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Naming in Context
• “What’s in a name? That which we call a rose by any other name would 

smell as sweet”
– Shakespeare, Romeo and Juliet

• “And if his name be George, I'll call him Peter; for new-made honour
doth forget men's names”
– Shakespeare, King John

• “Call things by their right names.... Glass of brandy and water! That is 
the current but not the appropriate name: ask for a glass of liquid fire 
and distilled damnation.”
– Robert Hall, Gregory's Life of Hall

• “And last of all an Admiral came,
A terrible man with a terrible name, --
A name which you all know by sight very well,
But which no one can speak, and no one can spell.”
– Robert Southey, The March to Moscow, Stanza 8

• The Borg (from Star Trek, not Redmond) seems to                 
have  the most scaleable naming system ever devised….
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Outline
• Introduction to Naming (9.1)
• Name Services and the Domain Name System (9.2)
• Directory and Discovery Services (9.3)
• Case study: Global Name Service (9.4)



CptS 464/564 Fall 2000 Naming:  © 2000 David E. Bakken 44

Overview of Naming
• Two reasons to name things

– Make them human readable
– Support late binding to resources or services

• Lots of things (mostly resources) are named in a distributed system
– Computers
– Services
– Remote objects
– Remote files
– Users

• Names facilitate communication and resource sharing
• Users can’t communicate with one another in a DS unless they can

name one another
– Email address

• Identifier: name interpreted only by a program
– Example: object reference, NSF file handle
– Identifiers chosen for their efficiency of lookup and storage
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Pure and Impure (non-pure) Names
• Pure name: a bit pattern used for an identifier

– Only direct use is for comparing against another identifier
• Impure (non-pure) name: one which is not pure, e.g.

– /net/ted/bakken
– joe@foo.bar.com
– Impure names carry commitments (structure above…)
– Pure names are attractive because they commit you to nothing

• Recall purpose of names was to identify values
• In practice, lookup tables (or directories) are often replicated

– System robustness
– Ease of access (can’t find one nearby; phone books good example…)

• But replication creates complications….
– What directory to use?  Not always obvious….
– E.g., “Arnold Q. Snailwright, 13 Meadow Lane” – What directory to find it in?

• Ergo, pure names not that good in a distributed system
– Have to be looked up to be of any user
– But where to look one up?  Root servers…
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Names, Addresses, and Attributes
• A name is resolved when it is translated into data about the named item

– Note: book uses the term “object” here, I prefer “item”
• Associating a name and value is called binding
• Names are generally bound to attributes of the named item, instead of 

the items themselves
• Attribute: value of a property associated with an item
• Most common attributed: address of an item
• Example 1: Domain Name Service attributes of a computer name

– IP Address
– Type of entry (mail server or normal host)
– Length of time entry is valid

• Example 2: X.500 directory service example attributes for a person
– Email address
– Telephone number

• Example 3: CORBA Naming service: maps name onto object reference
• Example 4: CORBA Trading service: maps name onto object reference 

plus arbitrary number of other attributes
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Names, Addresses, and Attributes cont.
• An ‘address’ can often be just another name that must be looked up
• Or the name may contain another name to be looked up

– E.g., IP Address must be looked up to obtain a network address (ethernet)
– Web browsers and email clients use the DNS to interpret names embedded 

in URLs or email addresses
• Figure 9.1 follows

– Note the URL could have been looked up from some higher level service…
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Figure 9.1: Composed naming domains used 
to access a resource from a URL

http://www.cdk3.net:8888/WebExamples/earth.html

URL

Resource ID (IP number, port number, pathname)

Network address

2:60:8c:2:b0:5a file

Web server

55.55.55.55 WebExamples/earth.html8888

DNS lookup

Socket
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Names and Services
• Two categories of names…
1. Names names used in a distributed system are specific to some 

particular service
– Client passes that along when requesting something
– E.g., filename
– E.g., process ID

