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Administrative Items
• Handouts

– Paper “Practical Uses of Synchronized Clocks in Distributed Systems” by 
Barbara Liskov (required for 564 only)

– Paper “Time, Clocks, and the Ordering of Events in a Distributed System” by 
Leslie Lamport. (required for 564 only)

– Homework #4
• Slightly updated grading weights:

– Component 464 564
– Exams (2): 45% 30%
– Homeworks (5) and Surprise Quizzes : 15% 20%
– Projects (5): 40% 40%
– Particiation 0% 10%

• Project #4 discussion, then Chapter 10…

CptS 464/564 Fall 2000 Time and Global States:  © 2000 David E. Bakken 33

Project 4 Architecture

Grading Criteria
• 40% Baseline with “no frills”
• 10% demo (runs OK without crashing, only 5% if no GUI)
• 20% 2 extra features (564 only; 20% max, i.e. no extra credit)

– 10% use event model other than canonical push
– 10% use object wrapper at client to cache a value
– 10% different kind of client to status service
– 10% client of status service gets callback
– …. (make up your own … even better)

• 20% originality/realism of exact status service, suppliers, clients, and discussion 
of this in your writeup.  I will provide a baseline example worth 0%..

• 10% Rest of writeup

Client1 of
Status Service

Client2 of
Status Service

Status Service
(caches, filters, 
combines, etc.)

Event
Channel

Supplier1

Supplier2

Supplier3

Supplier4
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Time in Distributed Systems
• Time is a very useful concept!
• Computers can only be synchronized by network messages, but the 

latency can vary…
• We can not synchronize closely enough to be able to, in general, tell the 

ordering of two arbitrary events at different computers
• We can, however, establish an ordering on some events, and this can be 

used in many situations
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Outline
• Clocks, events, and process states (10.2)
• Synchronizing physical clocks (10.3)
• Logical time and logical clocks (10.4)
• Global states (10.5)
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Notations for Reasoning about Time
• Model

– A DS consists of a collection P of N processes {P1, …, PN}
– Each process executes on a single processor (no migration)
– Processors do not share memory
– A process Pi has state Si which it transforms as it executes
– Processes communicate only by message passing

• Actions a process can take
– Send a message
– Receive a message
– Transform its state

• Event: occurrence of a single action above
• The sequence of events Pi can take can be placed in a single total 

ordering, i, between the events
– I.e. e i e’ iff event e occurs before e’ at Pi

– Note: this is well-defined, even with multiple threads, because single 
processor
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Notations for Reasoning about Time (cont.)
• History: the series of events of a process that take place within it
• history(pi) = hi = <ei

0, ei
1, ei

2, ….>
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Clocks
• We now know how to order events at a process, but how to timestamp 

them?
• Operating system

– Reads in computer’s hardware clock value, Hi(t)
– Adds an offset to produce a software clock: Ci(t) = A* Hi(t) + B

• Problem #1: physical clocks on different computers will have skew: 
differences at a given instance

• Problem #2: clocks will drift: they will increment Hi(t) at slightly different 
rates
– Drift rate: change in the offset (difference in reading) between Hi(t) and a 

theoretical perfect clock
– Typical drift rates are a few seconds a month
– High precision clocks drift only a few seconds to a few dozen seconds a year
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UTC and GPS
• International Atomic Time

– Based on Cs133 (one second =~ 9 billion transitions).  
– Since the earth’s rotation is slowing, this diverges from astronomical time.

• Coordinated Universal Time (UTC)
– Based on atomic time
– But with an accasional leap second thrown in to keep it close to astronomical 

time.
– Broadcast on shortwave radio stations.

• GPS units can also provide time, accurate to 1 microsecond or so
• US NIST lets you dial up on a phone and get accuracy to a few 

milliseconds
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Outline
• Clocks, events, and process states (10.2)
• Synchronizing physical clocks (10.3)
• Logical time and logical clocks (10.4)
• Global states (10.5)
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Synchronizing Physical Clocks
• To know what time things happen at, with any degree of precision, we 

need to synchronize our clocks
• External synchronization: synchronizing with an authoritative time source

– Clocks Ci are accurate to within bound D>0 after this
– I.e., for authoritative source S, | Si (t) - Ci (t) | < D,  for all i,t

• Internal synchronization: clocks agree with each other
– Clocks Ci agree with each other within bound D
– I.e., | Ci (t) - Cj(t) | < D ,  for all i,j,t

• Clocks that are internally synchronized are not necessarily externally 
synchronized!
– Why?
– How?

