
CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 11

CORBA-IV
Prof. Dave Bakken

Cpt. S 464/564 Lecture
November 13, 2000



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 22

Administrative Items
• Handouts

– New Schedule
– Event example code (PushModel.C & PushView.C)

• Much of this lecture is from Hennig and Vinoski chapter 20
• New grade breakdown for class:

Component 464 564
Exams (2): 40% 30%
Homework (4) and Surprise Quizzes : 20% 20%
Projects (4): 40% 40%
Participation 0% 10%



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 33

Different Interaction Styles
• Synchronous Invocation

– Client actively invokes requests on passive server
– Client blocks until reply arrives
– Note clients are aware of their servers

• This style is too restrictive for some kinds of applications
– Even asynchronous invocations only help some

• Events
– Supplier: entity producing the information of interest
– Consumer: entity receiving and using the information of interest
– Suppliers can send messages to one or more consumers with a single call
– Suppliers and Consumers are decoupled: they are not aware of each other’s 

identity



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 44

Invocations and Events Contrasted
• Topology

– Invocations have a single target
– Events can be delivered to multiple consumers with one call by a supplier

• Coupling
– Invocations require the client to be aware of the server
– Events keep the supplier and consumer decoupled, unaware of each other 

(not referring to each other)
• Blocking

– Synchronous invocation blocks until invocation returns, so client and server 
are (loosely) synchronized at some time

– Events are non-blocking: supplier does not block until all messages have 
reached all consumers

• Syntactic checking and type safety
– Invocations are type checked because method’s IDL describes all data
– Events’ data needs to be self-describing, generic

• So types not checked
• Case 1: consumers know what type of data to expect
• Case 2: consumers inspect the self-describing type to see type



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 55

Event Service Basics
• OMG has Event service
• Both suppliers and consumers connect to an event channel
• Two models: push and pull (4 variants (“models”) supported)

Consumer Event Channel Supplierpushpush

(client) (server)

Direction of Event Flow

Consumer Event Channel
pullpull

(client)(server)

Direction of Event Flow

Supplier



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 66

#1: Canonical Push Model
• Suppliers are initiators of events
• Consumers passively wait to receive them
• Event channel plays role of notifier
• Most commonly used event delivery model

Consumer Event Channel

Supplier

pushpush Supplier

Supplier

Consumer

Consumer push

push

push

push

Direction of Event Flow



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 77

#2: Canonical Pull Model
• Consumers are initiators of events
• Suppliers passively wait to get events pulled from them

– They must buffer events…
• Event channel plays role of procurer

Consumer Event Channel

Supplier

pullpull Supplier

Supplier

Consumer

Consumer pull

pull

pull

pull

Direction of Event Flow



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 88

#3: Hybrid Push/Pull Model
• Suppliers push events to the event channel
• Consumers pull events from the event channel
• Both suppliers and consumers are thus active!
• Event channel plays role of a queue

Consumer Event Channel

Supplier

pull Supplier

Supplier

Consumer

Consumer pull

pull

Direction of Event Flow

push

push

push



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 99

#4: Hybrid Pull/Push Model
• Event channel pulls events from suppliers
• Event channel pushes events to consumers
• Both supplier and consumer are passive
• Event channel functions as an intelligent agent

– Needs to know info about the supplier: how often events produced etc

Event Channel

Supplier

pull Supplier

Supplierpull

pull

Direction of Event Flow

Consumer push

Consumer

Consumer push

push



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 1010

Comparison
Model Action EC Role Producer Consumer

Canonical 
Push

Supplier pushes to EC,
EC pushes to Consumer

Notifier Active Passive

Canonical 
Pull

Consumers pull from EC,
EC pulls from Supplier

Procurer Passive Active

Hybrid 
push/pull

Supplier pushes to EC,
Consumer pulls from EC

Queue Active Active

Hybrid 
pull/push

EC pulls from supplier,
EC pushes to Consumer

Intelligent 
Agent

Passive Passive



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 1111

Notes on Event Service
• A single event channel can support all four models simultaneously
• Note: each consumer receives all events provided by all suppliers



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 1212

Event Service Interfaces
• CosEventComm interface provides IDL to interact with event channels

– Note: most interfaces deal with suppliers and consumers, not EC

Consumer Event Channel Supplier

Proxy Supplier Interface Proxy Consumer Interface



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 1313

Interfaces for the Push Model
• Push consumer implements the PushConsumer interface and registers 

for it with a supplier (details later…)

module CosEventComm {
exception Disconnected {};

interface pushConsumer {
void push(in any data) raises (Disconnected);

void disconnect_push_consumer();
}

interface PushSupplier {
void disconect_push_supplier();

}
// …



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 1414

Interfaces for the Pull Model
module CosEventComm {

// …
interface PullSupplier {

any pull() raises (Disconnected);

any try_pull(out boolean has_event) raises (Disconnected);

void disconnect_pull_supplier();
}
interface PullConsumer {

void disconnect_pull_consumer();
}
// …



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 1515

Event Channel Administrative Interfaces
module CosEventChannelAdmin {

interface ProxyPushSupplier;  interface ProxyPullSupplier;
interface ProxyPushConsumer;  interface ProxyPullConsumer;

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

}
interface SupplierAdmin {

ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

}
interface EventChannel {

ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

}
// …

}



CptS 464/564 Fall 2000 CORBA-IV:  © 2000 David E. Bakken 1616

Using the Event Channel
• Consumers

– Invoke for_consumers() on EC to obtain ConsumerAdmin object reference
– If push consumer, invoke ConsumerAdmin->obtain_push_supplier() 
– If pull consumer, invoke ConsumerAdmin->obtain_pull_supplier()

• Suppliers
– Invoke for_consumers() on EC to obtain SupplierAdmin object reference
– If push supplier, invoke SupplierAdmin->obtain_push_consumer()
– If pull supplier, invoke SupplierAdmin->obtain_pull_consumer()

• Discuss next
– Example VisiBroker handouts: PushModel.C & PushView.C
– Project #4 Description (handed out Wednesday 11/15)

• It will involve the canonical push model, much like PushModel.C and PushView.C