2. Names valid beyond the scope of a single service (often globally valid)
– User names
– Email addresses
– Computer names
– Service names
– Note: all of these names must be readable to and meaningful to humans

• Q: Why?
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Uniform Resource Locators (URLs)
• URLs are a kind of Uniform Resource Identifier (URI)
• URLs have some key properties

– Scale to an unlimited set of web resources
– Efficient handles for resources

• Disadvantage of URLs
– Basically a lot like an address, and suffer from the same disadvantages
– Resource deleted or moved: dangling link

• Other type of URI: Uniform Resource Name (URN)
• Goals

– Solve dangling link problem
– Provide richer modes of finding resources on the web

• Idea: have a URN that persists, even if resource/item moves
• Owner

– Registers name and current URL
– Registers the new URL if it is moved
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URNs (cont.)
• URN syntax:  urn:nameSpace:nameSpace-specificName
• URN examples

– urn:ISBN:0-201-62433-8
– urn:foo.bar.edu:TR-2000-58
– (any other examples from the real world???)

• Uniform Resource Characteristics (URCs): subset of URNs
• URC is description of a Web resource consisting of attributes of the 

resource
– ‘author=Leslie Lamport’
– ‘keywords=name,rose,Shakespeare’

• URCs are for 
– Describing web resources
– Looking up web resources that match their attribute specification
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Replication and Consistency in Naming
• Distributed database semantics: when an update occurs, the next 

queries get the latest information (strong semantics)
• But nothing for free …. One of two costs must be paid

– Sometimes an update cannot be done because can’t contact enough 
replicas

– Sometimes can’t do a read because an update is not yet stable or not 
enough replicas can be contacted

• Naming system requirements
– Accessability (availability) deemed much more important than consistency
– I.e., its more important to get an answer than to be guaranteed to 

(eventually) get the absolute last one
• Underlying assumptions

1. Naming data do not change fast, so inconsistencies rare
2. If you get an obsolete/inconsistent name and try to use it, it won’t work
3. Even if it does somehow work, it won’t hurt anything

• Q: Are these assumptions true?  Examples?
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Outline
• Introduction to Naming (9.1)
• Name Services and the Domain Name System (9.2)
• Directory and Discovery Services (9.3)
• Case study: Global Name Service (9.4)
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Name Services
• A name service stores a collection of one or more naming contexts
• Naming context: set of bindings between textual names of items and 

their names attributes
• Operations of a name service

– Resolve a name (most important one)
– Create new bindings
– Delete bindings
– List all bound names
– Delete contexts

• Name management is separate from other services in a DS, because
– Resources managed by different services can use the same naming scheme

• Examples?
– Can’t always predict scope of sharing … may need to share (and thus name) 

items created in different administrative domains
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General Name Service Requirements
• Name services originally very simple (single domain for one LAN)
• Global Name Service (DEC, 1986) first major naming service; goals

– Handle arbitrary number of names and serve an arbitrary number of 
administrative organizations

– Long lifetime: handle lots of changes in structure
– High availability
– Fault Isolation (contain local failures)
– Tolerance of mistrust

• Other examples
– Globe name service (Vjrie University, late 90s)
– Internet Doman Name System (DNS)
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Name Spaces
• Name space: collection of all valid names recognized by a particular 

service
– Valid means the service will try to look it up; not that it is bound for sure
– Name spaces require a syntactic definition

• Internal structures of names: one of
– Hierarchical namespace: Unix files /etc/hosts
– Organizational namespace: Internet DNS: eecs.wsu.edu
– Flat set of letters and numbers

• Advantages of hierarchical names
– Each part of the name resolves to a separate context
– Same name may be used with different meanings in different contexts
– Potentially infinite namespace: can grow indefinitely
– Different contexts can be managed by different people
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Aliases and Naming Domains
• Aliases

– Similar to a Unix symbolic link
– Allows a convenient name to be substituted for a more complicated one
– DNS allows aliases: one name stands for another name

