(2'v sIdV ‘€ "deyd sj0o0j0id)

_ afeiog _ _ Surssaoorg _ _.EEOD_ wa)sAs _ aseiolg _ _ Suissac01g _ _ ,EEQU_ waysAs

7 7 7 7 Suneradg 7 7 7 7 Suneradg

1dV waiskg Suneradg 1dV waiskg Suneradp

\ \ A

MHW ”Hw 21EMI[PPIN MHW ”HW 2UBMIPPIN

1dV 21eMappIA 1dV 21ema[ppiA

uonednddy uonediddy
panqLusIQ PaNqLUSIA

TISOH 11504

swajsAg buiybuadp pup a2uoma|ppiw

2Jema|ppI

bunesado dOL pue adn

(€t) s”Hax pue Buijjeysiep

sl19/he
1 (%) 10001014 Aldey-1senbay

(g "deyp) sjuan3 pue Ody pue |INY

S90INIBS ‘suoleolddy

9dI pup SJ2AD7] 2uDMI|ppPIW

£108lgo ue pue sainpadoid JO UOI199||00 B UBaM]a] 8ouBlalI(g
(°S) suoneoniou pue sjueAe aNquIsiq —
(S°S IINY BAeP ‘2°G [INY [e48usb) uoneooAul poylow ajoway —
(£°G) 11e2 @unpaooid sjowey —
SUOIIBD0AUI 810Wal 10} swbipeled
suoljelado 8j0wal 8)0AUl 0} 8|ge 8q 0} paau s8ssa204d 9S0y} 0S
sassa00.d jualayip ul Buluuni sagaid aaey sweiboid painguisiq

uol4oNpoJjuUT

0002 ‘6+¥ 100
G Jeydey) “ooqixa |
8InjoeT ¥95/¥9% S 1dD

uayyeg aAe(q “joid
UOILDI0AUT

poy4a2W 240Way pup
s$22(q0 pa4nqiuisiq

Goals of Higher-Level Middleware

e Location Transparency
* Heterogeneity across
— Communication protocols
Computer hardware
Operating systems
Programming Languages
Vendor implementations
e How does middleware provide these?

Cpt al Istripute jects and Remote Method Invocations 8 avil . Bakken

Interfaces

* Modern languages let you

— Organize a program into a set of modules that can communicate with each
other

— Export the operations that can be invoked on each module

* Interface: procedures and variables that can be accessed from other
modules

— Everything else is hidden from other modules: information hiding

— Allows implementation to change much easier
¢ Distribute interfaces

— Cannot access a variable directly
Pointers are invalid
Don’t want to send all parameters in both direction: input and output
parameters declared
Service interface: specification of procedures of a server available for use in
clients
Remote interface: specification of methods of an object instance which may
be invoked by clients

Cpt al Istripute jects and Remote Method Invocations 8 avil . Bakken

Interface Description Languages

* Specification of interfaces in a separate language

¢ Allows for heterogeneity across programming languages

e Used to generate proxies, skeletons,

e OSF DCE (RPC), CORBA (distributed object), DCOM IDL (based on DCE), ...
* Project #1 IDL:

module Grade {

interface Grader {
boolean add_grade(in string tid, in string pwd, in float grade);
float show_grade(in string sid, in string pwd);

I8

interface Security {
boolean check_teacher_pwd(in string tid, in string pwd);
boolean check_student_pwd(in string sid, in string pwd);

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken

Object Model

¢ So what exactly is an object???
¢ Collection of data and code
e (Can be invoked via its methods
¢ Can have its public data members directly accessed
¢ Object references
— How a caller invokes an object

— First-class values: have a type, can be assigned to variables, passed as
params, returned as return value

* |Interface: signature of the methods that can be invoked
* Action in an OO program

— Initiated by an object invoking another object’s method

— Can have two effects

* Modify state of object
¢ Call another object (nested)

* Exceptions: handling error or boundary conditions
¢ Garbage collection: freeing memory not in use (Java vs. C++ ...)