• A clock Hj(t) is correct if  it meets its specs (often in terms of drift rate)
– If incorrect, it has failed
– Crash failure: does not return any time
– Arbitrary failure: anything else… (what?  effects?)

• Note: a clock does not have to be accurate to be correct
– Why?  Useful in some situations?
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Simple Clock Synchronization
• Simplest possible case: two processes synchronize

– Time server S sends sends message m to process p, including its current 
time t

• How can p set its clock?
– Hp(t) = t + Ttransmission

– S and p are now internally synchronized
• Problem: cannot know Ttransmission

• Observations
– Can always find Tmin

– Can generally find Tmax with high statistical confidence
• 100% in a synchronous system, ipso facto

– Uncertainty of message transmission: u = (Tmax - Tmin)
– Can potentially even derive a pdf of Ttransmission between and Tmin and Tmax

• Workaround
– Set Hi(t) = t + X, where X is Tmin   or Tmax or    (Tmax + Tmin)/2
– What are worst case clock skews for each (in terms of u)?
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Cristian’s Clock Synchronization
• Scenario: two processes synchronize

– Process p sends message mr to authoritative time server S
– S sends back message mt including its current time t
– P uses t in  mt to update its clock
– Figure 10.2, next slide…

• How can P set its clock???
• Observation: 

– Uncertainty u is often small in practice
– So provide a probabalistic synchronization, which depends on u at the time
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Figure 10.2
Clock synchronization using a time server

mr

mt
p Time server,S
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Cristian’s Clock Synchronization (cont.)
• Process p records round trip time

– Tround = (time mt received) – (time mr sent)
• Naïve estimate: assume both latencies are same (reasonable)

– Hp(t)  = t + (Tround /2 )
– u = Tround /2 

• Observation: can often derive Tmin , so 
– Earliest time that S could have sent mt is Tmin after mr was sent by p
– Latest time that S could have sent mt is Tmin before mt was received at p
– Cuts worst case clock skew to ( (Tround /2 ) - Tmin )
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Berkeley Clock Synchronization Algorithm
• Master time server which does not get requests from clients, but polls its 

slaves which are to be synchronized
• Slaves send back their clock values
• Master estimates their local clock times by observing round-trip times
• Master then averages the values to derive a new one

– Tends to cancel out inaccuracies 
• Master does not send back the new time to update to

– Because transmission back introduces another element of uncertainty.
• Rather, it sends back the amount (+/-) by which the given slave’s clock 

should be updated by. 
• Note: Average is a fault-tolerant average

– It chooses subset of clocks whose times do not differ from one another by a 
specified amount

– Then takes average from these.
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Network Time Protocol (NTP)
The standard for the Internet; design features:
• Accurate to UTC, despite large and varying delays

– Discriminates between quality of timing data from different sources
• Reliable service, despite lengthy delays of connectivity of given links

– Redundant servers and paths to servers 
• Allow frequent resynch to offset drift 

– Scales to lots of clients and servers
• Provide security against interference

– Uses authentication techniques, validates return addresses of messages it gets, etc.
• Architecture (Fig 10.3, next slide)

– Logical hierarchy called a synchronization subnet
– Primary servers (Strata 1) are directly connected to UTC
– Secondary servers (Strata 2) synch with them
– Etc. down the tree

• Algorithms take into account
– Strata (lower # is better accuracy)
– Roundtrip delays

when assessing quality of time to assess for a given server
• Can reconfigure tree for various reasons…
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Figure 10.3: An example synchronization 
subnet in an NTP implementation

1

2

3

2

3 3

Note: 
• Arrows denote synchronization control
• Numbers denote strata
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NTP (cont.)
• Three modes of operation

1. Multicast mode: for LAN
– server(s) multicast time
– others set to it, assuming very small delay

Efficient, but not great accuracy
2. Procedure-call mode

• similar to Cristian’s, server accepts time queries from other computers
Useful where multicast not supported, or higher accuracy required
Lots of messages, though 

3. Symmetric mode 
• Pair of servers exchange timing data 
• Meant for higher levels (lower strata) for highest accuracies

• UDP used for all modes
• Even if messages lost, the timestamps in messages which arrive are 

valid…
• Each message keeps timestamps of a number of recent events
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Figure 10.4: Messages exchanged 
between a pair of NTP peers

• Recent messages between processes are tracked
• For each pair of messages sent, calculated  offset oi and delay di
• NTP servers apply data filtering to most recent 8 < oi, di > values: filter 

dispersion
• More details in the book…
• Not only used for setting clock values, but may choose another server to 

synch with (another kind of reconfiguration)!