• Main reason for aliases: location transparency
– Standardized name (within an org) for mail or ftp or other servers
– E.g., mail.eecs.wsu.edu instead of thalia.eecs.wsu.edu

• Naming domain: name space for which there exists a single overall 
administrative authority for assigning names within it
– The authority can delegate some parts of it to others (subdomains)
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Customization of Name Spaces
• Namespaces can be customized in a lot of ways…
• File system mounting: lets users import files stored on servers with a 

local name on their server
– Yet the local names on one server can still be managed autonomously from 

the shared fileservers
– A shared file may be accessed from different names in different namepaces
– Same name on different services/hosts can refer to different items
– Example 1: file “/etc/passwd” on different hosts
– Example 2: /bin/netscape bound to /bin/Linux/netscape or /bin/W2K/netscape
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Name Resolution
• Resolution: iterative process of presenting a name to naming contexts
• Naming context choices

– Map a given name onto attributes directly
– Maps it onto a further naming context

• Partitioning of the data (namespace) means that a local name server 
cannot resolve all names without help from other name servers
– Example: eecs.wsu.edu cannot provide IP address for foo.bar.com

• Navigation: process of locating naming data from multiple name servers 
to resolve a name

• Navigation design choices
– DNS support iterative navigation model (Figure 9.2)
– Multicast navigation: broadcast to all name servers, the one with the named 

attributes replies
– Recursive navigation (Figure 9.3)
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Figure 9.2
Iterative navigation
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Figure 9.3: Non-recursive and recursive 
server-controlled navigation
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Caching
• Client name resolution software maintains a cache of results from 

previous resolutions
• Caching is key for performance and availability
• Caching only really works because names change rarely
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Domain Name System (DNS)
• Original Internet naming setup (till circa 1985): centralized master file 

downloaded to all computers that needed them
• Problems

– Scalability
– Did not allow any local autonomy and administration
– Could only be used for names of computer addresses, not other things

• Domain Name System replaced this
• Items of interest are mainly computers

– IP addresses stored as attributes
– Could store any other kind of item with any kind of attribute with DNS, but not 

often done
• Millions of names bound by Internet DNS, resolvable from any client
• Scalability achieved by

– Hierarchical partitioning of the name database
– Replication of the naming data
– Caching results from name resolution queries
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Domain Names
• Internet DNS partitioned by

– Organization
– Geography

• Top-level organizational domains
– .com
– .edu
– .gov
– .mil
– .net
– .org
– .tv (new)
– …. (soon probably .sex, others)

• Top-level geographical (country) domains
– .us
– .uk,
– .jp
– ….
– Geographic names are not always in the country….
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Kinds of DNS Queries
• Host name resolution: resolve a hostname into its IP address

– nif-c1.eecs.wsu.edu to 134.121.64.1
– Can use program nslookup on many OSs (Unix, Linux, …)

• Mail host location query:
– Example: need to send mail to joe@foo.bar.com
– DNS query to resolve foo.bar.com with type designation ‘mail’
– Returns a list of domain names of hosts that can accept mail for foo.bar.com
– Returns a preference (integer) for each host to tell client preferred order
– Can optionally return the IP addresses too

• Reverse resolution: give the domain name for an IP address
• Host information: DNS can store host info: architecture, OS, …

– This can be a security hazard …. some suggest this not be implemented
• Well-known services: returns

– List of services run by a computer: telnet, ftp, ….
– Protocol used to access them (UDP, TCP)
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DNS Name Servers
• Recall DNS scalability achieved by

– Hierarchical partitioning of the name database
– Replication of the naming data
– Caching results from name resolution queries

• DNS database is distributed across a logical network of servers
– Each server holds part of the naming database
– Locality common: most queries are for local computers
– Each server also records domain names and addresses of other name 

servers to help satisfy non-local queries
• DNS naming data are divided into zones, with

