows our improved architecture. The interceptors
are visualized as black boxes in front of each component
and the Service Bus is guarded by our authentication and
authorization solution.

For the security countermeasures of the Processing and

Control Layer we start with the RuleSystem. Here, we only
deal with confidentiality. Authentication is already done by
the Service Bus, while integrity will be done in the next
break. Internally, rules are clustered into three different policy
levels: high, medium, and low confidentiality. All basic system
rules are stored in the high security level. These rules are
mainly defined by system manufacturers and provide essential
functionality. It is only possible to replace or add such rules
with specific privileges, e.g., administrative authorization is
required. The medium security level only contains certified
rules, while in the low security level every user, service, or
hardware component is allowed to add or change rules.

Based on that clustering, it is possible to prioritize rules
and their activation. Our rule system checks that no rules
violate any rule in a higher security level. In addition, high
and medium level rules will not contradict each other at the
same level. Low confidentiality rules, which are provided by
arbitrary users, can be contradictory to each other and even
higher level rules. Technically, before changing the active
rule set of the rule engine, the new set is checked for non-
deterministic behavior with respect to the actuator by the SAT-
solver YICES [17]. When non-deterministic behavior is found,
the activation is prohibited.

Additionally, we introduce an anomaly-based intrusion de-
tection system (IDS). This is needed for an active scanning of
message exchange. Therefore, we can identify misbehavior,
e.g., in case an attacker tries to influence the system with
manipulated traffic and services data. Our IDS uses a system
model, which gets information from all connected agents. The
agents collect the information at specific interfaces of our
wrappers, the Connector, and the RuleSystem.

As a summary the authors are confident that the counter
measurements presented here have improved the security of
our Living Lab. However, as always in security we cannot
prove that there are no other attack points.

VII. CONCLUSION

In this paper we analyzed our prosumer system, the Living
Lab, where we used our defined attack model. In order to
define the attack model we took a closer look at common
attack motivations. We used the results of this analysis to
identify the weak points of our prosumer system. Finally,
counter measurements have been identified and concrete im-
plementations and extensions to the system architecture have
been proposed. Hereby, we have demonstrated the feasibility
of building and enforcing practical security for prosumer
systems.

ACKNOWLEDGMENT

The authors would like to thank the EIT ICT Labs for the
support to build up the demonstrator.

REFERENCES

[1] D. Koss, D. Bytschkow, P. Gupta, B. Schatz, F. Sellmayr, and
S. Bauereiss, “Establishing a smart grid node architecture and demon-
strator in an office environment using the SOA approach,” in Software
Engineering for the Smart Grid (SE4SG), 2012 International Workshop
on, june 2012, pp. 8 –14.

[2] J. D. Howard and T. A. Longstaff, “A Common Language for Com-
puter Security Incidents,” Sandia National Laboratories, Albuquerque,
New Mexico 87185 and Livermore, California 94550, Samdia Report
SAND98-8667, October 1998.

[3] R. J. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems, 2nd ed., ser. Wiley computer publishing. Wiley,
2008.

[4] J. Chinnow, K. Bsufka, A. Schmidt, R. Bye, A. Camtepe, and S. Al-
bayrak, “A simulation framework for smart meter security evaluation,” in
Smart Measurements for Future Grids (SMFG), 2011 IEEE International
Conference on, nov. 2011, pp. 1 –9.

[5] N. Mead, E. Hough, and T. S. II, “Security Quality Requirements
Engineering,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania,, Technical Report CMU/SEI-
2005-TR-009, 2005. [Online]. Available: http://www.sei.cmu.edu/
library/abstracts/reports/05tr009.cfm

[6] B. Schneier, “Secrets and lies - digital security in a networked world:
with new information about post-9/11 security.” 2004, pp. I–XIII, 1–414.

[7] ——, “Attack trees: Modeling security threats,” Dr. Dobb’s journal,
December 1999.

[8] M. Vogt, A. Poschmann, and C. Paar, “Cryptography is feasible on 4-bit
microcontrollers - a proof of concept,” in International IEEE Conference
on RFID, Orlando, USA, 4 2009, pp. 267–274.

[9] E. GmbH, Security of EnOcean Radio Networks, v 1.2 ed., Kolpingring
18a, 82041 Oberhaching, Germany, Juli 2012.

[10] ISO/IEC 14543-3-10:2012: Information technology – Home Electronic
Systems (HES) – Part 3-10: Wireless Short-Packet (WSP) protocol op-
timized for energy harvesting – Architecture and lower layer protocols,
International Organization for Standardization Std., 2012.

[11] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers, “Format-
Preserving Encryption,” IACR Cryptology ePrint Archive, vol. 2009, p.
251, 2009.

[12] S. E. Frankel, K. Kent, R. Lewkowski, A. D. Orebaugh, R. W. Ritchey,
and S. R. Sharma, “Sp 800-77. Guide to IPsec VPNs,” National Institute
of Standards and Technology, Gaithersburg, MD, United States, Tech.
Rep., 2005.

[13] M. Atighetchi, P. Pal, F. Webber, R. Schantz, C. Jones, and J. Loyall,
“Adaptive Cyberdefense for Survival and Intrusion Tolerance,” IEEE
Internet Computing, vol. 8, no. 6, pp. 25–33, Nov. 2004. [Online].
Available: http://dx.doi.org/10.1109/MIC.2004.54

[14] V. Samar, “Unified login with pluggable authentication modules
(PAM),” in Proceedings of the 3rd ACM conference on Computer and
communications security, ser. CCS ’96. New York, NY, USA: ACM,
1996, pp. 1–10. [Online]. Available: http://doi.acm.org/10.1145/238168.
238177

[15] L. Cito, “Design and Implementation of a Right and Role Management
System for the fortiss Smart Energy Living Lab,” 2012, bachelor thesis.

[16] J. Ramachandran, Designing Security Architecture Solutions. New York,
NY, USA: John Wiley & Sons, Inc., 2002.

[17] B. Dutertre and L. de Moura, “The yices smt solver,” Computer Science
Laboratory, SRI International, Tech. Rep.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

