
CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 11

Distributed
Quality of Service

Dave Bakken
http://www.eecs.wsu.edu/~bakken/

Cpt. S 464/564 Lecture
December 6 &11, 2000

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 22

Outline of Talk

• QoS: The problem, and basic definitions
• QoS Implementation Issues
• Quality Objects (QuO)
• QuO Case Study
• Future QoS directions

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 33

The Problem: Wide-Area Distributed Applications
Are Hard to Build and Maintain

• WANs are dynamic, unpredictable, and unreliable
• Hosts span a wide range of platforms
• Servers provide a variety of services and interfaces
• Changing requirements and configurations
• Complex interactions

Client just wants predictable behavior (as much as possible)!
Client programmer does not want to deal with managing the above details!

Host1
Client1

Host2

Client2

Host4

Client3

ObjectResource Constrained
Wide Area Network LANHost3

Client4

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 44

The Problem (cont.)

• Many distributed systems are too expensive to build and maintain, and
– Cannot adapt sufficiently at runtime
– Cannot evolve over lifetime to handle new requirements or work in new

environments
• One reason: no systemic support for building distributed systems using

shared resources
• Key challenge: how to create predictable distributed systems application

programs which
– Can operate acceptably when usage patterns or available resources vary

over a wider spectrum and with much less predictability
– Can be modified in a reasonable amount of time
– Are reasonably affordable

• Needed: Middleware which makes a distributed application’s hidden
quality of service assumptions (usage, resources) explicit, to
– Help make the environment more predictable to the app, and
– Help the app. to adapt when predictability fails
– Note: this involves both distributed systems and software engineering issues!

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 55

QoS == the “how” to do the functional (IDL-described)
“what”

• IDL tells “what” can or should be done
– void sort(inout long a[], in long n);

– long lookup(in string name);

• Quality of Service (QoS) is the non-functional “how” to do the above “what”
– timeliness (delay, jitter)
– throughput (volume)
– availability/depenability
– security (integrity, confidentiality)
– cost
– precision
– accuracy

• No standard definition(s) of QoS yet, but progress being made towards
implementing multiple QoS properties (a.k.a. QoS dimensions -- the “what”
items: timeliness, etc. above) in one framework

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 66

QoS Basic Definitions (cont.)

• Premise 1: Different levels of service (not “all or nothing”) are possible
and desirable under different conditions and costs

• Premise 2: The level of service in one dimension must be coordinated
with and often traded off against the level of service in another

• Premise 3: Keep the functional and non-functional separate if possible
– Let them be able to change independently (reuse)
– Let them be managed by different people (QoS specialist, domain specialist)

• Question: How aware should client applications be of QoS:
– Unaware (totally handled by something else)
– “Awareness without pain”
– Immersion (has to handle large amounts of QoS details and issues etc)

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 77

Different Views of QoS

• LAN multimedia with no adaptivity
• Bill Gates: end-user satisfaction
• “World Wide Wait”
• ISPs
• Power users
• IT Managers
• Dilbert Managers
• HP and other vendors (IWQoS ‘97, WebQoS, …)
• Builders of Big and Critical Systems

– Cannot manage the “non-functional” behavior of their systems well
– Cannot ride the technology curve over the lifecycle!
– Examples

• DARPA ITO Quorum program and Navy’s DD-21 ship program
• Boeing (Commercial, Phantom Works, other)

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 88

QoS for Users: Adapting to Worsening Conditions
or Different Configurations

• Program can be empowered to automatically adapt to worsening
conditions (balance of supply of to demand on current shared resources)

Green
Yellow

Red
Black

Worsening
Conditions

Condition Conferencing Partic ipants Info Service
Green Full color multimedia Key and useful participants Quick DB queries
Yellow B&W multimedia Key and useful participants Acceptable DB queries
Red Audio Key participants only Acceptable DB queries
Black None None None

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 99

QoS for Service Providers (and their HW suppliers):
Multiple Levels of Service Enable Differentiated Products

• 3rd class: Best-effort
• 2nd class: Statistical performance guarantees
• 1st class: Absolute performance and availability guarantees

1st
Class2nd

Class3rd
Class

Increasing Service
and Price

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 1010

Distributed object middleware with QoS extensions is a
powerful abstraction layer on which to build applications

Collaborative
Planning

Diverse applications for
geographically dispersed,
heterogeneous environments –
not just multimedia apps!