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time
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Outline
• Clocks, events, and process states (10.2)
• Synchronizing physical clocks (10.3)
• Logical time and logical clocks (10.4)
• Global states (10.5)
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Logical Time
• Time in Distributed Systems

– Computers can only be synchronized by network messages, but the latency 
can vary

– We can not synchronize enough to be able to, in general, tell the ordering of 
two arbitrary events at different computers.

– We can, however, establish an ordering on some of the events, and this can 
be used in many situations.

• Logical Time
– Builds up a notion of what we can reason about w.r.t. the order of events
– Defines the “Happened-before” relation
– Source: Lamport, Leslie. “Time, Clocks and the Ordering of Event in a 

Distributed System”, Communications of the ACM, Vol. 21, July 1978, pp. 
558-565.

• One of the seminal works in distributed systems…
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Happened-Before Relation
• Happened-Before relation, , based on observations:

1. If two events occur in the same process, then they occurred in the 
order in which that process observes them.

2. The receipt of a message happens after its being sent.
3. “Happened-before” is transitive

• Corresponding Rules for events x, y, z, process p, and message m
HB1: x –p – > y, then x y
HB2: send(m) recv(m)
Transitivity: x y and y z, then x z

• Concurrency: If a ~ b and b ~ a, then a||b (“a is concurrent with b”)’
• Note: if x y (“x happened before y”) then y x (“y happened after x”), 

notationally 
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Happened-Before Example

• Example table of , , ||
• Limitations of Happened-Before

– Covert channels
– Too pessimistic: some things a b did not have a causing b!

• Happened-before also called
– Causal ordering
– Potential causality
– Lamport ordering
– (irreflexive) partial ordering

p3

p2

p1

physical
time

m1

m2

a b

e

c d

f g

i

j h

m3
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Logical Clocks
• How to implement “Happened Before”??
• Logical Clock, a monotonically increasing counter.
• Let

– Each process p keeps its own logical clock, Cp, which it uses to timestamp 
events

– Cp (a) is the logical time at process p at which event a occurred
– C(a) is the logical time at which event a occurred at the process it 

occurred at
• Processes keep their own logical clocks, initialized to 0.  Updated by 

rules:
– LC1: Before each event occurs, increment Cp

– LC2: 
• When a process  p sends a message m, it piggybacks on m value t= Cp
• When process q receives <m,t>, q computes Cq = max(Cq,t) + 1 then timestamps 

m
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Logical Clock Example

• Note if a b then LC(a) < LC(b)
• However, LC(a) < LC(b) does not imply a b

– Above, C(e) < C(b)   yet  b || e
– Also note that concurrency is not transitive: a||e and e||b yet a b

p3

p2

p1

physical
time

m1

m2

a b

e

c d

f

1

1

2

3 4

5
g
6

i
5

j

3
k
7
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Partial Orderings
• Logical clocks impose a partial ordering on set of all events.  “A partial 

ordering over a set S is a function PO such that, for all s, t in S, either 
• 1. PO(s) < PO(t)
• 2. PO(s) > PO(t)
• 3. PO(s) == PO(t)”

(Note that PO is defined for all members of S.)”
• Examples:
• S == students in the class
• PO1 == number of coins in the student’s pockets
• PO2 == student’s grade on project #2
• PO3 == number of teeth in student’s mouth 
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Total Orderings and Logical Clocks
• Total order is more strict and sometimes more useful.  “A total ordering 

over a set S is a function TO such that, for all s, t in S, either
• 1. PO(s) < PO(t)
• 2. PO(s) > PO(t)
• 3. s == t    

(i.e., it is defined for all members of s, and the function’s value is unique for all 
elements of the set)”

• How to create a total ordering out of the LC’s partial one???  
– Just break “ties” among logical clocks by using any total ordering over the 

processes involved 
– e.g., looking at host ID (unique, virtually always comparable)) 

• (If time, do example from 565 exam, or at end of lecture)
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Outline
• Clocks, events, and process states (10.2)
• Synchronizing physical clocks (10.3)
• Logical time and logical clocks (10.4)
• Global states (10.5)
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Global States
• General problem: is a given property true of a DS as it executes?