– Attribute data for names in the direct domain (not sub-domains)
– Names and addresses for at least two name servers that provide 

authoritative data for the zone
– Names of name servers that hold authoritative data for delegated sub-

domains, and their IP addresses
– Zone management parameters governing caching and replication of zone 

data, etc.
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DNS Name Servers (cont.)
• A server may hold authoritative data for zero or more zones
• Each zone must be replicated authoritatively on at least two servers
• System administrators enter data for a zone into a master file

– Serves as the source of authoritative data from the zone
• Two kinds of servers that provide authoritative data

– Primary server (a.k.a. master server) reads zone data directly from local 
master file

– Secondary server downloads zone data from a primary server
• Any server may cache data from other servers

– Clients given the cached data must be told it is non-authoritative
– Each entry in zone has time-to-live value to invalidate cached data eventually
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Figure 9.4
DNS name servers

Note: Name server names 
are in italics, and the 
corresponding domains are in 
parentheses. 

Arrows denote name server entries 

a.root-servers.net
(root)

ns0.ja.net
(ac.uk)

dns0.dcs.qmw.ac.uk
(dcs.qmw.ac.uk)
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(qmw.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

ns.purdue.edu
(purdue.edu)

uk
purdue.edu

ic.ac.uk
qmw.ac.uk

dcs.qmw.ac.uk
*.qmw.ac.uk

*.ic.ac.uk*.dcs.qmw.ac.uk

* .purdue.edu

ns1.nic.uk
(uk)

ac.uk
co.uk

yahoo.com
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Navigation and Query Processing
• DNS client is called a resolver

– Usually implemented as library software
• Actions of the resolver

– Accepts queries 
– Formats them into messages of legal DNS syntax
– Communicates with one or more name servers

• Uses simple request-reply protocol with UDP and well-known port
– Times out and resends query if needed

• DNS architecture allows for both recursive and iterative navigation
– Resolver specifies which kind of navigation required when contacting name

server
– Name servers are not bound to implement recursive navigation: ties up 

threads
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Discussion of DNS
• It works pretty well!
• Gives pretty short response times for lookups, given the scale
• DNS allows naming data to become inconsistent

– Contained in caches, secondary servers
– Does not hurt anything until its used
– DNS does not address how staleness is detected

• DNS database represents pretty much the lowest common denominator 
of what would be considered useful by Internet communities

• DNS limitations
– Rigidity w.r.t. changes in the structure of the name space
– Lack of ability to customize the name space to suit local needs
– Both overcome in research system global name service (Sec 9.4)
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Outline
• Introduction to Naming (9.1)
• Name Services and the Domain Name System (9.2)
• Directory and Discovery Services (9.3)
• Case study: Global Name Service (9.4)
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Directory and Discovery Services
• Name servers

– Store collections of <name, attribute>
– Attributes generally looked up from a name
– Dual is obvious: looking up a name from an attribute
– Nice: sometimes don’t know name of what you want, but know attributes

• Example user queries
– “What is the name of the person with phone 509-335-2399?”
– “What are names of printers, in my building, that can print PostScript, that 

can print in color, that has hi-res and lots of memory?  How busy and 
available are they now?”

• Directory service: service that lets you look up names from attributes
– Examples: Microsoft Active Directory, X.500, LDAP
– Also called Examples: Microsoft Active Directory, X.500, LDAP
– Also called yellow pages services
– Traditional name services also called white pages services
– Directory services also called attribute-based name services
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Discovery Services
• Discovery service: directory service that registers services provided in a 

spontaneous networking envirnoment
– Interface for servers: registering and de-registering services
– Interface for clients: look up services they need

• Example: occasional visitor to a company or hotel needs to print a doc
– User can’t be expected to configure names of printers or to guess them
– User looks up the printer it needs

• Q: what conventions are involved here?

