
CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 11

Distributed Objects
and Remote Method

Invocation
Prof. Dave Bakken

Cpt. S 464/564 Lecture
Textbook, Chapter 5

Oct 4+9, 2000

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 22

Introduction
• Distributed programs have pieces running in different processes
• So those processes need to be able to invoke remote operations
• Paradigms for remote invocations

– Remote procedure call (5.3)

– Remote method invocation (general RMI 5.2; Java RMI 5.5)
– Distribute events and notifications (5.4)

• Difference between a collection of procedures and an object?

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 33

Middleware Layers and IPC

UPD and TCP
(protocols chap. 3; APIs 4.2)

Request-Reply Protocol (4.4)

RMI and RPC and Events (chap. 5)

Applications, Services

Marshalling and XDRs (4.3)

Middleware
Layers

Operating
System

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 44

Middleware and Operating Systems

Distributed
Application

Operating
System

Operating System API

Comm. Processing Storage

Middleware

Middleware API

Distributed
Application

Operating
System

Operating System API

Comm. Processing Storage

Middleware

Middleware API

Network

Host 1 Host 2

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 55

Goals of Higher-Level Middleware
• Location Transparency
• Heterogeneity across

– Communication protocols

– Computer hardware

– Operating systems
– Programming Languages

– Vendor implementations

• How does middleware provide these?

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 66

Interfaces
• Modern languages let you

– Organize a program into a set of modules that can communicate with each
other

– Export the operations that can be invoked on each module

• Interface: procedures and variables that can be accessed from other
modules
– Everything else is hidden from other modules: information hiding

– Allows implementation to change much easier

• Distribute interfaces
– Cannot access a variable directly
– Pointers are invalid

– Don’t want to send all parameters in both direction: input and output
parameters declared

– Service interface: specification of procedures of a server available for use in
clients

– Remote interface: specification of methods of an object instance which may
be invoked by clients

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 77

Interface Description Languages
• Specification of interfaces in a separate language
• Allows for heterogeneity across programming languages
• Used to generate proxies, skeletons, ….
• OSF DCE (RPC), CORBA (distributed object), DCOM IDL (based on DCE), …
• Project #1 IDL:

module Grade {
interface Grader {

boolean add_grade(in string tid, in string pwd, in float grade);
float show_grade(in string sid, in string pwd);

};
interface Security {

boolean check_teacher_pwd(in string tid, in string pwd);
boolean check_student_pwd(in string sid, in string pwd);

};
};

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 88

Object Model
• So what exactly is an object???
• Collection of data and code
• Can be invoked via its methods
• Can have its public data members directly accessed
• Object references

– How a caller invokes an object

– First-class values: have a type, can be assigned to variables, passed as
params, returned as return value

• Interface: signature of the methods that can be invoked
• Action in an OO program

– Initiated by an object invoking another object’s method
– Can have two effects

• Modify state of object

• Call another object (nested)

• Exceptions: handling error or boundary conditions
• Garbage collection: freeing memory not in use (Java vs. C++ …)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 3

Figure 5.3 Remote and local method invocations

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 1010

Distributed Object Model
• Program consists of a collection of interacting objects
• Objects interact via remote method invocations
• Remote object: any object which can receive a remote invocation
• Remote object references

– An identifier that is used to invoke a remote object
– Can be used throughout a distributed system

– Analogous to local object references
• Identifies target object
• May be passed as parameters and return values

– Represented very differently from a local object reference

• Remote interface: specifies methods available for invocation
• Garbage collection: reclaim memory when no remote clients need object
• Exceptions: many more things can go wrong….

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 1111

Distributed Objects vs. Other Middleware

YesYesYesDistributed Objects

LimitedNoYesMessage-Oriented
Middleware

NoYesYesRemote Procedure
Call

YesLimitedYesDistributed Relational
Databases

Storage
Resources?

Processing
Resources?

Communications
Resources?

Middleware Category

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 1212

Delivery Guarantees for RMIs
• Techniques for providing reliable delivery

– Retry request message
– Duplicate request filtering

– Retransmission of replies

Client Server

doOperation

(wait)

(continue)

getRequest
select object

execute method

sendReply

Request message

Reply message

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 1313

Invocation Semantics
• Maybe invocation semantics

– Invoker cannot tell if a remote method has been executed
– Can suffer from omission failures: request is dropped

– Can suffer from crash failures: server fails

– Useful only when these failures are acceptable

• At-least once invocation semantics
– Invoker receives reply and knows method executed, or receives exception

– Can suffer from crash failure: server fails
– Can suffer from arbitrary failures: multiple executions cause errors

– Useful only with idempotent operations

– Provided by Sun RPC

• At-most-once invocation semantics
– Invoker receives reply and knows method executed, or receives exception

– Reply implies executed exactly once
– Exception implies 0 or 1 executions

– Provided by Java RMI and CORBA

• What are semantics of a local method call?

