
11

Dave Bakken1

School of Electrical Engineering and Computer Science
Washington State University
Pullman, Washington USA

www.eecs.wsu.edu

November, 2000

Voting and Collation in
Distributed Systems Middleware

11 In collaboration with In collaboration with ZhiyuanZhiyuan ZhanZhan, , RaghavaRaghava
KashyapaKashyapa, Chris Jones (now of BBN), David Karr , Chris Jones (now of BBN), David Karr
of BBN, and Doug of BBN, and Doug Blough Blough of Georgia Techof Georgia Tech

22

Outline of Presentation
• Overview of voting and collation
• Voting Virtual Machine (VVM) architecture
• Voting Status Service
• Security of voting algorithms
• Ongoing research
• Related work
• Conclusions

33

Motivation
• The increasing demand of availability of online services can be met with

replication of servers.
• One of the most common replication strategies is called active

replication.
• In active replication, a request it sent to all of the replicas and each

replica will process the request
• Each replica will then send their replies back to client and one reply must

be chosen for the client to use.
• This selection process is called voting
• Collation is more general than voting

– No replicated servers
– Values not necessarily supposed to be identical
– Seems to be a fundamental problem in distributed systems

44

Voting Overview

Voting Definitions:
• ballot: one request or reply from one object replica (reply[1])
• vote: the process of choosing one ballot from many
• collation voting: choosing one reply (or request) from many
• byte-by-byte voting: voting algorithms compare marshaled parameter buffers on a

byte-by-byte basis, unaware of data types, alignment, etc.

Note: similar ideas and mechanisms apply to collation and data fusion

Client Voter
Server[1]reply[1]

voted_reply

reply[N]

...

Server[N]

55

Example

interface foo {
long method1 (in long a);
void method2 (in long d, inout short e, out double f)

}

Method Direction Voting “params”
Method1 Request {a}
Method1 Reply {rtn}
Method2 Request {d,e}
Method2 Reply {e,f}

Can’t do today!Can’t do today!

Can’t do today!Can’t do today!
Can’t do today!Can’t do today!

•• No voting on replies or request parameters today No voting on replies or request parameters today
•• ByteByte--byby--byte voting is very fragile and cannot be byte voting is very fragile and cannot be
correctly implemented (except correctly implemented (except rtnrtn for for intint)!)!

••More on this later...More on this later...
66

Outline of Presentation
• Overview of voting and collation
• Voting Virtual Machine (VVM) architecture

– Voting Virtual Machine
– Voting Description Language

• Voting Status Service
• Security of voting algorithms
• Ongoing research
• Related work
• Conclusions

77

Voting Virtual Machine (VVM)
Novel features:
• VVM performs voting on application parameters in a marshaled network

message
– Nobody has done anything like this
– Embeddable into CORBA, DCOM, other kinds of middleware (MOM, publish-

and-subscribe, XML-RPC, ...)
– Voting module thus not embedded in the application

• Voting Description Language (VDL) allows the coding of portable,
reusable, stand-alone voting algorithms
– Nobody has done anything like this
– Supports both static voting and dynamic voting (accounts for membership

changes and group size)
– Supports spectrum of tradeoffs between

• Performance
• Fault tolerance
• Precision/correctness

88

VVM Architecture
iiop_msg[1..N]

unmarshal

voter core

paramk[1..N]

voted_paramk

voted_iiop_msg

failure notification,
current voting policy

Voting
statistics

marshal
Voting
Status

Service

Voter
Manager

Current
conditions
& QoS
requirements

Alerts to
subscribers

99

VVM Voter Core States & VDL Primitives
Voter goes through 3 states, as
directed by voting policy (in VDL):
•quorum: wait to vote
•exclusion: toss out some ballots
•collation: choose one of the
remaining

paramk[1..N]

voted_paramk

quorumquorum

exclusionexclusion

collationcollation

unmarshalunmarshal

marshalmarshal

Branching

exception

quorumquorum
exceptionsexceptions

exclusionexclusion
exceptionsexceptions

collationcollation
exceptionsexceptions

Exceptions

confidenceconfidence

confidence value

Confidence Values

1010

Simple VDL Examples
• Example # 1:

– English: “wait until 4 ballots have arrived, exclude the lowest one,
then choose a random one from those left”

– VDL: quorum 4 exclusion lowest 1 collation random;
• Example #2:

– English: “wait until half of the ballots have arrived, exclude a random
one, then choose the median of those left”

– VDL: quorum 50 percent exclusion random 1 collation median;
• Example #3:

– “wait until all but 2 of the messages have arrived, exclude the two
highest-valued ones, then choose the most common one left”

– VDL: quorum all but 2 exclusion highest 2 collation mode;

• VDL above is simple, but is much less simple with
– Exceptions
– Branching
And will be less simple with
– Multiple-parameter collation
– Patterns useful for multiple method signatures
but will hopefully stay as readable!