Distributed objects are the first
abstraction layer that unifies
CPU, storage, and
communications

This interface needs to be
hidden from applications

• It is too complicated
• It is changing too quickly

Security
Ethernet

TCP/IP QoS

ATM
RSVPMulticast

WorkFlow

Data Mining

CORBA + QoS

Replication

WWW E-business

Simulation

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 1111

QoS is Not Just Multimedia over a LAN or MAN

Schedule Map Face ScheduleMapFace

Scheduling
Algorithms

Scheduling
Algorithms

Shared Plans
Best-Effort

See “ARPA-Rome Planning Initiative” IEEE Expert, Feb 1995

OpenMapTM
Shared Workspace

PredictableOpenMapTM

Video
Conf.

Video
Conf.

Video Real-Time
Audio

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 1212

Outline of Talk

• QoS: The problem, and basic definitions
• QoS Implementation Issues
• Quality Objects (QuO)
• QuO Case Study
• Future QoS directions

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 1313

“Awareness without Pain” I:
Users’ and Application Programmers’ Awareness

• Users and application programmers need to be aware of their demand
for resources, and be able to change!

• Users/applications must understand the utility of their demand
– know their usage patterns and QoS requirements

• Users/applications must be able to change demand based on volatility
in the environment
– need to be able to determine utility of additional resources, and ability to do

without
• System infrastructure will improve its “transparency” over time, and its

effectiveness of masking variability

Resources

Utility Utility

Resources

Current Utility Curve Desired Utility Curve

“Broken” “Works” “Working
Range”

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 1414

“Awareness without Pain” II: The User Should See a
“Graceful Degradation” of the App, not a Hard Failure

• Functions marked with cost cues Retrieve
World View
US View
City View

Retrieval will take 1 hour

OK Cancel

15 Minutes left for Retrieval

Cities (10% of Records)
Boston
San Diego
Palo Alto

• Middleware asks for more advice

• Application tolerates aborted
operations with partial results

• Middleware predicts long response
times

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 1515

• Simple (single-) application management user interfaces can help

“Awareness without Pain” III:
Needed: Higher-level QoS APIs and User Interfaces

QoS developer provides multiple
implementations trading off
multiple properties and resources,
with a high-level mapping

• Most programmers and users of advanced distributed applications can’t
deal with QoS because they

– Are not very sophisticated in distributed systems issues (let alone QoS)
– Have enough to do already providing/using the applications’ main job without

worrying about QoS
• QoS contracts can give a high-level API for programmers to use, with the

help of QoS framework implementers & QoS developers

– User feedback:

– User control:

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 1616

QoS-Aware Resource Management I:
Many Mechanisms Give the Correct Functional Solution, But

Are Appropriate for a Small Set of System Conditions

Allocation
Algorithms

QoS
Performance
Availability
Security
…

Utilization
Cost
Ownership

Resources
Capacity
Reliability

Usage Pattern
Arrival Rate
Priority

Applications
know Their Usage Pattern
and QoS Requirements

System Managers
setup resources and
set usage polices

Mechanism
given usage pattern
and resources, yield
QoS and Utilization

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 1717

QoS-Aware Resource Management II: Control over
Resource Allocation is Useless without

Information on Usage Patterns and QoS Requirements

Appropriate
Control BandQualitative

Quantitative

Ad Hoc

Information Detail

Amount of Control
Little Lots

Current
Dist. Syst.
Practice

Comm QoS
Multimedia

R+DWaste of Time

Controlling
on Noise

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 1818

Application-Level Adaptation Choices
• How can distributed applications become more predictable and adapt

to changing system conditions?
– Control and Reserve Resources
– Utilize alternate Resources (redundancy)
– Use an alternate mechanism (with different system properties)
– Take longer

• reschedule for later
• tolerate finishing later than originally expected

– Do less
• Note the multiple possible layers of adaptation:

– Client application
– Above the ORB core on client-side
– Inside the ORB
– Above the ORB core on server-side
– Server

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 1919

QuO’s Philosophy is to Support Monitoring of System
Conditions and Adapting to Changes at All Levels

• QoS middleware needs to integrate disparate information
(“QoS meta-data”) over:
– providers

• QoS API+middleware designer
• QoS contract designer
• application program (client)
• remote object
• operations staff (configure resources)
• network management information, …

– locations
• client host
• remote object host
• network

– times
• language design
• application development
• application initialization
• contract setup
• change in network conditions
• invocation, …

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 2020

QuO’s Philosophy is to Support Monitoring of System
Conditions and Adapting to Changes at All Levels(cont.)