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 5

Figure 5.5 Invocation semantics

Fault tolerance measures Invocation
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No Not applicable Not applicable Maybe

Yes No Re-execute procedure At-least-once

Yes Yes Retransmit reply At-most-once

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 1515

Transparency
• Original RPC [Birrell and Nelson, 1984] tried to make remote call like

local one
– No distinction in syntax
– Hiding marshalling and message passing

– Retransmissions hidden

• But local calls are not local ones!
• What to do?

– Try to provide complete transparency

– Allow hooks to abort a remote invocation that is taking too long (Argus)
– Have separate syntax for remote interfaces (Sun Labs 1994)

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 1616

Implementing RMIs
• Different (logical) modules on client and server sides…
• Communication module

– On both client and server

– (re)transmits request and reply messages

– Uses fields in message (how?)
• Message type (request or reply)

• RequestID

• MethodID

• Remote reference module
– Translates between local and remote object references

– Creates object references
– Maintains a remote object table on each host

• Server: remote object instances

• Client: proxies for a given remote object

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 6

Figure 5.6 The role of proxy and skeleton in remote method invocation

object A object Bskeleton
Requestproxy for B

Reply

CommunicationRemote Remote referenceCommunication
 module modulereference module module

for B’s class
& dispatcher

remote
client server

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 1818

Implementing RMIs (cont.)
• Proxy: provide access transparency to client

– Implement exact same methods
– Hide details of

• Remote object reference details

• Marshalling

• Message sending

• Dispatcher
– Demux point for communication software
– Upcalls to method in skeleton

– Uses methodID

• Skeleton
– Unmarshalls arguments from request data structure

– Upcalls to object instance

– Marshalls reply data structure
– Returns to dispatcher

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 1919

Implementing RMIs (cont.)
• Binder

– Maintains mappings from text names to remote object references
– Lets clients find the remote object instances they need

– E.g., VisiBroker osagent program

• Activation of remote objects
– Activator: processes that start server processes or object instances

– Active object: one that can accept invocations

– Passive object: one that cannot, but can be made active

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 2020

Distributed Garbage Collection
• Goals

– If an object reference is still held anywhere, keep it existing (alt: active)
– If nobody holds a reference, shut down object (alt: make it passive)

• Java distributed garbage collection algorithm
– Based on reference counting
– Works in conjunction with local garbage collector (GC)

– Server tracks which processes that hold ref for each object it manages

– Client gets reference: addRef(obj) invocation to server, then proxy created
– Client’s local GC notices proxy unreachable: removeRef(B) invocation to

server, then delete proxy
– Server: nobody else refers to object, then reclaim space

– Tolerates comm. failures: addRef(obj) and removeRef(obj) idempotent

– Tolerates client failures: leases
– Why care about client failures here?

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 2121

Remote Procedure Call (RPC)
• An RPC is similar to a remote method invocation
• Service interface: description of procedures that can be invoked in an

RPC service
• Normal semantics provided are at-least-once or at-most-once

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 7

Figure 5.7 Role of client and server stub procedures in RPC

client

Request

Reply

CommunicationCommunication
 module module dispatcher

service

client stub

server stub
procedure procedure

client process server process

procedureprogram

David E Bakken
No remote refernce module, because no object instances!

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 2323

Sun RPC
• Developed in mid-1980s for Sun’s Network File System (NFS)
• Sometimes called Open Network Computing (ONC)
• Came with Sun’s Unix products and others’
• High-level implementation details

– Can be implemented over either UDP or TCP
– At-least-once call semantics

– Broadcast RPC is an option

• Sun RPC interface language: “XDR”
• Interface compiler for XDR called rpcgen

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 2424

Sun XDR
• Originally designed just to describe external data representations
• Later extended to be an interface language
• Meant for use with C
• May be used to define a service interface for Sun RPC by

– Specifying set of procedure definitions
– Specifying supporting type definitions

• Very primitive compared to CORBA IDL or Java
– Not objects, but procedures (OK, its RPC…)
– No service/program names, just program number and version number
– No procedure names, just procedure number and procedure sugnature
– Only one input parameter allowed (can be a struct)
– Only output parameter is the return value (can be a struct)

• Notation for defining the expected things: constants, typedefs, …
• Rpcgen uses XDR code to generate

– Client stub procedures
– Server main procedure, dispatcher, and server stub procedures
– XDR marshalling and unmarshalling procedures fro dispatcher and client and

server stub procedures

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 2525

Sun XDR Example (Figure 5.8)
const MAX = 1000;
typedef int FilePointer;
typedef int FileIdentifier;
struct Data {

int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

}

struct readargs {
FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
version VERSION {

void WRITE(writeargs) = 1;
DATA READ(readargs)=2;

}=2;
}=9999;