1111

VDL Syntax
vdl policy name

quorum quorum_op [throw ex_name when condition]

exclusion exclusion_op [throw ex_name when condition]
[goto quorum quorum_op when condition]

collation collation_op [throw ex_name when condition]
[goto quorum quorum_op when condition]
[goto exception exception_op when condition]

[confidence confidence_expression]

end policy name

1212

VDL Primitives
• quorum

– k
– all but k
– x percent
– random x y

• exclusion
– lowest n
– highest n
– furthest n
– distance e
– sigma x
– distance-neighbor d
– distance-cluster d
– random n
– none

• collation
– median
– mean
– mean-neighbor
– mode
– random

• Exceptions: conditions based on
– Elapsed time since first ballot
– Number excluded
– Percent excluded
– Number remaining after exclusion
– Standard deviation after exclusion
– …

• Confidence values
– Above conditions for exceptions
– More TBD …work in progress….

1313

Voting on Non-Basic Types
• Problem: how to vote on parameters of types other than basic types

(long, float, …)
– VVM cannot know about them without being told!
– We assume type is defined as a CORBA IDL struct

• Solution: allow definers of the types to tell us how to vote with helper
objects

• Three different APIs for helper object to implement (in Java), with
greater info provided for greater control
1. Maps to and from struct to double
2. Implements Java comparable interface, plus operations which do not make

sense by comparing alone (mean, mean-neighbor)
3. Implements methods for all exclusion and collation operations

• Also need to provide a marshal object for the struct
• Need to fill in a configuration table with struct and class names for

above
• This voting on structs can be used for object state (caching, merging

partitioned replicas)
1414

Confidence Values
• Problem: returning a vote or an exception are two extreme choices!
• Issue: how “good” was the vote?
• Idea:

– Return another value(s) “on the side”, like Unix errno
– Optionally used by client or perhaps a QuO delegate or other intermediate

layer to adapt
• Confidence values used in neural networks and fuzzy logic

1515

VVM Development Environment
iiop_msg[1..N]

unmarshal

voter core

paramk[1..N],
param_types

voted_paramk,
param_types

voted_iiop_msg

marshal

CORBA Interface
Repository (IR)

Vote
Manager

paramparam_types_types
lookuplookup
tabletable

VDLVDL
filesfiles

serverserver
IDLIDL
filesfiles

idl2vvmidl2vvm ir2vvmir2vvm

vdl2vvmvdl2vvm

vdl2analysisvdl2analysis

currentcurrent
voting voting
policypolicy

lookuplookup

lookuplookup

1616

VVM Failure Model
• Client and server hosts: crash failures
• Server applications: Byzantine
• Server systems software: crash

– Could secure with network attachment controller a la Delta-4 NAC
– Could use stronger Byzantine protocols a la Rampart

1717

Outline of Presentation
• Overview of voting and collation
• Voting Virtual Machine (VVM) architecture
• Voting Status Service
• Security of voting algorithms
• Ongoing research
• Related work
• Conclusions

1818

Voting Status Service (VSS)

iiop_msg[1..N]

unmarshal

voter core

paramk[1..N]

voted_paramk

voted_iiop_msg

Voting
statistics

marshal

Voting
Status

Service

SubscribersSubscribers

QueriesQueries

VS Multicast
Performance
Management

Security
Management

1919

Voting Status Service (cont.)
• Observation: voter tracks a lot of information which can be useful to others
• VSS is a first-class service offering this
• VSS gets low-level updates from voter core
• VSS maintains moving averages of various conditions; clients of VSS can

parameterize this moving average and threshold for their alert
• Supports multiple interaction paradigms:

– Registering for a (possibly compound) condition, getting a callback when to
crosses the given threshold

– Interactive queries of current conditions
• Example conditions

– A given replica in a given group is late “too often”
– Any replica in a given group is late “too often”
– any replica on a given host is late “too often”
– Too many replicas on any one host are late “too often”
– Too many replicas in any one domain are late “too often”

2020

Outline of Presentation
• Overview of voting and collation
• Voting Virtual Machine (VVM) architecture
• Voting Status Service
• Security of voting algorithms
• Ongoing research
• Related work
• Conclusions

2121

Random & Weighted Voting in VDL
• Random operations for each of the 3 states of the voter core

– quorum: wait for a random number of ballots (in some range)
– exclusion: randomly exclude some number of ballots
– collation: randomly choose one of the ballots