• Guarantees/correctness versus Advice/Improvement for
Predictable Behavior
– It is not feasible to provide absolute “guarantees” over WANs with

an arbitrary mix of hosts, resources, operating systems, etc.
– It is useful to be able to

• Organize information about an application’s requirements and expected
usage

• Reserve as much of the end-to-end resources as possible to make the
application more predictable (lower variance)

• QoS contracts are crucial for adaptivity, i.e., regions
representing state of QoS expectations vs. actual
conditions

• Need to provide for a new role -- QoS engineer -- to help
simplify the application developer’s task

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 2121

Outline of Talk

• QoS: The problem, and basic definitions
• QoS Implementation Issues
• Quality Objects (QuO)
• QuO Case Study
• Future QoS directions

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 2222

QuO History

• BBN Distributed Systems Dept had lots of experience since late 1970s
– Distributed Applications over WANs
– Middleware to support above (CORBA-like Cronus/Corbus)

• New Rome Lab Contract “Distributed Computing over New Technology
Networks” for a study project, started in 8/1994
– New networking technologies coming….
– But how can they help the application level?
– (I was hired for this, right after PhD)

• Candidate technologies: multicast and reservations/QoS...
• QuO architecture requirements and initial design: Zinky and Bakken and

Schantz (1995-6), a handful of others since
• Led to 6+ DARPA ITO and ISO QuO contracts, and still going strong!
• Used at a number of universities & companies to integrate their QoS

research (CMU, GaTech, U. Oregon, U. Illinois, Wash. U. St. Louis.,
Columbia U, Trusted Information Systems(TIS), Boeing,...)

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 2323

Simplified Common System Model

Bandwidth
Control

Status
Collection

Configuration
Management

Client Host Network Servant Host

Resource
Managers

Resource
Managers

Operating System Operating System

Logical Method CallsApplications
Client

Applications
Object

Network Based Services

Property
Managers

Policy
Managers

...

Event
Services

Name
Services ...

Middleware Middleware
QoS Adaptive LayerQoS Adaptive Layer

Distributed Objects
COTS ORB
Schedulers

Distributed Objects
COTS ORB
Schedulers

Specialized Protocols
Group Communications

Specialized Protocols
Group Communications

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 2424

Adaptive QoS Interface and Control

Bandwidth
Control

Status
Collection

Configuration
Management

Client Host Network Servant Host

Resource
Managers

Resource
Managers

Operating System Operating System

Logical Method CallsApplications
Client

Applications
Object

Network Based Services

Property
Managers

Policy
Managers

...

Event
Services

Name
Services ...

Middleware Middleware
QoS Adaptive LayerQoS Adaptive Layer

Specialized Protocols
Group Communications

Specialized Protocols
Group Communications

Distributed Objects
COTS ORB
Schedulers

Distributed Objects
COTS ORB
Schedulers

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 2525

Simplified DOC (CORBA) Runtime Components

Client Network Server

Application
Developer

Middleware
Developer

Logical Method Call Client

ORB Proxy

COTS ORB

Object

ORB Skel.

COTS ORB

Network

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 2626

The Quality Objects (QuO) Framework Supports
Development of Adaptive Distributed Applications

QuOQuO

The QuO framework provides
• Separation of concerns between software functional properties and QoS needs

•Specify QoS desires, implementation alternatives separately from the functional application

• Monitor and measure QoS in the system
•Consistent interfaces for QoS measurement and resource management control

• Facilities to enable application- and system-level adaptation

QuO is a reuseable middleware framework that provides a common
approach to adaptable QoS suitable for applying to any number of QoS
dimensions

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 2727

Contracts Summarize System Conditions into Regions
Each are Appropriate for Different Situations

Panel From QuO GUI

Abundant
Resources

Low
Network
Capacity

Low
Server
Capacity

Unknown
Bottleneck

• Contract defines nested regions of possible states based on measured
conditions

