Time and
Global States

Prof. Dave Bakken

Cpt. S 464/564 Lecture
November 29 & December 4, 2000

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

Administrative Items

* Handouts

— Paper “Practical Uses of Synchronized Clocks in Distributed Systems” by
Barbara Liskov (required for 564 only)

— Paper “Time, Clocks, and the Ordering of Events in a Distributed System” by
Leslie Lamport. (required for 564 only)

— Homework #4
» Slightly updated grading weights:

— Component 464 564
— Exams (2): 45% 30%
— Homeworks (5) and Surprise Quizzes : 15% 20%
— Projects (5): 40% 40%
— Particiation 0% 10%

* Project #4 discussion, then Chapter 10...

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

Project 4 Architecture

Supplier1

(Stat:s S?;;vice Event Supplier2
caches, filters,
Channel Supplier3

combines, etc.)
Supplier4

Client1 of
Status Service

A

Client2 of
Status Service

Grading Criteria
* 40% Baseline with “no frills”
* 10% demo (runs OK without crashing, only 5% if no GUI)
* 20% 2 extra features (564 only; 20% max, i.e. no extra credit)
— 10% use event model other than canonical push
— 10% use object wrapper at client to cache a value
— 10% different kind of client to status service
10% client of status service gets callback
— (make up your own ... even better)
* 20% originality/realism of exact status service, suppliers, clients, and discussion
of this in your writeup. | will provide a baseline example worth 0%..
* 10% Rest of writeup

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

Time in Distributed Systems

» Time is a very useful concept!

» Computers can only be synchronized by network messages, but the
latency can vary...

* We can not synchronize closely enough to be able to, in general, tell the
ordering of two arbitrary events at different computers

* We can, however, establish an ordering on some events, and this can be
used in many situations

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

Outline Notations for Reasoning about Time

» Clocks, events, and process states (10.2) * Model
» Synchronizing physical clocks (10.3) — A DS consists of a collection P of N processes {P,, ..., P\}

+ Logical time and logical clocks (10.4) Each process executes on a single processor (no migration)
* Global states (10.5) Processors do not share memory

A process P, has state S; which it transforms as it executes
— Processes communicate only by message passing
» Actions a process can take
— Send a message
— Receive a message
— Transform its state
» Event: occurrence of a single action above
* The sequence of events P, can take can be placed in a single total
ordering, ;, between the events
— lLe. e 2, ¢’iff event e occurs before e’ at P,
— Note: this is well-defined, even with multiple threads, because single

processor
CpTS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken CpTS 4647564 Fall 2000 Time and Clobal States: © 2000 David E. Bakken
Notations for Reasoning about Time (cont.) Clocks
» History: the series of events of a process that take place within it * We now know how to order events at a process, but how to timestamp
« history(p) = h,= <e?, e/, e?, ...> them?

* Operating system
— Reads in computer’s hardware clock value, H{t)
— Adds an offset to produce a software clock: C(t) = A* H(f) + B
» Problem #1: physical clocks on different computers will have skew:
differences at a given instance
* Problem #2: clocks will drift: they will increment H(t) at slightly different
rates

— Drift rate: change in the offset (difference in reading) between H(f) and a
theoretical perfect clock

— Typical drift rates are a few seconds a month
— High precision clocks drift only a few seconds to a few dozen seconds a year

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

UTC and GPS

International Atomic Time

— Based on Cs'33 (one second =~ 9 billion transitions).

— Since the earth’s rotation is slowing, this diverges from astronomical time.
Coordinated Universal Time (UTC)

— Based on atomic time

— But with an accasional leap second thrown in to keep it close to astronomical
time.

— Broadcast on shortwave radio stations.
GPS units can also provide time, accurate to 1 microsecond or so

US NIST lets you dial up on a phone and get accuracy to a few
milliseconds

Outline

» Clocks, events, and process states (10.2)
+ Synchronizing physical clocks (10.3)

» Logical time and logical clocks (10.4)

* Global states (10.5)

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

Synchronizing Physical Clocks

To know what time things happen at, with any degree of precision, we
need to synchronize our clocks
External synchronization: synchronizing with an authoritative time source
— Clocks C; are accurate to within bound D>0 after this
— l.e., for authoritative source S, | S;(f) - C;(f) | < D, forall it
Internal synchronization: clocks agree with each other
— Clocks C; agree with each other within bound D
- le, | C(t)-C() | <D, forallijt
Clocks that are internally synchronized are not necessarily externally
synchronized!
— Why?
— How?
A clock H((t) is correct if it meets its specs (often in terms of drift rate)
— Ifincorrect, it has failed
— Crash failure: does not return any time
— Arbitrary failure: anything else... (what? effects?)
Note: a clock does not have to be accurate to be correct
— Why? Useful in some situations?