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken

Figure 5.3 Remote and local method invocations

remote
invocation

invocation F

Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 3

Distributed Object Model

* Program consists of a collection of interacting objects
¢ Objects interact via remote method invocations
* Remote object: any object which can receive a remote invocation
* Remote object references
An identifier that is used to invoke a remote object
— Can be used throughout a distributed system
Analogous to local object references
* Identifies target object
* May be passed as parameters and return values
Represented very differently from a local object reference
¢ Remote interface: specifies methods available for invocation
¢ Garbage collection: reclaim memory when no remote clients need object
* Exceptions: many more things can go wrong....

Cpt al Istripute jects and Remote Method Invocations 8 avil . Bakken 0

Distributed Objects vs. Other Middleware

Middleware Category | Communications | Processing Storage
Resources? Resources? Resources?

Distributed Relational | Yes Limited Yes

Databases

Remote Procedure Yes Yes No

Call

Message-Oriented Yes No Limited

Middleware

Distributed Objects Yes Yes Yes

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken

Delivery Guarantees for RMIs

* Techniques for providing reliable delivery
— Retry request message
— Duplicate request filtering
— Retransmission of replies

Client Server

Request message

doOperation getRequest

select object
execute method
sendReply

(wait)

(continue) Reply message

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken 2

Invocation Semantics Figure 5.5 Invocation semantics

¢ Maybe invocation semantics
— Invoker cannot tell if a remote method has been executed Fault tolerance measures Invocation
— Can suffer from omission failures: request is dropped semantics
— Can suffer from crash failures: server fails

A Retransmit request Duplicate Re-execute procedure
— Useful only when these failures are acceptable message filtering or retransmit reply
¢ At-least once invocation semantics No Not applicable Not applicable Maybe
— Invoker receives reply and knows method executed, or receives exception
Yes No Re-execute procedure At-least-once

— Can suffer from crash failure: server fails
Can suffer from arbitrary failures: multiple executions cause errors Yes Yes Retransmit reply At-most-once
Useful only with idempotent operations
Provided by Sun RPC
¢ At-most-once invocation semantics

— Invoker receives reply and knows method executed, or receives exception
Reply implies executed exactly once
Exception implies 0 or 1 executions
Provided by Java RMI and CORBA
e What are semantics of a local method call?

Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 5

Cpt al Istripute)Jects an iemote Method Invocations 3 avi . Bakken 3
Transparency Implementing RMIs
» Original RPC [Birrell and Nelson, 1984] tried to make remote call like » Different (logical) modules on client and server sides...
local one « Communication module
— No distinction in syntax — On both client and server
— Hiding marshalling and message passing — (re)transmits request and reply messages
— Retransmissions hidden — Uses fields in message (how?)
e But local calls are not local ones! » Message type (request or reply)
* What to do? * RequestiD
— Try to provide complete transparency * MethodID
— Allow hooks to abort a remote invocation that is taking too long (Argus) * Remote reference module
— Have separate syntax for remote interfaces (Sun Labs 1994) — Translates between local and remote object references
— Creates object references
— Maintains a remote object table on each host
* Server: remote object instances
* Client: proxies for a given remote object
CptS 4647564 Fal 2000 Disnbuted Objects and Remote Method Invocations Chb: © 2000 David E. Bakken . 15 CprS 4647564 Fal 2000 Disibuted Objects and Remote Method Invocations Chb: © 2000 David E. Bakken . 1

Figure 5.6 The role of proxy and skeleton in remote method invocation

server

client
remote

object A proxy for B skeleton ;

: P Request > & dispatcher object B

8 8) - for B's class

D Reply
Remote Communication Communication Remote reference
reference module module module module

Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001

Implementing RMIs (cont.)

e Proxy: provide access transparency to client
— Implement exact same methods
— Hide details of
* Remote object reference details
* Marshalling
* Message sending

¢ Dispatcher
— Demux point for communication software
— Upcalls to method in skeleton
— Uses methodID
e Skeleton
— Unmarshalls arguments from request data structure
— Upcalls to object instance
— Marshalls reply data structure
— Returns to dispatcher

Cpt al Istripute jects and Remote Method Invocations 8 avil . Bakken

Implementing RMIs (cont.)

e Binder
— Maintains mappings from text names to remote object references
— Lets clients find the remote object instances they need
— E.g., VisiBroker osagent program

