
11

Linda, FT-Linda, and Jini

Prof. Dave Bakken

CptS 464/564
November 8, 2000

Linda, FT-Linda, and Jini 22

Outline of Lecture & Further Resources
• LindaTM

– http://www.cs.yale.edu/Linda/linda.html
• FT-Linda

– http://www.cs.arizona.edu/ftol/languages/
– D. Bakken and R. Schlichting, Supporting Fault-Tolerant Parallel

Programming in Linda, IEEE Transactions on Parallel and
Distributed Systems, vol. 6, no. 3, March 1995, pp. 287-302

• JiniTM

– http://www.sun.com/jini/
– Core Jini by W. Keith Edwards, Prentice-Hall
– The Jini Specification by Arnold et al., Addison-Wesley
– Jini in a Nutshell by Scott Oaks & Henry Wong, Addison-Wesley

• JavaSpacesTM

– http://www.java.sun.com/products/javaspaces/index.html
– Eric Freeman, Susanne Hupfer, and Ken Arnold, JavaSpacesTM

Principles, Patterns and Practice, Addison Wesley, 1999.

Linda, FT-Linda, and Jini 33

Linda
• Linda is a coordination language

– Provides primitives to augment an existing computational language
such as C

– Developed at Yale in middle 1980s (David Gelernter)
– Originally intended for easier parallel programming
– When distributed, is an example of (what is now called) middleware

• Linda’s main abstraction is tuple space, an unordered bag of
tuples
– Tuple: logical name and zero or more typed values

• Tuple space (TS) is an associative, distributed shared
memory
– Associative: address by content, not location
– Temporal and spatial decoupling of processes aids ease of use

• Temporal decoupling: processes don’t have to have overlapping lifetimes
• Spatial decoupling: processes don’t have to know each other’s identities

– Tuples are immutable: cannot change in TS, only add and remove

Linda, FT-Linda, and Jini 44

Linda Primitives
• out: deposit a tuple into TS

– out(“N”, 100, true);
– out(“N”, i, boolvar); // same as above if i ==100, boolvar == true
– out is asynchronous – process only waits until arguments evaluated,

etc., not tuple deposited into TS
• in: withdraws matching tuple from TS, based on a template

(the parameters), blocks if none present
– in(“N”, ?i, ?b); // will withdraw one from above (and others!), fill in i

and b.
– in(“N”, 100, true); // same as above, but no variables changed

• rd: just like in, but tuple is not withdrawn
• inp: just like in but not blocking: returns “success” flag
• rdp: just like rd but not blocking: returns “success” flag

Linda, FT-Linda, and Jini 55

Linda Example #1: Distributed Variable
• Initialization: out(“count”, value);

• Inspection: rd(“count”, ?value);

• Updating: in(“count”, ?oldvalue);
// calculate newvalue, maybe f(oldvalue)
out(“count”, newvalue);

Linda, FT-Linda, and Jini 66

Linda Example #2: Bag-of-Tasks
• Task to be solved is divided into subtasks
• Subtasks placed into TS “bag”
• Pool of identical workers repeatedly:

– Withdraw subtask tuple
– Calculate answer

• May generated new subtasks (“dynamic” if so, “static” otherwise)
– Deposit result tuple

• Advantages of “Bag-of-Tasks”
– Transparent scalability
– Automatic Load Balancing
– Ease of utilizing idle workstations

• Note: “Bag-of-Tasks” also called “Replicated Worker”

Linda, FT-Linda, and Jini 77

Bag-of-Tasks Worker
process worker

while true do
in(“work”, ?subtask_args);
calc(subtask_args, var result_args);
for (all new subtasks created by this subtask) // in calc…

out (“work”, new_subtask_args); // in calc…
out(“result”, result_args);

end while
end process
• Problems

– Lost tuple problem: a failure causes a tuple to be lost
– Duplicate tuple problem: failure causes subtask tuples to be

regenerated

Linda, FT-Linda, and Jini 88

FT-Linda
• PhD dissertation research of Bakken, concluded in 1994
• System model

– Distributed system with no physically shared memory – only message
passing

– Failure model: fail-silent
• FT-Linda runtime converts into fail-stop by detecting and depositing a

distinguished failure tuple
– Globally unique logical process IDs (LPIDs)