Simple Clock Synchronization
» Simplest possible case: two processes synchronize

— Time server S sends sends message m to process p, including its current
time t
* How can p set its clock?
- Hp(t) =t+ Ttransmission
— S and p are now internally synchronized
* Problem: cannot know T,,,<mission
* Observations
— Can always find T,
— Can generally find T, with high statistical confidence
* 100% in a synchronous system, ipso facto

— Uncertainty of message transmission: u = (T, - T,..)

— Can potentially even derive a pdf of T, .ccion D€IWeenand T, and T,
* Workaround

— SetH(t)=t+ X, where Xis T, or T, or (T . +T.)2

— What are worst case clock skews for each (in terms of u)?

CPptS 4647564 Fall 2000 Time and Global States: avid E. Bakken

Cristian's Clock Synchronization

» Scenario: two processes synchronize
Process p sends message m, to authoritative time server S
S sends back message m;,including its current time ¢
P uses tin m,to update its clock
Figure 10.2, next slide...
* How can P set its clock???
+ Observation:
— Uncertainty u is often small in practice
— So provide a probabalistic synchronization, which depends on u at the time

Figure 10.2
Clock synchronization using a time server

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

m,
i1 >0
[y]
U
my
p Time server,S
CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

Cristian's Clock Synchronization (cont.)

* Process p records round trip time
= T,oung = (time m, received) — (time m, sent)
* Naive estimate: assume both latencies are same (reasonable)
= Hy(t) =t+(Tpung/2)
—u=T, 42
» Observation: can often derive T,,,,,, so
— Earliest time that S could have sent m;,is T,,, after m, was sent by p
— Latest time that S could have sent m,is T, before m, was received at p

— Cuts worst case clock skew t0 ((T,,,ng/2) = Trin)

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

Berkeley Clock Synchronization Algorithm

» Master time server which does not get requests from clients, but polls its
slaves which are to be synchronized

» Slaves send back their clock values
* Master estimates their local clock times by observing round-trip times
* Master then averages the values to derive a new one
— Tends to cancel out inaccuracies
* Master does not send back the new time to update to
— Because transmission back introduces another element of uncertainty.
» Rather, it sends back the amount (+/-) by which the given slave’s clock
should be updated by.
* Note: Average is a fault-tolerant average

— It chooses subset of clocks whose times do not differ from one another by a
specified amount

— Then takes average from these.

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

Network Time Protocol (NTP)

The standard for the Internet; design features:

» Accurate to UTC, despite large and varying delays
— Discriminates between quality of timing data from different sources

* Reliable service, despite lengthy delays of connectivity of given links
— Redundant servers and paths to servers

* Allow frequent resynch to offset drift
— Scales to lots of clients and servers

* Provide security against interference

» Architecture (Fig 10.3, next slide)

— Logical hierarchy called a synchronization subnet

— Primary servers (Strata 1) are directly connected to UTC

— Secondary servers (Strata 2) synch with them

— Etc. down the tree
» Algorithms take into account

— Strata (lower # is better accuracy)

— Roundtrip delays

when assessing quality of time to assess for a given server

» Can reconfigure tree for various reasons...

— Uses authentication techniques, validates return addresses of messages it gets, etc.

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

Figure 10.3: An example synchronization
subnet in an NTP implementation

N\
7\ N\

Note:
* Arrows denote synchronization control
* Numbers denote strata

NTP (cont.)

» Three modes of operation

1. Multicast mode: for LAN
— server(s) multicast time
— others set to it, assuming very small delay
Efficient, but not great accuracy

2. Procedure-call mode
» similar to Cristian’s, server accepts time queries from other computers
Useful where multicast not supported, or higher accuracy required
Lots of messages, though

3. Symmetric mode

+ Pair of servers exchange timing data
* Meant for higher levels (lower strata) for highest accuracies

« UDP used for all modes

» Even if messages lost, the timestamps in messages which arrive are
valid...

+ Each message keeps timestamps of a number of recent events

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

Figure 10.4: Messages exchanged
between a pair of NTP peers

Server B Ti-2 Ti-1
® Time
\ m m'
* Time
Server A Ti- 3 Ti

Recent messages between processes are tracked

For each pair of messages sent, calculated offset o, and delay d,
NTP servers apply data filtering to most recent 8 < o, d; > values: filter
dispersion

More details in the book...

Not only used for setting clock values, but may choose another server to
synch with (another kind of reconfiguration)!