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 2626

Sample Sun RPC Client
/* File C.c – Simple client for the

* FileReadWrite service */

#include …
main(int argc, char **argv) {

CLIENT *clientHandle;
char *serverName=“foobar”;
readargs a;

Data *data;

/* create socket and client handle */

clientHandle = clnt_create(
serverName,

FILEREADWRITE,

VERSION,
“udp”);

assert(clientHandle != NULL);

a.f = 10;

a.position = 1000;

/* call stub */
data = read_2(&a, clientHandle);

…

clnt_destroy(clientHandle);
}

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 2727

Sample Sun RPC Server Procedures
/* File S.c – server procedures for
* the FileReadWrite service */
#include …

void *write_2(writeargs *a) {
/* do the actual writing */

}

data *read_2(readargs *a) {
static Data result; /* must be static */
result.buffer = … /* file reading */
result.length = … /* amt read */
return &result;

}

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 2828

Sun RPC Binding
• No network-wide naming (binding) service in Sun RPC

– Clients must specify hostname of server when importing a service interface

• Sun RPC runs a port mapper:
– Local binding service on each host

– Runs on a well-known port on each computer

• Server startup: register with portmapper: program #, version #, port #
• Client startup

– Finds out server’s port by asking portmapper on that host
– Gives program # and version #

• Problem: multiple service instances can run on multiple computers
– May be on different ports

– Q: how to let client multicast using direct broadcast?

– A: broadcast to portmappers and the forward

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 2929

Events and Notifications
• Not all actions in all programs are initiated by a client invocation!
• Events allow one object to react to a change happening in another

– Mouse click on computer

– Price of a stock changing

– Modification to a document
– A person with a smart badge entered a room

• Objects that care about an event are notified when the state changes
• AKA publish and subscribe paradigm

– One object publishes type of events it makes available, then sends a stream
of events

– Other objects that want to get events from the object subscribe or register
interest

• Objects representing events are notifications
• Main characteristics of event-based systems

– Heterogenous: can glue together components not designed to work together

– Asynchronous: publishers and subscribers are decoupled

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 3030

Events (cont.)
• An event source can generate events from one or more types
• Subscribers subscribe using

– Type

– Attributes (e.g., name or identifier, values, …)

• Publishers send an event when one matches type and attributes
• Q: examples of matching?
• Simple event-based dealing room system (Figure 5.9)

– Allow “dealers” of stocks (“traders” in the US) to get latest information on
prices of stocks they care about

– Information providers provide a constant stream of new information

– Each update to a stock object is an event

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 10

Figure 5.9 Dealing room system

Dealer’s computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer Dealer

Notification

Notification

Notification

Notification

Notification Notification

Notification

Notification
Noti

fic
ati

on

Notifi
cat

ion

Dealer’s computer

Dealer’s computerDealer’s computer

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 3232

Distributed Event Notification Roles
• Basic idea: support decoupling between publishers and subscribers
• Roles involved in a sample event system supporting this:

– Object of interest: the object that experiences changes of state that others
care about

– Event: a method execution completing execution

– Notification: an object containing event info

– Subscriber: an object that has registered to receive notifications about some
object of interest

– Observer objects: an intermediate object to decouple publishers and
subscribers

– Publisher: object that declares it will generate notifications

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3 ©Pearson Education 2001 11

Figure 5.10 Architecture for distributed event notification

subscriberobserverobject of interest

Event service

object of interest

object of interest observer

subscriber

subscriber

3.

1.

2. notification

notification

notification

notification

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 3434

Sample Event Example (cont.)
• Delivery Semantics

– Suffers from failure model of whatever underlying transport is used…
– Some systems need reliable multicast

– Some systems need realtime guarantees

– E.g., TIBCO (www.tibco.com) and stock traders

• What observers are used for
– Forwarding

– Filtering of notifications: by values on one object of interest
– Patterns of events: multiple events in one or more object of interest

– Notification mailboxes: store and forward

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 3535

Jini Distributed Event Specification
• Jini allows a subscriber in one JVM to receive notifications from an

object of interest in another JVM
• Chains of observers may be inserted between object of interest and

subscriber
• Main objects involved

– Event generators: object that allows other objects to subscribe to its events,
and generates notifications

– Remote event listeners: objects that can receive notifications
– Remote events: objects passed by value to remove event listeners

• I.e., this is what is called “notifications” above

– Third-party agents: objects that may be interposed between an object of
interest and a subscriber

• Can be set up by event generator or subscriber to provide different QoS or
implement different policies

• Constrast with CORBA’s Event Service later
– CORBA-IV lecture

– Project 5

CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5: © 2000 David E. Bakken 3636

Java RMI
• Read text chapter 5.5: not covering in class
• Don’t worry about

– Low-level details

– Memorizing class names

– …

• Do
– Understand high-level features

– Similar features, tools, hooks, etc. compared to CORBA