• Exactly one for every running process
• If a process fails, another process may become that LPID

• Main Fault Tolerance Constructs
– Stable tuple spaces
– Atomic execution of tuple space operations

• Atomic guarded statements: all-or-none execution of multiple TS
operations

• TS transfer primitives: atomically move/copy tuples between TSs

Linda, FT-Linda, and Jini 99

Supporting Stable Tuple Spaces
• Support different kinds of tuple spaces
• Tuple space attributes: resilience and scope
• Resilience: stable or volatile

– Stable: survives N-1 failures with N replicas
– Volatile: no survival

• Scope: Shared or private
– Shared: any process may use
– Private: only the LPID which created it may use it

• TS creation
– At startup, one {stable,shared} TS, TSMain, is created
– handle = ts_create(resilience, scope, LPID)
– handle is passed as first argument to all FT-Linda TS operations

• “replicated TS”: shared resilience
• “local TS” or “scratch TS”: {volatile,private}

Linda, FT-Linda, and Jini 1010

Atomic Guarded Statement (AGS)
• < guard ! body >

– guard: in, inp, rd, rdp, true
– body: series of: in, rd, out, move, copy, skip

• AGS blocks until guard succeeds or fails
– Success: matching tuple found or true returned

• true matches immediately
• In and rd may match immediately, later, or never
• Inp and rdp succeed if matching tuple present at start of AGS

– May be negated with not so fails if a match is present

– Failure: opposite of success, as per above
• Only guard may block

– Exception thrown if operations in body block
• TS operations must all be inside an AGS

Linda, FT-Linda, and Jini 1111

FT-Linda (Static) Bag-of-Tasks Worker
process worker

while true do
< in(TSMain, “work”, ?subtask_args) !

out(TSMain, “in_progress”, my_hostid, subtask_args) >
calc(subtask_args, var result_args);
< in(TSMain, “in_progress”, my_hostid, subtask_args) !

out(TSMain, “result”, result_args) >
end while

end process

Linda, FT-Linda, and Jini 1212

FT-Linda (Dynamic) Bag-of-Tasks Worker
process worker

TSScratch = ts_create(volatile, private, my_lpid())
while true do

< in(TSMain, “work”, ?subtask_args) !
out(TSMain, “in_progress”, my_hostid, subtask_args) >

calc(subtask_args, var result_args)
for (all new subtasks created by this subtask) // in calc…

out (TSScratch, “work”, new_subtask_args)
out(TSScratch, “result”, result_args) // static: was in AGS

< in(TSMain, “in_progress”, my_hostid, subtask_args) !
move(TSScratch, TSMain) >

end while
end process

Linda, FT-Linda, and Jini 1313

Monitor Process
process monitor

while true do
// one of these failure tuples generated for each replica
in(TSMain, “failure”, ?host)
// regenerate all in_progress tuples found from host
while < inp(TSMain, “in_progress”, host, ?subtask_args)

! out(TSMain, “work”, subtask_args) > do
noop

end while
end process

• Note: monitor process can fail and this still works

Linda, FT-Linda, and Jini 1414

Disjunctive AGS
• Disjunctive Form, like a select call:

< guard1 ! body1

or
guard2 ! body2

or
…

or
guardn ! bodyn

>
• Blocks until at least one guard succeeds

• Note: in future slides, we normally omit TSMain for brevity…

Linda, FT-Linda, and Jini 1515

FT-Linda Tuple Space Semantics
• Strong inp/rdp:

– guarantees on inp/rdp matching: first Linda to do this
– Yale dissertation said it was not possible (even unreplicated!)

