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Introduction
• Distributed programs have pieces running in different processes
• So those processes need to be able to invoke remote operations
• Paradigms for remote invocations

– Remote procedure call (5.3)

– Remote method invocation (general RMI 5.2; Java RMI 5.5)
– Distribute events and notifications (5.4)

• Difference between a collection of procedures and an object?
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Middleware Layers and IPC

UPD and TCP
(protocols chap. 3; APIs 4.2)

Request-Reply Protocol (4.4)

RMI and RPC and Events (chap. 5)

Applications, Services

Marshalling and XDRs (4.3)

Middleware
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Operating
System
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Middleware and Operating Systems
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Goals of Higher-Level Middleware
• Location Transparency
• Heterogeneity across

– Communication protocols

– Computer hardware

– Operating systems
– Programming Languages

– Vendor implementations

• How does middleware provide these?
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Interfaces
• Modern languages let you

– Organize a program into a set of modules that can communicate with each 
other

– Export the operations that can be invoked on each module

• Interface: procedures and variables that can be accessed from other 
modules
– Everything else is hidden from other modules: information hiding

– Allows implementation to change much easier

• Distribute interfaces
– Cannot access a variable directly
– Pointers are invalid

– Don’t want to send all parameters in both direction: input and output 
parameters declared

– Service interface: specification of procedures of a server available for use in 
clients

– Remote interface: specification of methods of an object instance which may 
be invoked by clients
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Interface Description Languages
• Specification of interfaces in a separate language
• Allows for heterogeneity across programming languages
• Used to generate proxies, skeletons, ….
• OSF DCE (RPC), CORBA (distributed object), DCOM IDL (based on DCE), …
• Project #1 IDL:

module Grade {
interface Grader {

boolean add_grade(in string tid, in string pwd, in float grade);
float show_grade(in string sid, in string pwd);

};
interface Security {

boolean check_teacher_pwd(in string tid, in string pwd);
boolean check_student_pwd(in string sid, in string pwd);

};
};
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Object Model
• So what exactly is an object???
• Collection of data and code
• Can be invoked via its methods
• Can have its public data members directly accessed
• Object references

– How a caller invokes an object

– First-class values: have a type, can be assigned to variables, passed as 
params, returned as return value

• Interface: signature of the methods that can be invoked
• Action in an OO program

– Initiated by an object invoking another object’s method
– Can have two effects

• Modify state of object

• Call another object (nested)

• Exceptions: handling error or boundary conditions
• Garbage collection: freeing memory not in use (Java vs. C++ …)
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Figure 5.3  Remote and local method invocations
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Distributed Object Model
• Program consists of a collection of interacting objects
• Objects interact via remote method invocations
• Remote object: any object which can receive a remote invocation
• Remote object references

– An identifier that is used to invoke a remote object
– Can be used throughout a distributed system

– Analogous to local object references
• Identifies target object
• May be passed as parameters and return values

– Represented very differently from a local object reference

• Remote interface: specifies methods available for invocation
• Garbage collection: reclaim memory when no remote clients need object
• Exceptions: many more things can go wrong….
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Distributed Objects vs. Other Middleware
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Delivery Guarantees for RMIs
• Techniques for providing reliable delivery

– Retry request message
– Duplicate request filtering

– Retransmission of replies

Client Server

doOperation

(wait)

(continue)

getRequest
select object

execute method

sendReply

Request message

Reply message
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Invocation Semantics
• Maybe invocation semantics

– Invoker cannot tell if a remote method has been executed
– Can suffer from omission failures: request is dropped

– Can suffer from crash failures: server fails

– Useful only when these failures are acceptable

• At-least once invocation semantics
– Invoker receives reply and knows method executed, or receives exception

– Can suffer from crash failure: server fails
– Can suffer from arbitrary failures: multiple executions cause errors

– Useful only with idempotent operations

– Provided by Sun RPC

• At-most-once invocation semantics
– Invoker receives reply and knows method executed, or receives exception

– Reply implies executed exactly once
– Exception implies 0 or 1 executions

– Provided by Java RMI and CORBA

• What are semantics of a local method call?
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Figure 5.5 Invocation semantics 

Fault tolerance measures Invocation 
semantics

Retransmit request 
message

Duplicate 
filtering

Re-execute procedure 
or retransmit reply

No Not applicable Not applicable Maybe

Yes No Re-execute procedure At-least-once

Yes Yes Retransmit reply At-most-once



CptS 464/564 Fall 2000 Distributed Objects and Remote Method Invocations Ch5:  © 2000 David E. Bakken 1515

Transparency
• Original RPC [Birrell and Nelson, 1984] tried to make remote call like 

local one
– No distinction in syntax
– Hiding marshalling and message passing

– Retransmissions hidden

• But local calls are not local ones!
• What to do?