• Looking up a service may not involve a user
– Refrigerator discovers and contacts error-logging service when having 

problems (TV commercial…)
• Context for discovery in a discovery service is called its scope

– Often local network reachability defines the scope
– Contrast with more general directory services: global scope
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Jini
• Jini [Waldo, Arnold, and others] is Java-based

– Assumes JVMs running on all computers
– Can thus use RMI for the remote invocations
– Can thus download code as necessary

• Jini provides
– Service discovery
– Ransactions
– Shared dataspaces called JavaSpaces (like Linda’s Tuple Spaces)
– Events
– (Only cover Jini’s discovery service here…. )

• Note: a Jini service may be registered with more than one lookup service
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Jini Lookup, Bootstrapping, and Leases
• Lookup matching of service offers to client requests can be based on

– Attributes (like any directory service)
– Java types

• E.g., request a color printer to which the client has the Java interface

• Bootstrapping: how can a client locate the lookup service?
– Choice 1: know addresses of the lookup service ahead of time
– Choice 2: multicast to well-known IP multicast address
– Choice 3: lookup services can announce their existence to same multicast 

address
• Clients can subscribe to learn of new lookup services

• Jini uses leases (we’ve seen them before)
– When services register, they are given minimum amount of time their entry 

will be valid
– Must contact the lookup service before that time has passed, or they are 

assumed to have failed and the lookup service can delete the entry
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Figure 9.6
Service discovery in Jini
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Outline
• Introduction to Naming (9.1)
• Name Services and the Domain Name System (9.2)
• Directory and Discovery Services (9.3)
• Case study: Global Name Service (9.4)
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Case Study: Global Name Service
• Global Name Service (GNS) by Lampson et al at DEC Systems 

Research Center (1986)
• Goals

– Must scale to millions of computers and billions of users
– Long lifetime: must work well when

• Grows from small to large
• Network it uses evolves

– Support change in structure of name space: reflect changes in org structures
– Accommodate changes in names of individuals, organizations, and groups
– Accommodate changes in naming structure: takeover, merger, … 

• Focus of Section 9.4
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GNS Details
• Directories are named by multi-part pathnames, relative to

– Root
– A working directory (like Unix filenames0

• Each directory is assigned a unique directory identifier (DI): an integer
• Directory contains list of names and references
• Values stored at leaves are organized into value trees

– Attributed thus can be structured values
• Names in GNS have two parts: <directory name, value name>

– First identifies a directory
– Second part identifies a value tree (or part of one)

• E.g., (Fig 9.7)
– Attributes of a user Peter Smith stored in a value tree named 

<ECUK/AC/QMW, Peter.Smith>
• Directory tree is partitioned, and each partition replicated

– Consistency maintained even with two or more updates (only one succeeds)
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Figure 9.7:  GNS directory tree and value 
tree for user Peter.Smith

UK FR

AC

QMWDI: 322

Peter.Smith

passwordmailboxes

DI: 599 (EC)

DI: 574DI: 543

DI: 437

Alpha GammaBeta
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Accommodating Change
• What happens if we need to change the hierarchy?
• E.g., need to merge two formerly-top-level directories “EC” and “North 

America” under “World” 
• Easy to do, tree-wise, but how does it affect names still in use that use 

the old root?
– <UK,AC,QMW, Peter.Smith>

• Solution uses uniqueness of directory identifiers
– Working root maintained for each program’s environment (like $PWD etc.)
– User agent (library code to do the query) knows working directory, and 

passes it on to the GNS server
• Implementation problem: in a big distributed database, how can GNS 

find a directory given only its identifier (#599)
• Solution: GNS tracks all directories used as working roots in a table of 

“well-known directories” in the real root
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Figure 9.8
Merging trees under a new root
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Restructuring Database for Org. Change
• Scenario: the US becomes part of the European Community (EC)

– Reality check: only in the British authors’ dreams…. 
• Can just move <North America/….> tree under <EC…>

– But then old existing names break
• Solution: put a symbolic link in old entry, pointing to new directory
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Figure 9.9
Restructuring the directory
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