¢ Activation of remote objects
— Activator: processes that start server processes or object instances
— Active object: one that can accept invocations
— Passive object: one that cannot, but can be made active

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken

Distributed Garbage Collection

e Goals
— If an object reference is still held anywhere, keep it existing (alt: active)
— If nobody holds a reference, shut down object (alt: make it passive)
* Java distributed garbage collection algorithm
Based on reference counting
Works in conjunction with local garbage collector (GC)
— Server tracks which processes that hold ref for each object it manages
Client gets reference: addRef(obj) invocation to server, then proxy created

Client’s local GC notices proxy unreachable: removeRef(B) invocation to
server, then delete proxy

Server: nobody else refers to object, then reclaim space

Tolerates comm. failures: addRef(obj) and removeRef(obj) idempotent
Tolerates client failures: leases

— Why care about client failures here?

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken

Remote Procedure Call (RPC)

¢ An RPC is similar to a remote method invocation

¢ Service interface: description of procedures that can be invoked in an
RPC service

* Normal semantics provided are at-least-once or at-most-once

Cpt al Istripute jects and Remote Method Invocations 8 avil . Bakken

Figure 5.7 Role of client and server stub procedures in RPC

client process Sserver process

Request
) Reply
client stub server stub
procedure procedure)
client service
program Communication Communication . procedure
module module dispatcher

Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 7

Sun RPC

¢ Developed in mid-1980s for Sun’s Network File System (NFS)
e Sometimes called Open Network Computing (ONC)
e Came with Sun’s Unix products and others’
¢ High-level implementation details
— Can be implemented over either UDP or TCP
— At-least-once call semantics
— Broadcast RPC is an option
* Sun RPC interface language: “XDR”
* Interface compiler for XDR called rpcgen

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken

Sun XDR

» Originally designed just to describe external data representations
* Later extended to be an interface language
¢ Meant for use with C
* May be used to define a service interface for Sun RPC by
— Specifying set of procedure definitions
— Specifying supporting type definitions
* Very primitive compared to CORBA IDL or Java
Not objects, but procedures (OK, its RPC...)
— No service/program names, just program number and version number
— No procedure names, just procedure number and procedure sugnature
— Only one input parameter allowed (can be a struct)
— Only output parameter is the return value (can be a struct)
* Notation for defining the expected things: constants, typedefs, ...
* Rpcgen uses XDR code to generate
— Client stub procedures
— Server main procedure, dispatcher, and server stub procedures

— XDR marshalling and unmarshalling procedures fro dispatcher and client and
server stub procedures

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken

Sun XDR Example (Figure 5.8)

const MAX = 1000;
typedef int FilePointer;
typedef int Fileldentifier;
struct Data {
int length; Y
char buffer[MAX];
h program FILEREADWRITE {
struct writeargs { version VERSION {
Fileldentifier f; void WRITE(writeargs) = 1;
FilePointer position; DATA READ(readargs)=2;

struct readargs {
Fileldentifier f;
FilePointer position;
Length length;

Data data; 1=2;
} }=9999;
Cpi al Istribute)Jects an iemote Method Invocations 3 avi . Bakken

Sample Sun RPC Client

/* File C.c — Simple client for the a.f=10;

* FileReadWrite service */ a.position = 1000;

#include ... /* call stub */

main(int argc, char **argv) { data = read_2(&a, clientHandle);
CLIENT *clientHandle;
char *serverName="foobar”;
readargs a; }
Data *data;

cInt_destroy(clientHandle);

/* create socket and client handle */

clientHandle = cInt_create(
serverName,

FILEREADWRITE,

VERSION,

“udp”);
assert(clientHandle != NULL);

Cpt al Istripute jects and Remote Method Invocations 8 avil . Bakken 6

Sample Sun RPC Server Procedures

/* File S.c — server procedures for
* the FileReadWrite service */
#include ...

void *write_2(writeargs *a) {
/* do the actual writing */

data *read_2(readargs *a) {
static Data result; /* must be static */
result.buffer = ... /* file reading */
result.length = ... /* amt read */
return &result;

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken

Sun RPC Binding

* No network-wide naming (binding) service in Sun RPC

— Clients must specify hostname of server when importing a service interface
e Sun RPC runs a port mapper:

— Local binding service on each host

— Runs on a well-known port on each computer
* Server startup: register with portmapper: program #, version #, port #
¢ (Client startup

— Finds out server’s port by asking portmapper on that host

— Gives program # and version #
* Problem: multiple service instances can run on multiple computers

— May be on different ports

— Q: how to let client multicast using direct broadcast?

