
CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 11

CORBA-II
Prof. David Bakken

Cpt. S 464/564 Lecture

Sept 20, 2000

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 22

Administrative Items
• Handouts today

– These slides
• Notes on Project1

– PROG and REF copies now in ETRL 301, two sets per language
– You can ssh into the hosts in ETRL 301, but don’t do until Project #2….
– There will be other students running their programs at the same time, so always prefix

any “naming string” with your username
• E.g., “_bakken_BankManager”, not “BankManager”
• E.g., “/_bakken_bank_agent_poa”, not “/bank_agent_poa”
At least, do this if you don’t want you (and others) to have very interesting debugging sessions…

– You will be required to annotate a printout of IDL-generated code for a proxy, and turn
it in, just like I handed out last week (Bank_c_chopped.*)

• Oval around names of module or interface
• Rectangle around names of methods
• Underline parameter names and return values

Keep it to one page for each of the 2 files (.cpp and .hh)
• Note: some info in some of these slides were borrowed from excellent slides by

Doug Schmidt and the very good Hennig and Vinoski book “Advanced CORBA
Programming with C++”

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 33

Outline
• CORBA Features and Hooks
• Portable Object Adaptor (POA)

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 44

Major CORBA Design Principles
• Separation of interface and implementation

– Clients depend on interfaces, not implementations
• Location transparency

– Service use is orthogonal to service location
• Access transparency

– Invoke CORBA objects just like local ones
• Typed interfaces

– Object references are typed by interfaces
• Support of multiple inheritance of interfaces

– Inheritance extends, evolves, and specialized behavior
– Note: not implementation of multiple implementations!

• Support of multiple interaction styles
– Client/server

• Some support for mobile code, too, with Objects by Value (OBV)
– Peer processes
– Publish/Subscribe (aka “push”)

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 55

CORBA Components and System Hooks

Standard Interfaces ORB-SpecificIDL-generated

Interface
Repository IDL Compiler Implementation

Repository

Client

Stub/proxy
(SII) DII ORB

Interface

Servant

DSISkeleton
ORB

Interface

ORB Core

Object Adaptor

Smart Stub

Interceptor

Interceptor
ORB Core

Interceptor

Interceptor

(This slide adapted from FTCS-29 Tutorial
by Shalini Yajnik of Lucent Technologies)

Interceptor

Interceptor

Interceptor

Interceptor

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 66

ORB Core Overview
Features (server-side)
• Connection management
• Memory management
• Request transfer
• Endpoint demuxing
• Concurrency control

Other Features
• object_to_string() and

string_to_object()
• Etc.

I/O Subsystem

ORB Core
Object Adaptor

GIOP Transport Protocols
IIOP/TCP ATM …

…
…

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 77

CORBA:Object class
• Base class for all proxies
• Useful utility methods:

– _is_a()

– _is_equivalent()

– _duplicate()

– _release()

– _is_local()

– _is_remote()

• Request methods for DII (more soon…)

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 88

SII and DII
• Static Invocation Interface (SII)

– Most common way to use IDL
– All operations specified in advance and known to client (by proxies/stubs)

and server (by skeletons)
– Simple
– Typesafe
– Efficient

• Dynamic Invocation Interface (DII)
– Less common way to use IDL
– Lets clients invoke operations on objects whose IDL is not known to them at

compile time (main advantage of DII)
• Browsers of all sorts (interface browser, etc)
• Debuggers

– Also can use send_deferred() and poll_response()
– Clients construct a CORBA::Request (local) object, “pushing” arguments and

operation name etc. on it like a stack
• Exactly what a proxy does: same API to ORB Core

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 99

DII Example
• Notes (See PROG manual for more details (Chap 22 for VBCPP)):

– CORBA::Request object represents one invocation of one method of one CORBA object
– CORBA::Any encapsulates any CORBA type
– Example is from /local/dist_systems/cs564/vbcpp4_0/examples/basic/bank_dynamic :

// Create request that will be sent to the manager object
CORBA::Request_var request = manager->_request("open");
// Create argument to request
CORBA::Any customer;
customer <<= (const char *) name;
CORBA::NVList_ptr arguments = request->arguments();
arguments->add_value("name" , customer, CORBA::ARG_IN);
// Set result type
request->set_return_type(CORBA::_tc_Object);
// Invoke operation. NOTE: VisiBroker example used send_deferred()
request->invoke();
// Get the return value
CORBA::Object_var account;
CORBA::Any& open_result = request->return_value();
open_result >>= CORBA::Any::to_object(account.out());