Outline

» Clocks, events, and process states (10.2)
» Synchronizing physical clocks (10.3)

» Logical time and logical clocks (10.4)

* Global states (10.5)

Logical Time

* Time in Distributed Systems

— Computers can only be synchronized by network messages, but the latency
can vary

— We can not synchronize enough to be able to, in general, tell the ordering of
two arbitrary events at different computers.

— We can, however, establish an ordering on some of the events, and this can
be used in many situations.
* Logical Time
— Builds up a notion of what we can reason about w.r.t. the order of events
— Defines the “Happened-before” relation

— Source: Lamport, Leslie. “Time, Clocks and the Ordering of Eventin a
Distributed System”, Communications of the ACM, Vol. 21, July 1978, pp.
558-565.

* One of the seminal works in distributed systems...

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

Happened-Before Relation

» Happened-Before relation, =, based on observations:

1. If two events occur in the same process, then they occurred in the
order in which that process observes them.

2. The receipt of a message happens after its being sent.
3. “Happened-before” is transitive
» Corresponding Rules for events x, y, z, process p, and message m
HB1: x—,—>y, thenx >y
HB2: send(m) = recv(m)
Transitivity: x > yandy > z,thenx 2> z
* Concurrency: Ifa~=> b and b ~= a, then a||b (“a is concurrent with b”)’

* Note: if x 2 y (“x happened before y”) then y < x (“y happened after x”),
notationally

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

Happened-Before Example
a b .
P d ®
1
c d _
P2 physical
& time
[+
P3 *
« Example table of >, <, ||
» Limitations of Happened-Before
— Covert channels
— Too pessimistic: some things a->b did not have a causing b!
» Happened-before also called
— Causal ordering
— Potential causality
— Lamport ordering
— (irreflexive) partial ordering
CptS 4647564 Fall 2000 Time and Global States: avid E. Bakken

Logical Clocks

* How to implement “Happened Before”??
» Logical Clock, a monotonically increasing counter.
e Let
— Each process p keeps its own logical clock, Cp, which it uses to timestamp
events
- C, (a)is the logical time at process p at which event a occurred
- C(a) is the logical time at which event a occurred at the process it
occurred at
* Processes keep their own logical clocks, initialized to 0. Updated by
rules:
— LC1: Before each event occurs, increment Cp
- LCz:
* When a process p sends a message m, it piggybacks on m value t= Cp

* When process q receives <m,t>, g computes Cq = max(Cq,t) + 1 then timestamps
m

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

physical
time

o]
W
— Qo

* Noteifa—-> bthen LC(a) <LC(b)
» However, LC(a) < LC(b) does not imply a > b
— Above, C(e)<C(b) yet bl e
— Also note that concurrency is not transitive: alle and e||b yet a>b

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

Partial Orderings

» Logical clocks impose a partial ordering on set of all events. “A partial
ordering over a set S is a function PO such that, for all s, tin S, either

« 1. PO(s) < PO(t)
« 2. PO(s)>PO(t)
« 3. PO(s) == PO(t)
(Note that PO is defined for all members of S.)”
* Examples:
» S == students in the class
* PO1 == number of coins in the student’s pockets
+ PO2 == student’s grade on project #2
* PO3 == number of teeth in student’s mouth

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

Total Orderings and Logical Clocks

» Total order is more strict and sometimes more useful. “A total ordering
over a set S is a function TO such that, for all s, tin S, either
« 1. PO(s) < PO(t)
« 2. PO(s)>PO(t)
e 3. s==
(i.e., it is defined for all members of s, and the function’s value is unique for all
elements of the set)”
* How to create a total ordering out of the LC’s partial one???

— Just break “ties” among logical clocks by using any total ordering over the
processes involved

— e.g., looking at host ID (unique, virtually always comparable))
* (If time, do example from 565 exam, or at end of lecture)

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

Outline

Clocks, events, and process states (10.2)
Synchronizing physical clocks (10.3)
Logical time and logical clocks (10.4)
Global states (10.5)

CPtS 4647562 Fall 2000

Time and Global States: © 2000 David E. Bakken

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

Global States

General problem: is a given property true of a DS as it executes?

— Huge number of applications to these general concepts

Example 1: distributed garbage collection (Fig 10.8a)

— Garbage object: one that has no references to it anywhere in a DS

— Property to prove: no references anywhere to a given object

— Must verify that there are no references to it anywhere in the DS

— But could be one in transit in a message...