— A: broadcast to portmappers and the forward

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken 8

Events and Notifications

* Not all actions in all programs are initiated by a client invocation!
* Events allow one object to react to a change happening in another
— Mouse click on computer
— Price of a stock changing
— Modification to a document
— A person with a smart badge entered a room
* Objects that care about an event are notified when the state changes
e AKA publish and subscribe paradigm

— One object publishes type of events it makes available, then sends a stream
of events

— Other objects that want to get events from the object subscribe or register
interest

* Objects representing events are notifications
¢ Main characteristics of event-based systems

— Asynchronous: publishers and subscribers are decoupled

— Heterogenous: can glue together components not designed to work together

,,pfs 647564 Fall 2000 Distributed UB]GC S and Remote Method Tnvocations Chb: © 2000 David E. Bakken

Events (cont.)

* An event source can generate events from one or more types
* Subscribers subscribe using
— Type
— Attributes (e.g., name or identifier, values, ...)
* Publishers send an event when one matches type and attributes
* Q: examples of matching?
¢ Simple event-based dealing room system (Figure 5.9)

— Allow “dealers” of stocks (“traders” in the US) to get latest information on
prices of stocks they care about

— Information providers provide a constant stream of new information
— Each update to a stock object is an event

Cpt al Istripute jects and Remote Method Invocations 8 avil . Bakken

Figure 5.9 Dealing room system

External

Dealer's computer
source

Dealer’s computer

Information
provider

Dealer

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001

Distributed Event Notification Roles

* Basic idea: support decoupling between publishers and subscribers
* Roles involved in a sample event system supporting this:

— Object of interest: the object that experiences changes of state that others
care about

— Event: a method execution completing execution
— Notification: an object containing event info

— Subscriber: an object that has registered to receive notifications about some
object of interest

— Observer objects: an intermediate object to decouple publishers and
subscribers

— Publisher: object that declares it will generate notifications

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken

Figure 5.10 Architecture for distributed event notification

(Event service \

object of interest subscriber
1 8 notification @

object of interest observer subscriber
2 GW@ notification @

object of interest observer subscriber
3. 8474’8 notification @

- j

Instructor's Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 1

Sample Event Example (cont.)

¢ Delivery Semantics
Suffers from failure model of whatever underlying transport is used...
Some systems need reliable multicast
Some systems need realtime guarantees
— E.g., TIBCO (www.tibco.com) and stock traders
* What observers are used for
Forwarding
Filtering of notifications: by values on one object of interest
Patterns of events: multiple events in one or more object of interest
— Notification mailboxes: store and forward

Cpt al Istripute jects and Remote Method Invocations 8 avil . Bakken

Jini Distributed Event Specification

» Jini allows a subscriber in one JVM to receive notifications from an
object of interest in another JVM

» Chains of observers may be inserted between object of interest and
subscriber

e Main objects involved

— Event generators: object that allows other objects to subscribe to its events,
and generates notifications
— Remote event listeners: objects that can receive notifications
— Remote events: objects passed by value to remove event listeners
* |.e., this is what is called “notifications” above

— Third-party agents: objects that may be interposed between an object of
interest and a subscriber

* Can be set up by event generator or subscriber to provide different QoS or
implement different policies

¢ Constrast with CORBA’s Event Service later
— CORBA-IV lecture

— Project 5
Cpi s ZET/S'EZ Fa 21515!3 DIS nBu ei U Sjec S anﬂ Hemo e Ve ’ Oz nvocations c 5: @ 2‘[’6{5 Daw ! E EaRRen

Java RMI

* Read text chapter 5.5: not covering in class
e Don’t worry about
— Low-level details
— Memorizing class names
e Do
— Understand high-level features
— Similar features, tools, hooks, etc. compared to CORBA

CpTS 4647564 Fall 2000 Distributed Objects and Remote Method Tnvocations Chb: © 2000 David E. Bakken

