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Administrative Items

* Handouts

— Paper “Practical Uses of Synchronized Clocks in Distributed Systems” by
Barbara Liskov (required for 564 only)

— Paper “Time, Clocks, and the Ordering of Events in a Distributed System” by
Leslie Lamport. (required for 564 only)

— Homework #4
» Slightly updated grading weights:

— Component 464 564
— Exams (2): 45% 30%
— Homeworks (5) and Surprise Quizzes : 15% 20%
— Projects (5): 40% 40%
— Particiation 0% 10%

* Project #4 discussion, then Chapter 10...
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Project 4 Architecture

Supplier1

(Stat:s S?;;vice Event Supplier2
caches, filters,
Channel Supplier3

combines, etc.)
Supplier4

Client1 of
Status Service

A

Client2 of
Status Service

Grading Criteria
* 40% Baseline with “no frills”
* 10% demo (runs OK without crashing, only 5% if no GUI)
* 20% 2 extra features (564 only; 20% max, i.e. no extra credit)
— 10% use event model other than canonical push
— 10% use object wrapper at client to cache a value
— 10% different kind of client to status service
10% client of status service gets callback
— .... (make up your own ... even better)
* 20% originality/realism of exact status service, suppliers, clients, and discussion
of this in your writeup. | will provide a baseline example worth 0%..
* 10% Rest of writeup
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Time in Distributed Systems

» Time is a very useful concept!

» Computers can only be synchronized by network messages, but the
latency can vary...

* We can not synchronize closely enough to be able to, in general, tell the
ordering of two arbitrary events at different computers

* We can, however, establish an ordering on some events, and this can be
used in many situations
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Outline Notations for Reasoning about Time

» Clocks, events, and process states (10.2) * Model
» Synchronizing physical clocks (10.3) — A DS consists of a collection P of N processes {P,, ..., P\}

+ Logical time and logical clocks (10.4) Each process executes on a single processor (no migration)
* Global states (10.5) Processors do not share memory

A process P, has state S; which it transforms as it executes
— Processes communicate only by message passing
» Actions a process can take
— Send a message
— Receive a message
— Transform its state
» Event: occurrence of a single action above
* The sequence of events P, can take can be placed in a single total
ordering, ;, between the events
— lLe. e 2, ¢’iff event e occurs before e’ at P,
— Note: this is well-defined, even with multiple threads, because single

processor
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Notations for Reasoning about Time (cont.) Clocks
» History: the series of events of a process that take place within it *  We now know how to order events at a process, but how to timestamp
« history(p) = h,= <e?, e/, e?, ...> them?

* Operating system
— Reads in computer’s hardware clock value, H{t)
— Adds an offset to produce a software clock: C(t) = A* H(f) + B
» Problem #1: physical clocks on different computers will have skew:
differences at a given instance
* Problem #2: clocks will drift: they will increment H(t) at slightly different
rates

— Drift rate: change in the offset (difference in reading) between H(f) and a
theoretical perfect clock

— Typical drift rates are a few seconds a month
— High precision clocks drift only a few seconds to a few dozen seconds a year
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UTC and GPS

International Atomic Time

— Based on Cs'33 (one second =~ 9 billion transitions).

— Since the earth’s rotation is slowing, this diverges from astronomical time.
Coordinated Universal Time (UTC)

— Based on atomic time

— But with an accasional leap second thrown in to keep it close to astronomical
time.

— Broadcast on shortwave radio stations.
GPS units can also provide time, accurate to 1 microsecond or so

US NIST lets you dial up on a phone and get accuracy to a few
milliseconds

Outline

» Clocks, events, and process states (10.2)
+ Synchronizing physical clocks (10.3)

» Logical time and logical clocks (10.4)

* Global states (10.5)
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Synchronizing Physical Clocks

To know what time things happen at, with any degree of precision, we
need to synchronize our clocks
External synchronization: synchronizing with an authoritative time source
— Clocks C; are accurate to within bound D>0 after this
— l.e., for authoritative source S, | S;(f) - C;(f) | < D, forall it
Internal synchronization: clocks agree with each other
— Clocks C; agree with each other within bound D
- le, | C(t)-C() | <D, forallijt
Clocks that are internally synchronized are not necessarily externally
synchronized!
— Why?
— How?
A clock H((t) is correct if it meets its specs (often in terms of drift rate)
— Ifincorrect, it has failed
— Crash failure: does not return any time
— Arbitrary failure: anything else... (what? effects?)
Note: a clock does not have to be accurate to be correct
— Why? Useful in some situations?