• Predicates using system condition objects determine which regions are valid
• Transitions occur when a region becomes invalid and another becomes valid
• Transitions trigger adaptation by the client, object, ORB, or system

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 2828

A QuO application contains additional components (from
traditional CORBA/DOC applications)

• Contracts summarize the possible states of QoS in the system and
behavior to trigger when QoS changes
– Regions can be nested, representing different epochs at which QoS

information becomes available, e.g., negotiated regions represent the levels of
service a client expects to receive and a server expects to provide, while reality
regions represent observed levels of service

– Regions are defined by predicates over system condition objects
– Transitions specify behavior to trigger when the active regions change

• System condition objects are used to measure and control QoS
– Provide interfaces to system resources, client and object expectations,

mechanisms, managers, and specialized ORB functions
– Changes in system condition objects observed by contracts can cause region

transitions
– Methods on system condition objects can be used to access QoS controls

provided by resources, mechanisms, managers, and ORBs
• Delegates provide local QoS state for remote objects

– Upon method call/return, delegate can check the current contract state and
choose behavior based upon the current state of QoS

– For example, delegate can choose between alternate methods, alternate
remote object bindings, perform local processing of data, or simply pass the
method call or return through

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 2929

QuO adds QoS control and measurement into the DOC
remote method call

Application
(Client or Server)

Application
Developer

Middleware &
Mechanism
Developers

Keys Code/HW “Owned” by
Developer or Provider:

COTS

Logical Method Call
Client Object

ORB Proxy ORB Skel.

Network
(and GWs)

Specialized ORB

Mechanism/Property
Manager

QoS
Mechanism

Specialized ORB
(COTS or Research) (COTS or Research)

SysCond SysCond

QoS
Developer

QuO

Contract
SysCond

SysCond SysCond

Contract

SysCond

SysCond

Delegate Delegate

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 3030

The QuO Toolkit provides tools for building QuO
applications

• Quality Description Languages (QDL)
– Support the specification of QoS contracts (CDL), delegates and

their adaptive behaviors (SDL), connection, creation, and
initialization of QuO application components (ConnDL)

– QuO includes code generators that parse QDL descriptions and
generates Java and C++ code for contracts, delegates, creation, and
initialization

• QuO Runtime Kernel
– Contract evaluator
– Factory object which instantiates contract and system condition

objects
• System Condition Objects, implemented as CORBA objects

CORBA IDL

Code
Generators

Code
Generators

Contract Description
Language (CDL)

QuO RuntimeQuO Runtime

Structure Description
Language (SDL)

Delegates Contracts

Connector Setup
Language (CSL)

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 3131

QuO Software Development Steps, Tools, and Modules

Keys
Human-

Written Code
(LABEL)

Computer-
Generated

Code

Application
(Client or Server)

QoS
MechanismQuOTool

Code “Owned”
by Developer
or Provider:

COTS

Property Package
(PDCx)

[OPTIONAL!!!]

Quogen

Java Compiler

QuO Client-
Side Library

Client
Connector

Client
Contract(s)

Client
Delegate(s)

Stubs & Skeletons

IDL Compiler

….

Java/C++
Compiler

Server
Application

A
Coding
“Step” or
“Wave”

QuO
Runtime
Library

SysCond
Implementations

(QDC6)

Client
Application

Java/C++
Compiler

C

Server Adaptive Behavior
(Callback Functionality)

(SDC2)

Server Callback IDL
(QDC1s)

Server CDL(S)
(QDC3s)

B’

C’

B’

Client Functionality
(CDC1)

Server IDL
(SDC0)

Server Functionality
(SDC1)A

A A’

Client CDL(S)
(QDC3c)C

Client Adaptive Behavior
(Callback Functionality)

(CDC2)

Client Callback IDL
(QDC1c)

SysCond IDL
(QDC2)

B B

C

Client SDL(s)
(QDC4c)

Client CSL
(QDC5c)

Client
Connector
Wrapper
(QDC7c)

A

C

C

C

or

Quogen

Server
Connector

Server
Contract(s)

Server
Delegate(s)

Java Compiler

QuO Client-
Side Library

Stubs & Skeletons

IDL Compiler

….