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 1010

Object References
• Object reference

– Opaque handle for client to use
– Identifies exactly one CORBA object
– IOR == “Interoperable Object Reference”

• References may be passed among processes on different hosts
– As parameters or “stringified”
– ORB will convert into form suitable for transmission over network
– ORB on receiver side will create a proxy and return a pointer to it

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 1111

Object References
• Object reference

– Opaque handle for client to use
– Identifies exactly one CORBA object
– IOR == “Interoperable Object Reference”

• References may be passed among processes on different hosts
– As parameters or “stringified”
– ORB will convert into form suitable for transmission over network
– ORB on receiver side will create a proxy and return a pointer to it

• Object Key
– Opaque to client
– ORB-specific

• Object ID
– Can be created by user or POA (more in POA slides…)

Repository ID Profile for Protocol1 Profile for Protocol2IOR:

IIOP Profile:

Object Key (one possible implementation):

TAG_INTERNET_IOP IIOP version Host addr. Port Object Key Components…

POA ID Object ID

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 1212

Interface Repository
• Stores information on interfaces which can be looked up later by others

at runtime. Tells about
– Interface names
– Method signatures
– …
– Exactly the information in an IDL file.

• Allows for runtime discovery of interfaces.
– Can be used by other useful hooks, such as the DII, DSI, and Interceptors.

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 1313

Implementation Repository (IR)
• Stores information on the implementations available for a given interface

– Mainly bindings between interface names and executable files that
implement them

• This allows the ORB to activate servants to process object invocations
– Visibroker’s IR is called theObject Activation Daemon (OAD)
– More details are in PROG (VBCPP Chapter 20)

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 1414

Outline
• CORBA Features and Hooks
• Portable Object Adaptor (POA)

– POA Terminology
– POA Policies
– POA example revisited

Note: POA is very complicated and cannot be understood even halfway
in this class – you will generally just cut-and-paste the POA code, only
modifying it when you need to. A basic understanding of the POA is very
useful, however…

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 1515

POA Terminology I
• CORBA Object: a “virtual” entity capable of

– Being located by an ORB
– Having client requests delivered to it

• Servant: programming language construct that
– Exists in the context of a server
– Implements the functionality of a CORBA object

• Object Adaptor (OA): a component which connects a server-side ORB
with a servant

• Note: CORBA is to a servant like virtual memory is to physical memory!
– VM does not really exist….
– VM can be read and written with help of a computer’s MMU and its mapping

from VM to PM
– ORB and OA cooperate to ensure that each CORBA object is mapped onto a

servant

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 1616

POA Overview
• POA Features

– Activate and deactivate CORBA objects
– Incarnate and etherealize servants
– Create and manage object references
– Map requests to servants

• POA designed to provide a great deal of
flexibility that server writers can utilize for
– Scalability
– Memory and other resource usage
– Flexibility in mapping requests onto servants

ORB Core

Object Adaptor

Object ID
Object ID
Object ID

Servants
Servants

Servants

Active Object Map

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 1717

POA Terminology II
• Skeleton: a programming language entity that connects a servant to an

OA
– This lets the OA to dispatch requests to the servant
– In C++, a skeleton is a base class from which the servant derives

• Object ID: an identifier used to “name” an object within the scope of an
OA
– It is not guaranteed to be unique outside a given instance of an OA
– May be defined by server programmer
– May be automatically generated by POA

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 1818

POA Terminology III: Lifecycles
• Creation: the act of making a new

CORBA object
– Always results in an object reference

• Activation: starting an existing CORBA
object to allow it to service requests

• Deactivation: the act of shutting down a
CORBA object, including removing any
associations with any servants

• Incarnation: the act of associating a
servant with a CORBA object

• Etherealization: destroying the
association between a servant and a
CORBA object

Object non-
existent

creation destruction

Object exists

Object activated

Servant incarnated

Object Deactivated

Servant Etherealized

Activate Deactivate

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 1919

POA Lifecycle Notes
• Activation and deactivation happen to CORBA objects
• Incarnation/etherealization happen to servants
• But activation/incarnation and deactivation/etherealization sometimes

happen at same time
• Not necessarily a 1:1 mapping between CORBA objects and servants

– A CORBA object may be represented by one or more servants over its
lifetime

– A servant may represent one or more CORBA objects simultaneously

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 2020

POA Policies
• A server application can have multiple POA instances in it

– Each POA instance has the same set of characteristics
– But different POA instances can have different policies
– 7 different kinds of POA policies that define its characteristics
– Each policy has an interface in module PortableServer, with 1 attribute