Simple Clock Synchronization
» Simplest possible case: two processes synchronize

— Time server S sends sends message m to process p, including its current
time t
* How can p set its clock?
- Hp(t) =t+ Ttransmission
— S and p are now internally synchronized
* Problem: cannot know T,,,<mission
* Observations
— Can always find T,
— Can generally find T, with high statistical confidence
* 100% in a synchronous system, ipso facto

— Uncertainty of message transmission: u = (T, - T,..)

— Can potentially even derive a pdf of T, .ccion D€IWeenand T, and T,
* Workaround

— SetH(t)=t+ X, where Xis T, or T,  or (T . +T.)2

— What are worst case clock skews for each (in terms of u)?
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Cristian's Clock Synchronization

» Scenario: two processes synchronize
Process p sends message m, to authoritative time server S
S sends back message m;,including its current time ¢
P uses tin m,to update its clock
Figure 10.2, next slide...
* How can P set its clock???
+ Observation:
— Uncertainty u is often small in practice
— So provide a probabalistic synchronization, which depends on u at the time

Figure 10.2
Clock synchronization using a time server
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Cristian's Clock Synchronization (cont.)

* Process p records round trip time
= T,oung = (time m, received) — (time m, sent)
* Naive estimate: assume both latencies are same (reasonable)
= Hy(t) =t+(Tpung/2)
—u=T, 42
» Observation: can often derive T,,,,,, so
— Earliest time that S could have sent m;,is T,,, after m, was sent by p
— Latest time that S could have sent m,is T, before m, was received at p

— Cuts worst case clock skew t0 ( (T,,,ng/2 ) = Trin )
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Berkeley Clock Synchronization Algorithm

» Master time server which does not get requests from clients, but polls its
slaves which are to be synchronized

» Slaves send back their clock values
* Master estimates their local clock times by observing round-trip times
* Master then averages the values to derive a new one
— Tends to cancel out inaccuracies
* Master does not send back the new time to update to
— Because transmission back introduces another element of uncertainty.
» Rather, it sends back the amount (+/-) by which the given slave’s clock
should be updated by.
* Note: Average is a fault-tolerant average

— It chooses subset of clocks whose times do not differ from one another by a
specified amount

— Then takes average from these.
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Network Time Protocol (NTP)

The standard for the Internet; design features:

» Accurate to UTC, despite large and varying delays
— Discriminates between quality of timing data from different sources

* Reliable service, despite lengthy delays of connectivity of given links
— Redundant servers and paths to servers

* Allow frequent resynch to offset drift
— Scales to lots of clients and servers

* Provide security against interference

» Architecture (Fig 10.3, next slide)

— Logical hierarchy called a synchronization subnet

— Primary servers (Strata 1) are directly connected to UTC

— Secondary servers (Strata 2) synch with them

— Etc. down the tree
» Algorithms take into account

— Strata (lower # is better accuracy)

— Roundtrip delays

when assessing quality of time to assess for a given server

» Can reconfigure tree for various reasons...

— Uses authentication techniques, validates return addresses of messages it gets, etc.
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Figure 10.3: An example synchronization
subnet in an NTP implementation

N\
7\ N\

Note:
* Arrows denote synchronization control
* Numbers denote strata

NTP (cont.)

» Three modes of operation

1. Multicast mode: for LAN
— server(s) multicast time
— others set to it, assuming very small delay
Efficient, but not great accuracy

2. Procedure-call mode
» similar to Cristian’s, server accepts time queries from other computers
Useful where multicast not supported, or higher accuracy required
Lots of messages, though

3. Symmetric mode

+ Pair of servers exchange timing data
* Meant for higher levels (lower strata) for highest accuracies

« UDP used for all modes

» Even if messages lost, the timestamps in messages which arrive are
valid...

+ Each message keeps timestamps of a number of recent events
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Figure 10.4: Messages exchanged
between a pair of NTP peers

Server B Ti-2 Ti-1
® Time
\ m m'
* Time
Server A Ti- 3 Ti

Recent messages between processes are tracked

For each pair of messages sent, calculated offset o, and delay d,
NTP servers apply data filtering to most recent 8 < o, d; > values: filter
dispersion

More details in the book...

Not only used for setting clock values, but may choose another server to
synch with (another kind of reconfiguration)!




