
CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 11

System Models
Prof. David Bakken

Cpt. S 464/564 Lecture
Textbook, Chapter 2

Sept 11+13, 2000

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 22

Administrative Items
• Handouts today

– Paper “End-to-End Arguments in System Design” (not testable for 464, but
please keep a copy for future reference)

– Lecture slides for today and Wednesday
– Updated Syllabus
– Homework #1 (due in one week)

• CORBA-I lecture and Project #1 delayed a week due to lab problems

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 33

Outline of Topics
1. Overview of System Models
2. Architectural Models
3. Fundamental Models

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 44

Difficulties in Distributed Systems
• Widely varying modes of use (usage patterns)

– Rate of access
– Connectiveness of a mobile host
–
–

• Wide range of system environments
– Heterogeneity in multiple dimensions
– Performance of components can vary widely
– Load on components can vary widely

• Internal problems (inherent to a DS)
– Lack of global clock
– Lots of ways different components can fail

• External threats
– Security …

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 55

Dealing with the Difficulties
• Very hard to deal with all these issues!
• Can’t do so in large detail or all possible low-level interactions
• But some common properties and design issues can be abstracted:

descriptive model
• A model provides “an abstract, simplified but consistent description of a

relevant aspect of distributed system design”
• Idea: focus at the problem components or interactions of interest,

abstract away the rest of the details that do not matter for this

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 66

Outline of Topics
1. Overview of System Models
2. Architectural Models

1. Software Layers
2. System Architectures
3. Variations on the Client-Server Model
4. Interfaces and Objects (skip in lecture)
5. Design Requirements for Distributed Architectures

3. Fundamental Models

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 77

Architectural Models
• An architecture specifies

– Major components of interest
– Interactions of these components

• Example: building architecture gothic
• Architectural model of a distributed system

– Defines what the major components should be
– Defines where to place them across a network
– Defines how the components should interact

• One way: classify processes
– Client
– Server
– Peer

• Variations on client-server
– Mobile code
– Disconnecting and reconnecting clients

• Note: an architecture is not a design!

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 88

Software Layers
• Original definition: layers or modules in a single computer
• More recent definition: services offered and requested between

processes on same or different computers
• Key idea: service layers

Applications, services

Middleware

Operating system

Processor
resources

Storage
resources

Communication
resources

Platform

Figure 2.1 Software and hardware service layers in distributed systems

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 99

Middleware

Distributed
Application

Operating
System

Operating System API

Comm. Processing Storage

Middleware

Middleware API

Distributed
Application

Operating
System

Operating System API

Comm. Processing Storage

Middleware

Middleware API

Network

Host 1 Host 2

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 1010

Limitations of Middleware
• Some aspects of dependability (and other issues) require application-level

support
– get_state() and set_state()
– Merging partitioned replicas
– Text example: TCP error correction versus big email message and SMTP

• “End-to-End” paper (a classic):
– Some communication-related functions can be completely and reliably

implemented only with the knowledge and help of the application standing at
the end points of the communication system. Therefore, providing the function
as a feature of the communication system itself is not always sensible.

• Checks, correction, etc. must be done at many levels
– Which layer to put a given one at is an art, not a science!
– Some must be done at the application layer

• Cannot abstract away everything in middleware! (But some try.)
• Einstein: “Make it as simple as possible, but no simpler.”

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 1111

System Architectures
• Issues:

– How to map division of responsibilities/functionalities into components
– How to place components in a system
– Note: decisions here have HUGE impact on system

• Performance
• Security
• Reliability
• Price
• Extensibility

• Architectures
– Client-server
– Replicated Servers
– Proxy servers and caches
– Peer processes

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 1212

Client-Server Model
• Most widely used and cited
• Q: How to place the processes onto hosts?
• Q: What do you base this placement decision on?

Client

Client

Client

Client

Computer
:Process:

Key:

invocation

result

invocation

result

Figure 2.2 Clients invoke individual servers

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 1313

Replicated Servers
• Choices:

– All data on each server (completely replicated) for fault tolerance or
performance of data frequently read

– Data split between computers (1/3 on host1 of 3, …) for load balancing
– Something inbetween (tradeoff between performance and load balancing)

C lie n t

C lie n t

S e rv e r

S e rve r

S e rve r

S e rv ic e

F ig u re 2 .3 A s e rv ic e p ro v id e d b y m u ltip le s e rv e rs

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 1414

Proxy servers and caches
• Cache: store of most recently used data objects closer to client than the

objects themselves
• Caches are widely used (examples???)