Server SDL(s)
(QDC4s)

Server CSL
(QDC5s)

Server
Connector
Wrapper
(QDC7s)

A’
or

C’

C’

C’

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 3232

The QuO Gateway Manages IIOP Connections and
Interfaces to Protocols which Manage QoS

• To the “Client” ORB, the QuO Gateway looks like the object
• To the “Server” ORB, the QuO Gateway looks like a client
• The two ends of the gateway are on the same LAN as the Client/Object

and may be on the same host
• CORBA Objects are used to Control QuO Gateway halves, but do not

touch in-band communication
– Different for AQuA and DIRM, later some merging will occur...

IIOP
Glue

Specialize Protocols
(Maestro Group Comm.

for AQuA;
RSVP for DIRM)

IIOP
Glue

Control

Client Server

ControlWAN

IIOP IIOP

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 3333

QuO Gateway Overview
(Functional Path)

• We can (and do! and must!) rewrite ObjKey and ReqID; we just have to restore them when we pass them back to the
appropriate ORB so it can use them to demux the reply, lest the poor ORB choke on it….

• Mappings between {Process,Host} and GWs is flexible (~TBD):
– DIRM may want one per LAN/cluster to aggregate bandwidth
– AQuA may want one per client (replica) process or even every delegate/contract inside it
– OIT/Survivability/Security will have other constraints/preferences no doubt...

• Some Naming issues to be resolved to describe the exact flexibility; mainly engineering issues with no show stoppers
• Many research issues regarding the implications of different GW mappings on availability and performance/scalability

IIOPGW1

“Client”A

Maestro (Isis-like) Group
Comm. Substrate over UDP/IP

IIOPGW2

AQuA
GW1

AQuA
GW2

RequestMsg
Hdr
ObjKey
Body
ReqID

TAG_INTERNET_IOR
Dest Host
Dest Port
DestKey (Original ObjKey)

DIRM
GW1

DIRM
GW2

DestKey

DestGrp

RequestMsg
Hdr
ObjKey
Body
ReqID

DestGrp

MaestroMsg
RequestMsg

Hdr
ObjKey
Body
ReqID

ReplyMsg
Hdr
ObjKey
Body
ReqID

DestKey

DestGrp

IIOP over TCP/IP

Future
GW1

Future
GW2

More stuff (AQuA+DIRM, MOM,
email, …)

QuO Delegate

ORB Proxy &
ORB Core

“Client”B

QuO Delegate

ORB Proxy &
ORB Core

“Server”C

QuO Delegate

ORB BOA/POA &
ORB Skeletons

“Server”D

QuO Delegate

ORB BOA/POA &
ORB Skeletons

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 3434

Layers of Managers Integrate Reconfiguration Policies
at Different Levels and from Different Sources

• Functional Info (solid line) and “QoS meta-data” (dashed line)
• Translation between Manager Layers
• Centralized view vs. edge view

Client

Application
Manager

QuO

Object

QuO

Resource
Manager

Middleware
Manager

Specialized/
Wrapped ORBs

Host Host

Logical Method Call With QoS Contract

Specialized/
Wrapped ORBs

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 3535

Appl.
Client #1

QuO Contracts & SysConds
involving Property X

1
2

3

1

3

2

Host A

QuO Object
Delegate

Canonical QuO Arch. for Generic Property Package X

{Adaptation
by
App. Client

{Adaptation
by QuO
Above ORB

{Adaptation

Below ORB

{Adaptation
by App.
Object

Network Services
(RSVP, Group. Com, …)

Status
Services

CORBA/ DCOM

CORBA/DCOM

Status
Services

Reconfig
Mech.

Status
Services

Reconfig
Mech.

Reconfig
Mech.

{Adaptation
by QuO
Above ORB

Property X
(Middleware)

Manager:

Maintains
Property X

of
some objects

for
some clients

3

5

2(Property X
Requested)

(Reconfig
Mechanisms)

(Status
Info) 4

(Property X
Delivered)

Host C

Other
Status

Services

Other
Reconfig

Mechanisms

5 4

(Other
Clients,
Objects,

Contracts..)

…

Object #1
Impl.

1
Object #2

Impl.
Reconfig

Mechanisms
Status

Services

5 4

QuO Object
Delegate

Host B

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 3636

Outline of Talk

• QoS: The problem, and basic definitions
• QoS Implementation Issues
• Quality Objects (QuO)
• QuO Case Study
• Future QoS directions

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 3737

Multiple Levels of QuO Coordination are Required!