Outline

» Clocks, events, and process states (10.2)
» Synchronizing physical clocks (10.3)

» Logical time and logical clocks (10.4)

* Global states (10.5)

Logical Time

* Time in Distributed Systems

— Computers can only be synchronized by network messages, but the latency
can vary

— We can not synchronize enough to be able to, in general, tell the ordering of
two arbitrary events at different computers.

— We can, however, establish an ordering on some of the events, and this can
be used in many situations.
* Logical Time
— Builds up a notion of what we can reason about w.r.t. the order of events
— Defines the “Happened-before” relation

— Source: Lamport, Leslie. “Time, Clocks and the Ordering of Eventin a
Distributed System”, Communications of the ACM, Vol. 21, July 1978, pp.
558-565.

* One of the seminal works in distributed systems...
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Happened-Before Relation

» Happened-Before relation, =, based on observations:

1. If two events occur in the same process, then they occurred in the
order in which that process observes them.

2. The receipt of a message happens after its being sent.
3. “Happened-before” is transitive
» Corresponding Rules for events x, y, z, process p, and message m
HB1: x—,—>y, thenx >y
HB2: send(m) = recv(m)
Transitivity: x > yandy > z,thenx 2> z
*  Concurrency: Ifa~=> b and b ~= a, then a||b (“a is concurrent with b”)’

* Note: if x 2 y (“x happened before y”) then y < x (“y happened after x”),
notationally
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Happened-Before Example
a b .
P d ®
1
c d _
P2 physical
& time
[+
P3 *
« Example table of >, <, ||
» Limitations of Happened-Before
— Covert channels
— Too pessimistic: some things a->b did not have a causing b!
» Happened-before also called
— Causal ordering
— Potential causality
— Lamport ordering
— (irreflexive) partial ordering
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Logical Clocks

* How to implement “Happened Before”??
» Logical Clock, a monotonically increasing counter.
e Let
— Each process p keeps its own logical clock, Cp, which it uses to timestamp
events
- C, (a)is the logical time at process p at which event a occurred
- C(a) is the logical time at which event a occurred at the process it
occurred at
* Processes keep their own logical clocks, initialized to 0. Updated by
rules:
— LC1: Before each event occurs, increment Cp
- LCz:
* When a process p sends a message m, it piggybacks on m value t= Cp

* When process q receives <m,t>, g computes Cq = max(Cq,t) + 1 then timestamps
m
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physical
time

o]
W
— Qo

* Noteifa—-> bthen LC(a) <LC(b)
» However, LC(a) < LC(b) does not imply a > b
— Above, C(e)<C(b) yet bl e
— Also note that concurrency is not transitive: alle and e||b yet a>b
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Partial Orderings

» Logical clocks impose a partial ordering on set of all events. “A partial
ordering over a set S is a function PO such that, for all s, tin S, either

« 1. PO(s) < PO(t)
« 2. PO(s)>PO(t)
« 3. PO(s) == PO(t)
(Note that PO is defined for all members of S.)”
* Examples:
» S == students in the class
* PO1 == number of coins in the student’s pockets
+ PO2 == student’s grade on project #2
* PO3 == number of teeth in student’s mouth
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Total Orderings and Logical Clocks

» Total order is more strict and sometimes more useful. “A total ordering
over a set S is a function TO such that, for all s, tin S, either
« 1. PO(s) < PO(t)
« 2. PO(s)>PO(t)
e 3. s==
(i.e., it is defined for all members of s, and the function’s value is unique for all
elements of the set)”
* How to create a total ordering out of the LC’s partial one???

— Just break “ties” among logical clocks by using any total ordering over the
processes involved

— e.g., looking at host ID (unique, virtually always comparable))
* (If time, do example from 565 exam, or at end of lecture)
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Outline

Clocks, events, and process states (10.2)
Synchronizing physical clocks (10.3)
Logical time and logical clocks (10.4)
Global states (10.5)
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Global States

General problem: is a given property true of a DS as it executes?

— Huge number of applications to these general concepts

Example 1: distributed garbage collection (Fig 10.8a)

— Garbage object: one that has no references to it anywhere in a DS

— Property to prove: no references anywhere to a given object

— Must verify that there are no references to it anywhere in the DS

— But could be one in transit in a message...