– Try to provide complete transparency

– Allow hooks to abort a remote invocation that is taking too long (Argus)
– Have separate syntax for remote interfaces (Sun Labs 1994)
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Implementing RMIs
• Different (logical) modules on client and server sides…
• Communication module

– On both client and server

– (re)transmits request and reply messages

– Uses fields in message (how?)
• Message type (request or reply)

• RequestID

• MethodID

• Remote reference module
– Translates between local and remote object references

– Creates object references
– Maintains a remote object table on each host

• Server: remote object instances

• Client: proxies for a given remote object
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Figure 5.6 The role of proxy and skeleton in remote method invocation
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Implementing RMIs (cont.)
• Proxy: provide access transparency to client

– Implement exact same methods
– Hide details of 

• Remote object reference details

• Marshalling

• Message sending

• Dispatcher
– Demux point for communication software
– Upcalls to method in skeleton

– Uses methodID

• Skeleton
– Unmarshalls arguments from request data structure

– Upcalls to object instance

– Marshalls reply data structure
– Returns to dispatcher
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Implementing RMIs (cont.)
• Binder

– Maintains mappings from text names to remote object references
– Lets clients find the remote object instances they need

– E.g., VisiBroker osagent program

• Activation of remote objects
– Activator: processes that start server processes or object instances

– Active object: one that can accept invocations

– Passive object: one that cannot, but can be made active
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Distributed Garbage Collection
• Goals

– If an object reference is still held anywhere, keep it existing (alt: active)
– If nobody holds a reference, shut down object (alt: make it passive)

• Java distributed garbage collection algorithm
– Based on reference counting
– Works in conjunction with local garbage collector (GC)

– Server tracks which processes that hold ref for each object it manages

– Client gets reference: addRef(obj) invocation to server, then proxy created
– Client’s local GC notices proxy unreachable: removeRef(B) invocation to 

server, then delete proxy
– Server: nobody else refers to object, then reclaim space

– Tolerates comm. failures: addRef(obj) and removeRef(obj) idempotent

– Tolerates client failures: leases
– Why care about client failures here?
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Remote Procedure Call (RPC)
• An RPC is similar to a remote method invocation
• Service interface: description of procedures that can be invoked in an 

RPC service
• Normal semantics provided are at-least-once or at-most-once
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Figure 5.7 Role of client and server stub procedures in RPC
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Sun RPC
• Developed in mid-1980s for Sun’s Network File System (NFS)
• Sometimes called Open Network Computing (ONC)
• Came with Sun’s Unix products and others’
• High-level implementation details

– Can be implemented over either UDP or TCP
– At-least-once call semantics

– Broadcast RPC is an option

• Sun RPC interface language: “XDR”
• Interface compiler for XDR called rpcgen
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Sun XDR
• Originally designed just to describe external data representations
• Later extended to be an interface language
• Meant for use with C
• May be used to define a service interface for Sun RPC by

– Specifying set of procedure definitions
– Specifying supporting type definitions

• Very primitive compared to CORBA IDL or Java
– Not objects, but procedures (OK, its RPC…)
– No service/program names, just program number and version number
– No procedure names, just procedure number and procedure sugnature
– Only one input parameter allowed (can be a struct)
– Only output parameter is the return value (can be a struct)

• Notation for defining the expected things: constants, typedefs, …
• Rpcgen uses XDR code to generate

– Client stub procedures
– Server main procedure, dispatcher, and server stub procedures
– XDR marshalling and unmarshalling procedures fro dispatcher and client and 

server stub procedures
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Sun XDR Example (Figure 5.8)
const MAX = 1000;
typedef int FilePointer;
typedef int FileIdentifier;
struct Data {

int length;
char buffer[MAX];

};
struct writeargs {

FileIdentifier f;
FilePointer position;
Data data;

}

struct readargs {
FileIdentifier f;
FilePointer position;
Length length;

};

program FILEREADWRITE {
version VERSION {

void WRITE(writeargs) = 1;
DATA READ(readargs)=2;