– Huge number of applications to these general concepts
• Example 1: distributed garbage collection (Fig 10.8a)

– Garbage object: one that has no references to it anywhere in a DS
– Property to prove: no references anywhere to a given object
– Must verify that there are no references to it anywhere in the DS
– But could be one in transit in a message…

• Example 2: distributed deadlock (Fig 10.8b)
– Detecting that a DS is deadlocked and cannot make progress (without help)
– Property to prove: a cycle in the “waits for” relationship exists

• Example 3: distributed termination detection (Fig 10.8c)
– Detecting that a distributed algorithm has terminated
– Active process: one still doing work
– Passive process: one not active, but that will respond to a message
– Property to prove: all processes are passive, and no messages are in transit

• Example 4: distributed debugging (Sec 10.6)
– Property to prove: value for a given variable everywhere in a system is x
– Another property: each pi has variable xi, and constraint |xi – xj| < δ, ∀ i holds
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Figure 10.8
Detecting global properties

p2p1

message
garbage object

object
reference

a. Garbage collection

p2p1 wait-for

wait-forb. Deadlock

p2p1

activate
passive passivec. Termination
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Notations for Global States
• Context

– We might be able to observe succession of states in an individual process
– But how can we construct a valid global state?
– Problem: lack of global time
– Q: how might you construct a valid global state with perfect global clocks?

• Consistent global states can still be done with imperfect clocks, sort of…
• Notation and definitions

– history(pi) = hi = <ei
0, ei

1, ei
2, ….>

– Prefix of a process’s history: hi
k = <ei

0, ei
1, …., ei

k>
– State of a process: si

k c is the state of pi right before ei
k occurs; si

0 is init state
• Notational problem: how to deal with messages in transit from pi to pj?

– Record state of the (logical) channel from pi to pj

– How: check the two processes events
• recall message sends and receives are events (that plus modifying state)

– If pi has “send m” as ei
m and pj has “receive m” as ej

n then is in the channel
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Notations for Global States (cont.)
• Global history: union of the individual … histories: H = h0 ∪ h1 ∪ … ∪ hN-1

• Forming a global states
– Mathematically, we could take any set of states of the individual processes to 

form a global state S = {s1 , s2 , … sN}
– But what states are meaningful: what could have happened at the same 

time? ….
– Recall a process state corresponds to the initial prefix of its history
– So a global state corresponds to initial prefixes of the individual processes’ 

histories
• A cut of the system’s execution: a subset of its global history that is a 

union of prefixes of process histories: C = h1
C1 ∪ h2

C2 ∪ … ∪ hN
CN

– Q: What is state si of pi in global state S corresponding to the cut C?
– A: The state of pi right after the last event processed by pi in C: ei

Ci

– Frontier of cut C: set of events {e1
C1 , e2

C2 … eN
CN}
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m1 m2

p1

p2
Physical 

time

e1
0

Consistent cut
Inconsistent cut

e 1
1 e 1

2 e 1
3

e 2
0 e 2

1 e 2
2

Consistent and Inconsistent Cuts (Fig 10.9)

• Frontier of Cut1 is < e1
0, e2

0 >
• Frontier of Cut2 is < e1

2, e2
2 >

• Cut1 is inconsistent: 
– Includes the receipt of message m1 : e2

0

– Excludes the receipt of message m1 : e1
1

– I.e., cut reflects “effect” but not “cause” …. could not have happened!
– We can tell this by examining the “happens before” relation

• Cut2 is consistent:
– Both sending and receiving of m1 is included
– Sending of m1 is included, but not its receipt

• Consistent with its actual execution: message delivery took nonzero time

Cut1 Cut2
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Consistent and Inconsistent Cuts (cont.)
• A cut C is consistent if, for each event it contains, it also contains all the 

events that happened-before that event:
– ∀ events e ∈ C: f e ⇒ f ∈ C

• Consistent global state: one that corresponds to a consistent cut
• A run: a total ordering of all the events in a global history that is consistent 

with each local history’s ordering, –i – > (i =1,2,…,N)
• A linearization run (a.k.a. consistent run): an ordering of the events in a 

global history H that is consistent with this happened-before relation on H
• Questions:

– Do all runs pass through any or all consistent global states?
– Do all linearization runs pass through any or all consistent global states?

• State S’ is reachable from state S if there is a linearization that passes 
through S and then S’
– Does not guarantee it will be reached, only its possible
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Global state predicates, stability, safety, 
and liveness

• Global state predicate: a function that maps from the set of global states 
to true or false
– Detecting deadlock or termination amounts to evaluating a predicate

• Stable global predicate: one that, if it becomes true, stays true
– Examples: object is garbage, deadlock, termination
– Unstable example: anything with distributed debugging

• Safety w.r.t. α: (undesirable property) α evaluates to false for all states S 
reachable from S0

• Liveness w.r.t. β: for any linearization L starting at S0, (desirable 
property) β evaluates to true for some state SL reachable from S0

• Safety and liveness are categories of properties discussed a lot in 
practice
– Safety properties of form “nothing bad ever happens”
– Liveness properties of form “something good eventually happens”

• Note: skipping “snapshot” algorithm of Sec 10.5.3, and its not testable…