Example 2: distributed deadlock (Fig 10.8b)

— Detecting that a DS is deadlocked and cannot make progress (without help)
— Property to prove: a cycle in the “waits for” relationship exists
Example 3: distributed termination detection (Fig 10.8c)

— Detecting that a distributed algorithm has terminated

— Active process: one still doing work

— Passive process: one not active, but that will respond to a message

— Property to prove: all processes are passive, and no messages are in transit
Example 4: distributed debugging (Sec 10.6)

— Property to prove: value for a given variable everywhere in a system is x

— Another property: each p; has variable x, and constraint |x;— x| < 6, V i holds

a. Garbage collection

b. Deadlock

c. Termination

Figure 10.8

Detecting global properties

Py b2
object
reference

message
¢ garbage object!
Py wait-for P2
] P2
activate

Time an lobal ates: avi . Bakken
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Notations for Global States

Context

— We might be able to observe succession of states in an individual process

— But how can we construct a valid global state?

— Problem: lack of global time

— Q: how might you construct a valid global state with perfect global clocks?
Consistent global states can still be done with imperfect clocks, sort of...
Notation and definitions

— history(p) = h;=<ef, e, e?, ...>

— Prefix of a process’s history: hx=<e?, e/, ...., e/>

— State of a process: s/ c is the state of p; right before e/ occurs; s? is init state
Notational problem: how to deal with messages in transit from p; to p,?

— Record state of the (logical) channel from p; to p;

— How: check the two processes events
« recall message sends and receives are events (that plus modifying state)
- If p;has “send m” as e/" and p; has “receive m" as /" then is in the channel




Notations for Global States (cont.)

+ Global history: union of the individual ... histories: H=h,uh,U...U hy,
* Forming a global states

— Mathematically, we could take any set of states of the individual processes to
form a global state S = {s,, s,, ... S5}

— But what states are meaningful: what could have happened at the same
time? ....

— Recall a process state corresponds to the initial prefix of its history

— So a global state corresponds to initial prefixes of the individual processes’
histories

* A cut of the system’s execution: a subset of its global history that is a
union of prefixes of process histories: C = h,¢" U h,2U ... UhCN
— Q: What is state s; of p; in global state S corresponding to the cut C?
— A: The state of p,right after the last event processed by p;in C: ¢
— Frontier of cut C: set of events {e,°", e,°2... e,tN}
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Consistent and Inconsistent Cuts (Fig 10.9)

0 1 2 3
€ \ € € I €
r. TN & &

P

my m

. Physical

1 2 time
e e

€2
Cut1 Cut2
+ Frontier of Cutlis <e,% e,0 >

+ Frontier of Cut2is <e,? e,2>
« Cut1 is inconsistent:
— Includes the receipt of message m,: e’
— Excludes the receipt of message m,: e,’
— l.e., cut reflects “effect” but not “cause” .... could not have happened!
— We can tell this by examining the > “happens before” relation
» Cut2 is consistent:
— Both sending and receiving of m, is included
— Sending of m, is included, but not its receipt
» Consistent with its actual execution: message delivery took nonzero time

P2 ‘0\
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Consistent and Inconsistent Cuts (cont.)

» Acut Cis consistent if, for each event it contains, it also contains all the
events that happened-before that event:
— Veventsee C:f>e =>feC
» Consistent global state: one that corresponds to a consistent cut
* Arun: a total ordering of all the events in a global history that is consistent
with each local history’s ordering, ——> (i=1,2,...,N)
» A linearization run (a.k.a. consistent run): an ordering of the events in a
global history H that is consistent with this happened-before relation on H
* Questions:
— Do all runs pass through any or all consistent global states?
— Do all linearization runs pass through any or all consistent global states?

+ State S’ is reachable from state S if there is a linearization that passes
through S and then S’

— Does not guarantee it will be reached, only its possible
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Global state predicates, stability, safety,
and liveness

» Global state predicate: a function that maps from the set of global states
to true or false

— Detecting deadlock or termination amounts to evaluating a predicate
» Stable global predicate: one that, if it becomes true, stays true
— Examples: object is garbage, deadlock, termination
— Unstable example: anything with distributed debugging
» Safety w.r.t. a: (undesirable property) o evaluates to false for all states S
reachable from S,
« Liveness w.r.t. B: for any linearization L starting at S, (desirable
property) B evaluates to true for some state S, reachable from S,
» Safety and liveness are categories of properties discussed a lot in
practice
— Safety properties of form “nothing bad ever happens”
— Liveness properties of form “something good eventually happens”

* Note: skipping “snapshot” algorithm of Sec 10.5.3, and its not testable...
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