}=2;
}=9999;
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Sample Sun RPC Client
/* File C.c – Simple client for the

* FileReadWrite service */

#include …
main(int argc, char **argv) {

CLIENT *clientHandle;
char *serverName=“foobar”;
readargs a;

Data *data;

/* create socket and client handle */

clientHandle = clnt_create( 
serverName,

FILEREADWRITE,

VERSION, 
“udp”);

assert(clientHandle != NULL);

a.f = 10;

a.position = 1000;

/* call stub */
data = read_2(&a, clientHandle);

…

clnt_destroy(clientHandle);
}
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Sample Sun RPC Server Procedures
/* File S.c – server procedures for 
* the FileReadWrite service */
#include …

void *write_2(writeargs *a) {
/* do the actual writing */

}

data *read_2(readargs *a) {
static Data result;  /* must be static */
result.buffer = … /* file reading */
result.length = … /* amt read */
return &result;

}
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Sun RPC Binding
• No network-wide naming (binding) service in Sun RPC

– Clients must specify hostname of server when importing a service interface

• Sun RPC runs a port mapper:
– Local binding service on each host

– Runs on a well-known port on each computer

• Server startup: register with portmapper: program #, version #, port #
• Client startup

– Finds out server’s port by asking portmapper on that host
– Gives program # and version #

• Problem: multiple service instances can run on multiple computers
– May be on different ports

– Q: how to let client multicast using direct broadcast?

– A: broadcast to portmappers and the forward
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Events and Notifications
• Not all actions in all programs are initiated by a client invocation!
• Events allow one object to react to a change happening in another

– Mouse click on computer

– Price of a stock changing

– Modification to a document
– A person with a smart badge entered a room

• Objects that care about an event are notified when the state changes
• AKA publish and subscribe paradigm

– One object publishes type of events it makes available, then sends a stream 
of events

– Other objects that want to get events from the object subscribe or register 
interest

• Objects representing events are notifications
• Main characteristics of event-based systems

– Heterogenous: can glue together components not designed to work together

– Asynchronous: publishers and subscribers are decoupled
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Events (cont.)
• An event source can generate events from one or more types
• Subscribers subscribe using

– Type

– Attributes (e.g., name or identifier, values, …)

• Publishers send an event when one matches type and attributes
• Q: examples of matching?
• Simple event-based dealing room system (Figure 5.9)

– Allow “dealers” of stocks (“traders” in the US) to get latest information on 
prices of stocks they care about

– Information providers provide a constant stream of new information

– Each update to a stock object is an event
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Figure 5.9 Dealing room system
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Distributed Event Notification Roles
• Basic idea: support decoupling between publishers and subscribers
• Roles involved in a sample event system supporting this:

– Object of interest: the object that experiences changes of state that others 
care about

– Event: a method execution completing execution

– Notification: an object containing event info

– Subscriber: an object that has registered to receive notifications about some 
object of interest

– Observer objects: an intermediate object to decouple publishers and 
subscribers

– Publisher: object that declares it will generate notifications
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Figure 5.10 Architecture for distributed event notification
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Sample Event Example (cont.)
• Delivery Semantics

– Suffers from failure model of whatever underlying transport is used…
– Some systems need reliable multicast

– Some systems need realtime guarantees

– E.g., TIBCO (www.tibco.com) and stock traders

• What  observers are used for
– Forwarding

– Filtering of notifications: by values on one object of interest
– Patterns of events: multiple events in one or more object of interest

– Notification mailboxes: store and forward
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Jini Distributed Event Specification
• Jini allows a subscriber in one JVM to receive notifications from an 

object of interest in another JVM
• Chains of observers may be inserted between object of interest and 

subscriber
• Main objects involved

– Event generators: object that allows other objects to subscribe to its events, 
and generates notifications

– Remote event listeners: objects that can receive notifications
– Remote events: objects passed by value to remove event listeners

• I.e., this is what is called “notifications” above

– Third-party agents: objects that may be interposed between an object of 
interest and a subscriber

• Can be set up by event generator or subscriber to provide different QoS or 
implement different policies

• Constrast with CORBA’s Event Service later
– CORBA-IV lecture

– Project 5
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Java RMI
• Read text chapter 5.5: not covering in class
• Don’t worry about

– Low-level details

– Memorizing class names

– …

• Do
– Understand high-level features

– Similar features, tools, hooks, etc. compared to CORBA