• Below, “(D)” means the default policy for VisiBroker for C++
• CORBA Object Lifespan: LifespanPolicy

– PERSISTENT: all CORBA objects can live beyond the lifetime of the
particular process they were created by

– TRANSIENT: (D) CORBA object does not live beyond its creating process
• Require less bookkeeping from the ORB
• Great for “temporary” objects such as callback objects

• Object Identifiers: IdAssignmentPolicy
– An object identifier is just a stream of octets, opaque to applications
– But can be useful to some applications to manage

• Database key
• Employee ID

– SYSTEM_ID: (D) POA generates object identifiers
– USER_ID: application provides its own object identifiers

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 2121

POA Policies (cont.)
• Mapping Objects to Servants: IdUniquenessPolicy

– One extreme: app with only a few transient objects creates separate servants
for each one; state of each object kept in its servant

– Other extreme: app with many persistent CORBA objects may want only one
servant to incarnate them all, e.g., for memory efficiency

• May keep object state in a database or other external persistent store
– UNIQUE_ID: (D) each object ID maps onto a different servant
– MULTIPLE_ID: multiple Ids can map onto a single servant

• Implicit Activation: ImplicitActivationPolicy
– Allow CORBA objects to be created and activated implicitly (sometimes

through a language shortcut like _this in C++)?
– IMPLICIT_ACTIVATION
– NO_IMPLICIT_ACTIVATION (D)

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 2222

POA Policies (cont.)
• Matching Requests to Servants: RequestProcessingPolicy

– Controlling the associations between CORBA objects and servants
– USE_ACTIVIE_OBJECT_MAP_ONLY: (D) explicit activation and incarnation
– USE_SERVANT_MANAGER: manager object is registered with POA and

called if an invocation arrives for an object with no servant bound to it
• Action can depend on IdUniquenessPolicy: create new servant or reuse existing one

– USE_DEFAULT_SERVANT: incarnates all CORBA objects for a POA
• Object ID to Servant Associations: ServantRetentionPolicy

– RETAIN: (D) keeps association across multiple invocations
– NON_RETAIN: each arriving request invokes application to obtain the servant

• Can control allocation of servants to CORBA objects
• Useful for controlling memory usage

• Allocation of Requests to Threads: ThreadPolicy
– SINGLE_THREAD_MODEL: all requests for all objects in a POA serealized
– ORB_CTRL_MODEL: (D) ORB chooses an “appropriate” threading model

• Really need more choices: thread pool model, thread-per-request, thread-per-object

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 2323

Sample: Setting up a POA with a Servant
• Generic steps

– Obtaining Reference to the root POA
– Defining the policies of the POA
– Creating a POA as a child of the root POA
– Creating a servant and activating it
– Activating the POA through its manager

• Now go over code from Bank example, given in CORBA-I lecture…

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 2424

POA Steps on the Server
include "BankImpl.h"

int main(int argc, char* const* argv)
{

try {
// Initialize the ORB.
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// get a reference to the root POA
CORBA::Object_var obj = orb->resolve_initial_references("RootPOA");
PortableServer::POA_var rootPOA = PortableServer::POA::_narrow(obj);

CORBA::PolicyList policies;
policies.length(1);
policies[(CORBA::ULong)0] = rootPOA->create_lifespan_policy(

PortableServer::PERSISTENT);

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 2525

POA Steps on the Server (cont.)
// get the POA Manager
PortableServer::POAManager_var poa_manager = rootPOA->the_POAManager();

// Create myPOA with the right policies
PortableServer::POA_var myPOA = rootPOA->create_POA("bank_agent_poa",

poa_manager, policies);
// Create the servant
AccountManagerImpl managerServant;

// Decide on the ID for the servant
PortableServer::ObjectId_var managerId =

PortableServer::string_to_ObjectId("BankManager");
// Activate the servant with the ID on myPOA
myPOA->activate_object_with_id(managerId, &managerServant);

// Activate the POA Manager
poa_manager->activate();

CptS 464/564 Fall 2000 CORBA-II: © 2000 David E. Bakken 2626

POA Steps on the Server (cont.)

CORBA::Object_var reference = myPOA->servant_to_reference(
&managerServant);

cout << reference << " is ready" << endl;

// Wait for incoming requests
orb->run();

}
catch(const CORBA::Exception& e) {

cerr << e << endl;
return 1;

}
return 0;

}