RTARM

Browser
Application

JTIDS

Link-16 Simulation Software

DIS Network Tool

Collaboration
Client

Application
Delegate

Progress
Contract

VTFCollaboration
Server

OSA C3I
Simulation

QoS Management

ORBexpress

Link-16 Simulation Software

DIS Network Tool

Net RM

VTF Mgr

TAO ORB
TAO Adaptive

Scheduler
(Ground demo only)

© 2000 BBN Technologies

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 3838

RTARM

Browser
Application

JTIDS

Collaboration
Client

Application
Delegate

Progress
Contract

VTFCollaboration
Server

OSA C3I
Simulation

QoS Management

ORBexpress

Link-16 Simulation Software

DIS Network Tool

Net RM

Boeing
BBN

Oregon Graduate Institute
Washington University

HTC

VTF Mgr

TAO ORB

C2C2 FF--1515

TAO Adaptive
Scheduler

(Ground demo only)

Weapon Systems Open Architecture (WSOA)
Boeing Phantom Works, St. Louis

Link-16 Simulation Software

DIS Network Tool

© 2000 Boeing

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 3939

WSOA QoS Control Flow

Early

On Time

Late

Normal

CPU Degraded

CPU Degraded

Normal

Normal

QuO • Manages application progress
– Early, On-Time, or Late for each

operation
Q

S

Contraction, Expansion

© 2000 Boeing

• Defines operating regions
– Range of rates for each operation

• Also handles image tiling (not shown)

RT-ARM
• Manages QoS parameters within the

given operating regions
– Adjust rates within defined ranges

for each operation

System
Resource
Manager

Processor
Resource
Manager

Feedback Adaptation

Q

S
• Reports when operating region is

violated (or will be violated)

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 4040

WSOA QoS Control Flow (cont’d)

RT-ARM
• Adjusts current available dispatch rate

ranges for each operation

TAO Scheduler
• Binds specific rate according to RT-

ARM supplied admission control policy

Processor
Resource
Manager

TAO Scheduler

© 2000 Boeing

• Provides admission control policy
• Queries TAO Scheduler for monitored

execution time results

• Queues operations and enforces hybrid
static/dynamic scheduling policy

• Makes available to RT-ARM the actual
execution times of each scheduled
operation

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 4141

Outline of Talk

• QoS: The problem, and basic definitions
• QoS Implementation Issues
• Quality Objects (QuO)
• Future QoS directions

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 4242

Future QoS Directions
• Moving up towards application’s programming level

– Design patterns and libraries (of contracts etc.) can help…
• More “multi-dimentional QoS” supported

– Bandwidth “reservation”: performance
– replication+caching : availability
– Security
– Mobile/wireless: minimize power consumption and memory footprint

• Broadening from just the classical multimedia & http apps
– VPNs
– Collaboration
– Virtual Reality
– Application managers with QoS

• More OS-level substrates to choose from
– Intserv & Diffserv combined, eventually across domains / ISPs
– MS QoS (W2K has hooks for it…)

• Industry-Academic partnerships
– Industry does not have time/labor to experiment/evaluate research substrates
– Academics don’t have time to learn industry products in depth

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 4343

BACKUP SLIDES FOLLOW

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 4444

Contracts summarize system conditions into negotiated
and reality regions and define transitions between them
• Negotiated regions represent the expected behavior of client and server objects, and

reality regions represent observed system behaviors
• Predicates using system condition objects determine which regions are valid
• Transitions occur when a region becomes invalid and another becomes valid
• Transitions might trigger adaptation by the client, object, ORB, or system

Measured capacity >= 10
As_expected:

Insufficient_resources:
Measured capacity < 10

Normal:
Expected capacity >= 10

Degraded:
Expected capacity < 10
Expected capacity >= 2
As_expected:

Extra_resources:

Measured capacity < 10
Measured capacity >= 2

Measured capacity < 2
Insufficient_resources:

Measured capacity >= 10

Unusable:
Expected capacity < 2

As_expected:

Extra_resources:

Measured capacity < 2

Measured capacity >= 2

= NegotiatedRegion

= Reality Region

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 4545

System Conditions Project a Value to the Application, But
also Must Maintain the Value