Client

Client

Proxy
server

Web
server

Figure 2.4 Web proxy server

Web
server

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 1515

Peer Processes
• All processes play similar or identical role
• Examples

– Multi-user editor
– Multi-user game
– Shared whiteboard

Application

Coordination
code

Application

Coordination
code

Figure 2.5 A distributed application based on peer processes

Application

Coordination
code

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 1616

Mobile Code
• Variation on client-server model
• Code is downloaded and executed on client machine
• Advantage: quick interactivity and good error checking
• Disadvantages: download time and security risks

Client

Figure 2.6 Web applets

a) client request results in the downloading of applet code

Client ClientWeb
server

b) client interacts with the applet

Client Applet ClientWeb
server

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 1717

Mobile Agents
• Mobile agent is a program that roams around a network doing work for

someone
– Collect information
– Make decisions (purchases)

• Can have much greater autonomy than client-server applications
• Problems

– Agents are a security threat to the hosts they run on
– The hosts are a security threat to the agents

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 1818

Network Computers and Thin Clients
• Network computers

– Downloads the OS (!!) and application from remote file server
– Apps run locally
– Files managed remotely
– Disks on computer hold very little software, mainly a cache

• Thin clients
– Computer with a layer with a GUI for a remote application
– Apps don’t run locally, but on a powerful compute server
– E.g., X-Windows system

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 1919

Mobile Devices and Spontaneous Networking
• Lots of small and tiny portable devices being built and sold, networkable
• Spontaneous networking: connect to available devices nearby
• Key features

– Easy connection to a local network (almost always wireless)
– Easy integration with local services

• Problems
– Limited connectivity while traveling
– Security

• Discovery services: services to let clients discover what services are
available and what their properties are
– Registration service
– Lookup Service

• Commercial examples today
– Jini
– Microsoft Unversal Plug and Play
– Microsoft Research Aladdin (April 28 talk at WSU)

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 2020

Spontaneous Networking Example

Hotel wireless
network

Music
service Alarm

service

Discovery
service

TV/PC

Camera

PDALaptop

gateway

Internet

Guest's
devices

Figure 2.8 Spontaneous networking in a hotel

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 2121

Design Requirements for Distributed Arch’s
• Performance issues

– Responsiveness
– Throughput
– Load balancing: spreading the load

• Quality of Service (QoS)
– Reliability
– Security
– Performance
– Adaptability

• Caching and replication: becoming very common
• Dependability issues

– Correctness (certifiably)
– Fault tolerance: requires redundancy (dispersion of data)
– Security: keep sensitive data nearby

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 2222

Outline of Topics
1. Overview of System Models
2. Architectural Models
3. Fundamental Models

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 2323

Fundamental Models
• Very different architectural models shown (client/server, etc)
• But they share some fundamental properties
• Models contain only essential info we need to understand and reason

about some aspect of a system
• A system model must address

– What are the main entities in the system?
– How do they interact?
– What are the characteristics that affect their individual and collective behavior?

• Purpose of the model
– Make explicit all relevant assumptions
– Be able to make generalizations about what is possible, given the assumptions
– Generalizations are algorithms or properties

• Kinds of fundamental models
– Interaction
– Failure
– Security

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 2424

Interaction models
• Algorithm: sequence of steps on one computer
• Distributed algorithm: sequences of steps at each computer plus

message passing between them
• Hard problem: cannot predict message latencies well
• Major factors affecting interaction processes

– Communication performance is often a bottleneck
– Cannot maintain a single global notion of time

• Communication channels
– Latency
– Bandwidth
– Jitter

• Clock drift and synchronization
• Variations on the interaction model (opposites)

– Synchronous DS
– Asynchronous DS

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 2525

Synchronous DSs
• Definition:

– Time to execute each step of a process has known lower and upper bounds
– Message delivery times have a known lower and upper bound
– Clock drift times have a known lower and upper bound

• Strong assumptions about time!
• Q: how to set the bounds?
• Synchronous systems can be built… (how?)