Example 2: distributed deadlock (Fig 10.8b)

— Detecting that a DS is deadlocked and cannot make progress (without help)
— Property to prove: a cycle in the “waits for” relationship exists
Example 3: distributed termination detection (Fig 10.8c)

— Detecting that a distributed algorithm has terminated

— Active process: one still doing work

— Passive process: one not active, but that will respond to a message

— Property to prove: all processes are passive, and no messages are in transit
Example 4: distributed debugging (Sec 10.6)

— Property to prove: value for a given variable everywhere in a system is x

— Another property: each p; has variable x, and constraint |x;— x| < 6, V i holds

a. Garbage collection

b. Deadlock

c. Termination

Figure 10.8

Detecting global properties

Py b2
object
reference

message
¢ garbage object!
Py wait-for P2
] P2
activate

Time an lobal ates: avi . Bakken

CPtS 4647562 Fall 2000

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

Notations for Global States

Context

— We might be able to observe succession of states in an individual process

— But how can we construct a valid global state?

— Problem: lack of global time

— Q: how might you construct a valid global state with perfect global clocks?
Consistent global states can still be done with imperfect clocks, sort of...
Notation and definitions

— history(p) = h;=<ef, e, e?, ...>

— Prefix of a process’s history: hx=<e?, e/,, e/>

— State of a process: s/ c is the state of p; right before e/ occurs; s? is init state
Notational problem: how to deal with messages in transit from p; to p,?

— Record state of the (logical) channel from p; to p;

— How: check the two processes events
« recall message sends and receives are events (that plus modifying state)
- If p;has “send m” as e/" and p; has “receive m" as /" then is in the channel

Notations for Global States (cont.)

+ Global history: union of the individual ... histories: H=h,uh,U...U hy,
* Forming a global states

— Mathematically, we could take any set of states of the individual processes to
form a global state S = {s,, s,, ... S5}

— But what states are meaningful: what could have happened at the same
time?

— Recall a process state corresponds to the initial prefix of its history

— So a global state corresponds to initial prefixes of the individual processes’
histories

* A cut of the system’s execution: a subset of its global history that is a
union of prefixes of process histories: C = h,¢" U h,2U ... UhCN
— Q: What is state s; of p; in global state S corresponding to the cut C?
— A: The state of p,right after the last event processed by p;in C: ¢
— Frontier of cut C: set of events {e,°", e,°2... e,tN}

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

Consistent and Inconsistent Cuts (Fig 10.9)

0 1 2 3
€ \ € € I €
r. TN & &

P

my m

. Physical

1 2 time
e e

€2
Cut1 Cut2
+ Frontier of Cutlis <e,% e,0 >

+ Frontier of Cut2is <e,? e,2>
« Cut1 is inconsistent:
— Includes the receipt of message m,: e’
— Excludes the receipt of message m,: e,’
— l.e., cut reflects “effect” but not “cause” could not have happened!
— We can tell this by examining the > “happens before” relation
» Cut2 is consistent:
— Both sending and receiving of m, is included
— Sending of m, is included, but not its receipt
» Consistent with its actual execution: message delivery took nonzero time

P2 ‘0\

CptS 4647564 Fall 2000 Time and Global States: © 2000 David E. Bakken

Consistent and Inconsistent Cuts (cont.)

» Acut Cis consistent if, for each event it contains, it also contains all the
events that happened-before that event:
— Veventsee C:f>e =>feC
» Consistent global state: one that corresponds to a consistent cut
* Arun: a total ordering of all the events in a global history that is consistent
with each local history’s ordering, ——> (i=1,2,...,N)
» A linearization run (a.k.a. consistent run): an ordering of the events in a
global history H that is consistent with this happened-before relation on H
* Questions:
— Do all runs pass through any or all consistent global states?
— Do all linearization runs pass through any or all consistent global states?

+ State S’ is reachable from state S if there is a linearization that passes
through S and then S’

— Does not guarantee it will be reached, only its possible

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

Global state predicates, stability, safety,
and liveness

» Global state predicate: a function that maps from the set of global states
to true or false

— Detecting deadlock or termination amounts to evaluating a predicate
» Stable global predicate: one that, if it becomes true, stays true
— Examples: object is garbage, deadlock, termination
— Unstable example: anything with distributed debugging
» Safety w.r.t. a: (undesirable property) o evaluates to false for all states S
reachable from S,
« Liveness w.r.t. B: for any linearization L starting at S, (desirable
property) B evaluates to true for some state S, reachable from S,
» Safety and liveness are categories of properties discussed a lot in
practice
— Safety properties of form “nothing bad ever happens”
— Liveness properties of form “something good eventually happens”

* Note: skipping “snapshot” algorithm of Sec 10.5.3, and its not testable...

CptS 4647564 Fall 2000 Time and Global States. avid E. Bakken