Simple
Value Measured

Value
(Sensor)

Composed
Value

Application
Developer

Qoskateer

Mechanism
Developer

QuO Kernel

Control
Value

Specialized ORBs or Services

RSVP
Controller

Control
Value

Status
Value

CORBA Object

Device
Status

Service

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 4646

Contracts Need to integrate with System Condition
Probes and Object Delegates

ORB
Delegate

Expected
Throughput

Capacity

Measured

Throughput

Capacity

Idleness

Max_invoc
Max_idle

Contract Object
Allocated

Free

Normal

Insufficient Resources

Client Over Limit

Client Asleep

Normal

Extra Resources

Client Not Sleeping

Callback

MyContract

MyLower

Object Ref

Idle
Timer

Rate
Detector

Value

Value

Value

Object
Delegate
(expanded)

Client

Environment

Reference

System
Condition

Region

Attribute
Keynetwork

Object

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 4747

Delegates Change Their Behavior Based on Their
Contract’s Current Regions

Dispatch

Contract
Pa

ss
 T

hr
ou

gh

B
lo

ck

Sh
ap

e

PreMethod
Measurements

Method Call

Lower Method Call

Current Regions

Result

Lower Result

SysCond

SysCond

Current Regions

PostMethod
Measurements

Delegate

Alternative
Behaviors

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 4848

SDL code that supports choosing between replicated and non-replicated
server objects

delegate behavior for Targeting and Replication is

call calculate_distance_to_target :

region Available.Normal :

pass to calculate_distance_to_target_multicast;

region Low_Cost.Normal :

pass to calculate_distance_to_target_multicast;

region Available.Low :

java_code { System.out.println(“Remote call would fail”);

retval = -1; };

cplusplus_code { cerr << “Remote call would fail”);

retval = -1; };

return calculate_distance_to_target :

pass_through;

default : pass_through

end delegate behavior;

• SDL supports choosing between methods, run-time binding, and
embedded Java or C++ code.

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 4949

AQuA Handlers: Design Space has Many Variables!

• Client group has leader or has no leader
– how much do you trust client group?

• Server group has leader or has no leader
• Multicast strengths (total, causal, FIFO, …) used in connection group
• Which members of client and server groups are in connection group
• Location and algorithm for voting
• How many rounds of multicasts (e.g., for byzantine)
• Location of buffering of requests/replies

– Caveat: not shown in following diagrams
• Also: interaction with handler “upstream” or “downstream” in a nested call

– A B C: handlers A B and B C need to be managed together, for
reasons of performance and possibly correctness

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 5050

AQuA Scheme1 Request Steps

(Leader)

C-Rep1
ORB

GW

GW

ORB
S-Rep1

C-Rep2
ORB

GW

GW

ORB
S-Rep2

C-RepN
ORB

GW

GW

ORB
S-RepM

...

...

1
2
4

5

6

7

1
2

5 6

7

1
2

5

7

5

3 33 5 5

6

}

}

GWs in
Client
Group

GWs in
Server
Group

(All GWs are in
Connection Group)

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 5151

AQuA Scheme1 Reply Steps
(Leader)

C-Rep1
ORB

GW

GW

ORB
S-Rep1

C-Rep2
ORB

GW

GW

ORB
S-Rep2

C-RepN
ORB

GW

GW

ORB
S-RepM

...

...
(Leader)

8

10

11

14

8

11

12

14

8

11

14

11

9 9

1313 13 }

}

GWs in
Client
Group

GWs in
Server
Group

(All GWs are in
Connection Group)

11 11

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 5252

Scheme1
Arch.
(a tad

obsolete)

IIOPGW
(*.c, iiopgw.h, its main routine is in aquagw.c)

SendRequest()

Member of
object/S/1

Member of
connect/S/R/1

GW_Sequencer

GW_HandlerDict

GW_ReqIDSet

GW_Dispatcher

CORBA GIOP request

DeliverReply()

Dispatch()

Request() Reply()

CORBA GIOP reply

GW_Message =
GW_Wrapper +

IIOPGW_Message

GW_Scheme1_Handler

Sender (“client”) Side Receiver (“Server”) Side

IIOPGW
(*.c, iiopgw.h, its main routine is in aquagw.c)