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 2626

Asynchronous DSs
• Definition: no bounds on

– Process execution speeds
– Message transmission delays
– Clock drift rates

• Q: how would each affect your programming?
• Pepperland example:

– Two Pepperland army divisions camped on hills
– Blue meanies in the valley between
– Pepperland armies must sent couriers which can get delayed arbitrariliy
– Pepperland armies need to agree on who leads charge and when
– Possible to agree who will lead charge: send (and resend) #troops
– Impossible to agree when (at least in time to do it)

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 2727

Event Ordering
• Sometimes useful to know about Event A and Event B

– A happened before B, or vice versa
– Both at same time (to some granularity)

• Example: displaying newsgroup messages: reply after original posting
• Possible to make inferrences even if not all orderings can be known:

X

Y

Z

A

Physical
time

send

send

send

receive receive

receive

1

2 3

4m1
m2

m2m1m3

receive

receive receive

receive receive receive
t1 t2 t3

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 2828

Failure Models
• Lots of low-level ways a component can fail, in general
• Failure models generalize them into higher-level categories
• Failure models also extend a component’s specification to include legal

ways in which it can fail
– Allows these contingencies to be handled by system designers
– E.g., a system can tolerate some (kind and number of) failures
– If failures outside model occur, then results undefined (usually catestrophic

failure)

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 2929

Omission and Arbitrary Failures

Process/channel exhibits arbitrary behavior:it
may send/transmit arbitrary messages at
arbitrary times, commit omissions;a process
may stop or take an incorrect step.

Process or
channel

Arbitrary
(Byzantine)

A message is put in a process’s incoming
message buffer, but that process does not
receive it.

ProcessReceive-omission

A process completes a send, but the message
is not put in its outgoing message buffer.

ProcessSend-omission

A message inserted I an outgoing message
buffer never arrives at the other end’s
incoming message buffer.

ChannelOmission

Process halts and remains halted.Other
processes may not be able to detect this state.

ProcessCrash

Process halts and remains halted. Other
processes may detect this state.

ProcessFail-stop
DescriptionAffectsClass of failure

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 3030

Timing Failures

A message’s transmission takes longer
than the stated bound.

ChannelPerformance

Process exceeds the bounds on the
interval between two steps.

ProcessPerformance

Process’s local clock exceeds the bounds
on its rate of drift from real time.

ProcessClock

DescriptionAffects Class of Failure

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 3131

Agreement in Pepperland with Failures
• If failures can happen (couriers get captured), then agreement cannot be

reached on who should charge!
• Last message may not arrive, and sender never knows, so a correct

algorithm has to work without it
• But this applies back to all previous messages!

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 3232

Security Models
• Security of a distributed system can be achieved by

– Securing the processes and channels they use for interacting
– Protecting the objects they encapsulate against unauthorized use

• Definitions: principal and access rights

ServerClient

invocation

result

Network
Principal(user)

Principal(server)

ObjectAccess rights

Figure 2.13 Objects and principals

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 3333

Protecting Objects
• Access rights

– Defn: who can access an object, and in what way
– Example: “joe” can read this object (call methods that do not write state)

• Principal: entity with rights to do something
– A user or a process typically
– Rights can be delegated

• Server must
– Verify identity of the principal calling it
– Verify that principal has the right to do what its invocation calls for

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 3434

Security Terms for our Model
• Enemy/adversary which can

– Send a message to any process
– Read any message sent by anyone
– Copy any message sent by anyone

Process p

Figure 2.14 The enemy

Process q

The enemy

m

Copy of m

m'

Communication channel

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 3535

Threats in the Security Model
• Threats to processes

– Can’t always determine identity of sender of a message
– So servers cannot know to perform an operation or reject it
– Clients can’t tell if a reply (“result”) message is from the server

• Threats to communication channels
– Enemy can

• Copy a message
• Alter a message
• Inject new messages
• Replay a message later

– All can be defeated with secure channels

CptS 464/564 Fall 2000 System Models Ch2: © 2000 David E. Bakken 3636

Defeating Security Threats
• Cryptography: science of keeping messages secure
• Encryption: scrambling messages to hide their contents (very difficult to

unscramble without the key)
• Authentication: using shared secrets and encryption to verify identities
• Secure channels: layer on top of existing communication service where

– Each process reliably knows identity of principal on other side
– Data transmitted have privacy maintained
– Data transmitted have integrity maintained: nobody can alter it
– Messages have timestamps (physical or logical) to prevent replaying or

reordering of messages
• Other threats

– Denial of service: overloading resource to prevent legitimate use
– Mobile code is another source of vulnerability

• Security causes a lot of processing and management overhead!
• But “Do you feel lucky today?”