• Oldest-matching semantics:
– Matching tuple which has been in TS longest is returned

• out operations are not completely asynchronous
– Guaranteed to be found in TS in same order of outs in program
– Caller of out does not need to block until tuple deposited in TS

• Just like Linda

Linda, FT-Linda, and Jini 1616

FT-Linda Opcodes
• Problem: don’t want to allow arbitrary computation inside a

TS operation’s arguments
– Causes problems for replication if arguments are not the first
– But we need some computation…

• Solution: allow (binary) opcodes in an AGS
– PLUS, MINUS, MIN, MAX

• Example: client using actively replicated server
• Server init (once per server replica group):

– Out(“sequence”, server_id, 0)
• Client calling service

< in(“sequence”, server_id, ?sequence) !
out(“sequence”, server_id, PLUS(sequence, 1))
out(“request”, server_id, sequence, command, args) >

< in(“reply”, server_id, sequence, ?reply_args) ! skip >

Linda, FT-Linda, and Jini 1717

FT-Linda Implementation Overview
• Components

– Precompiler: translates FT-Linda and C into just C
– FT-Linda library: implements API for FT-Linda operations
– TS State Machine: replica of a TS
– Multicast substrate: deliver AGS operations to all TS replicas in same

order (total and atomic)
• Scratch TSs are just a single local copy, others are replicated
• Note: in Linda, associative memory does not cost that much!

– Patterns (tuple signatures) can be mapped into an integer to hash on
– Only one variable usually has value specified to match on: hash on it

Linda, FT-Linda, and Jini 1818

Jini
• Purpose: allow groups of services and users to federate into

a single, dynamic distributed system (Jini community)
• Goals

– Simplicity of access
– Ease of administration
– Support for easy sharing – “spontaneous” interactions
– Self-healing of Jini comunities

• Main operations
– Discovery: find a lookup service
– Join: register your service with a lookup service
– Lookup: find a service in the lookup service

• Done by type: Java interface type
• Local object (like CORBA proxy/stub) returned to client

– Invoke: use the local object to call the service

Linda, FT-Linda, and Jini 1919

Other Jini Notes
• Leasing: automatic garbage collection

– Service granted for a limited period of time: a lease
– If lease not renewed (it expires), resources freed

• Transactions
– Two-phase commit
– Note: Jini, and JavaSpaces are not databases
– Jini (JavaSpaces) supports full transactions (two-phase commit),

“begin transaction” and “end transaction” etc.
– FT-Linda provides a lightweight (“one-shot”) transaction, not with

“begin/end”, but Atomic Guarded Statement with carefully limited
actions allowed

• This is so AGS info can be packed into one multicast message and
performed with just that message delivery

• Events
– Can register for callbacks for events of interest

Linda, FT-Linda, and Jini 2020

Jini Example
• Start: one service – lookup – running on network
• Printer starts up

– Finds lookup service
– Registers self with lookup service (no user intervention)

• Laptop with word processor enters room
– Word processor finds lookup service
– Word processer looks up printer
– Word processor can also optionally

• Register to get callback if printer goes away
• Register to get callback if a new printer registers itself

– Word processor invokes printer (sends it a printer job)
• Printer (not word processor) controls dialog box – only it knows what it

should look like, perhaps in ways not known when word processor made

Linda, FT-Linda, and Jini 2121

JavaSpaces
• Jini is built on top of JavaSpaces!
• JavaSpaces is based on Linda!
• Main JavaSpace (JS) operations

– Add an Entry object into JS
– Read an Entry object from JS
– Remove an Entry object from JS
– Register as a listener of an Entry object

Linda, FT-Linda, and Jini 2222

JavaSpace Differences from Linda
• Strong typing

– Can have multiple JS (Java) types per Linda pattern
• Entries are objects, so they can have methods (behavior)
• Leasing
• Multiple JSs possible

– Not true for first Linda implementations

Linda, FT-Linda, and Jini 2323

JavaSpaces Replicated Worker Example
• (From “JavaSpaces Principles, Patterns, and Practice”)

Public class worker {
for (;;) {

Task template = new Task(…);
Task task = (Task) space.take(template, …);
Result result = compute(task);
space.write(result, …)

}
}

Linda, FT-Linda, and Jini 2424

Other Jini Notes
• Jini’s competitor at Microsoft is “Universal Plug and Play”
• Jini-related distinguished speaker was here April 28:

– Jini-like research prototype system, Aladdin, from Microsoft
Research, but where devices do not have to be smart (just
configurable)

– Speaker: Yi-Min Wang
• Well-known fault-tolerance guy
• DCOM bigot (Bakken is a CORBA bigot…)