SendRequest()

Member of
object/R/1

Member of
connect/S/R/1

GW_WrapperSet

SendReply()

GW_Dispatcher

CORBA GIOP reply

DeliverRequest()

Dispatch()

Request() Reply()

CORBA GIOP request

Implements the active protocol resembling that in Proteus design doc. Server-side Ldr GW votes on requests (H2), receiver-side GW ldr votes on replies (H6). Assumes clients have no asynch. requests
outstanding, so a gap in a reply sequence in H6 means a one-way request occurred (need trickier data structures to handle asynch replies: B,<n1,n2…,nk>.) Void where prohibited by law. YMMV.

D2

D3

D4

D5

1 2 23

H4

D6

D7D10

D11

D12

D13

H5

55

D14

H8

D15

1: pt2pt ToLdr

D1 D16 D9 D8

2: IfLdr 3: IfLdr

4

4: pt2pt ToLdr 5: IfLdr6: IfLdr

6

H1

H2 H3c

H6

GW_Message =
GW_Wrapper +

IIOPGW_Message

H3a

GW_Scheme1_Handler

H2: IfLdr
VOTE Req

H6: IfLdr
VOTE Rep

H3b
H3d

H7c

H7a

H7b

CptS 464/564 Fall 2000 Distributed QoS: © 2000 David E. Bakken 5353

D1. Sender (“client”) ORB delivers IIOP msg.
D2. S-IIOPGW enqueues msg
D3. Dispatcher dequeues message
D4. Dispatcher looks up next sequence and calls Request()
D5. Dispatch handler looked up and dispatched to; stores local ReqID

H1. GW_Scheme1_Handler::SendRequest() does
a. S-GWs send pt2pt msg #1 to Ldr S-GW
b. NonLdr S-GWs buffer msg #1 (to be deleted in H3b).

H2. When recv msg #1, Ldr S-GW votes on requests, (in this case sends just the first one), and sends chosen request in msg #2 to connection group unordered
H3. When receive msg #2

a. All NonLdr R-GWs store msg #2 in buffer (to be deleted in H4b)
b. NonLdr S-GW delete msg #1 from buffer (stored in H1b)
c. Ldr R-GW sends totally-ordered msg #3 to R-GWs to order across all client groups

H4. When receive msg #3,
a. R-GWs call Dispatcher->DeliverRequest()
b. NonLdr R-GW deletes msg #2 from buffer (stored in H3c)

D6. Dispatcher places invocation msg in queue for IIOPGW
D7. IIOPGW removes msg from queue
D8. IIOPGW delivers msg to Receiver (“server”) ORB
D9. “server” ORB sends back IIOP reply msg to R-IIOPGW
D10. R-IIOPGW queues reply message for R-GW
D11. R-GW dequeues reply msg
D12. R-W calls dispatch->Reply()
D13. R-GW Dispatcher->Reply() notes handler# from Msg, looks up wrapper, and calls Handler1->SendReply()

H5. GW_Scheme1_Handler::SendReply() does
a. R-GWs send reply msg #4 pt2pt to Ldr R-GW
b. NonLdr R-GW buffers msg #4 (to be deleted in H7a)

H6. When msg #4 arrives Ldr R-GW votes on replies and sends chosen reply (in this case the first msg #4 with this seq#) in msg #5 unorderd to connection grp. Discards
the rest of the replies with same seq#. Gaps in seq# may occur here, but if so this is due to a one-way request, since for now we assume no asynch client requests.

H7. When msg #5 received
a. NonLdr R-GW can delete buffered reply msg #4 (stored in H5b) (note Ldr R-GW does not receive it because unorderd; else it would just discard it)
c. Ldr S-GW sends reply msg #6 ordered multicast to all S-GWs
c. NonLdr S-GW stores reply msg #6 in buffer (deleated in H8b)

H8. When msg #6 arrives,
a. S-GWs call dispatcher->DeliverReply() with this reply message.
b. NonLdr S-GWs delete msg #5 from buffer (stored in H7c).

D14. S-GWs DeliverReply() queues msg for IIOPGW
D15. IIOPGW dequeues message
D16. IIOPGW sends IIOP message to sender “client” ORB

Scheme1 Steps
(a tad obsolete)