• Weighted voting allows non-equal treatment of ballots from different
replicas

• Operations currently in 2 voter core states:
– quorum: wait for points, not ballots, where each ballot’s arrival is >= 1 point
– collation: expand remaining ballots based on a weighting, then do mode,

median, ...
– collation example: if ballots contain {2,3,4} and weights are {1,2,2}, then

expand to {2,3,3,4,4} and then do median or mode or mean or random or ...
– exclusion??? Work in progress... Could be similar to collation expansion

2222

Tolerating Faulty Values
• Value attack: an attempt by an adversary to corrupt a vote by injecting

ballots with bad values
• Value failure: a ballot with one or more bad parameter values
• Observation: the VVM has the ability to detect faulty application-level data

values.
• Questions

– How good is the VVM at thwarting or impeding value attacks?
– How many value failures can the different VDL policies tolerate without the vote

being bad?
• Bottom line:

– The value attacks that can be tolerated range widely across VDL space
– Many VDL algorithms offer good value attack tolerance
– Weighted voting with intrusion detection offers much promise
– See VVM thesis (5/2000) for more details

2323

Resilience against Malicious Attacks
• Questions

– Can adversary learn the voting policy in use?
– If yes, can it be useful to them in their attempts to corrupt the votes?

• Assumptions
– Adversary can read ballots and voted answer messages
– Voting on only one parameter and adversary knows which one
– Knows the order in which the ballots were received by voter
– Adversary has not corrupted any of the replicas
– Adversary can not decode VDL sent by manager to voter core

• Observations
– Adversary might start looking at ballots and final answer for patterns
– If no patterns are determined, a brute force approach might be next

• Bottom line: VDL space classified by the following
– Can always determine the VDL in one vote
– Can sometimes determine the VDL in one vote
– Must always wait for two or more ballots to determine VDL

2424

Outline of Presentation
• Overview of voting and collation
• Voting Virtual Machine (VVM) architecture
• Voting Status Service
• Security of voting algorithms
• Ongoing research
• Related work
• Conclusions

2525

Voter Management
• A voting manager chooses a voting policy and change it when needed

– Also can decide the weights for each server/replica
– Tries to meet current QoS requirements
– Provides voting transparency
– Provides adaptive voting

• Hierarchy of managers with higher managers giving lower managers a
more global view of system and requirements

• Voter managers based on input from
– Network management giving utilization & capacity
– Security management regarding a failure in system
– Intrusion detection system as to which hosts or domains may be

compromised
– Higher-level voting managers
– QoS contract

• Allows user or QoS manager to tell the current preferred tradeoff between
precision/correctness and performance and fault tolerance

2626

Voting Algorithms and Analysis
• Understand all/most known voting algorithms, to see if

– Expressible in VDL as it now is
– Expressible in VDL with some VVM extensions (e.g., new operation)
– Needs architectural/plumbing changes
– Not expressible in VVM in any reasonable use of it

• Analysis:
– Observation: in essence, a voting algorithm gives a probabilistic tradeoff

between correctness and performance and fault tolerance, for a given set of
conditions:

• Latency and bandwidth
• Number and kind of failures
• Etc.

– Goal: develop analysis tools that can ascertain this tradeoff for a VDL policy,
over a range of conditions

• May have to do over a subset of VDL, but which subset, and why?
– Then use this analysis to allow manager to choose the best (or at least a

reasonable) algorithm for the current conditions

2727

Security, Middleware, and Replication
• Security and Survivability

– Continue research on security of voting algorithms
– Voting Status Service as an Intrusion Detection Feed
– Using intrusion detection to determine replica weighting, by manager
– VVM for use in Intrusion Detection (Hummer at U. Idaho)

• Middleware Heterogeneity Issues
– Heterogeneity across CPU, language, OS, middleware vendor
– Need to investigate these issues with at least CORBA and SOAP, DCOM’s

heir apparent
• Replicating the Voting VM

– We have a simplified passive replication scheme.
– Looking at active replications which has the ability to tolerate value errors
– Evaluate the cost and benefits of different replication strategies and use that

info in designing the voting managers so that they can dynamically change
strategies.

• Probably passive will be the best, but knowing exactly why is useful

2828

Architectural Diversity
• VVM is good for more than just (expensive) active replication….
• Caching

– high availability, but staleness or inconsistency
– state of instance of an object is cached, we will implement this as a parameter type

extension and be used to merge multiple copies whose replicas have been lost, to
create new base replica

• General Collation Engine
– use of VVM as collation engine where values are not presumed to be identical
– Issue #1: when is “vote” over?
– Issue #2: naming of senders of ballots (not “replicas” any more)

• Quorum Consensus (esp. newer work with byzantine coverage)
• Merging Partitioned Subgroups (VVM as a comparison engine)
• Distributed Sensor Networks

– Hot research area!
– Plan to develop families of VVM and VDL for different memory and power

constraints

2929

Outline of Presentation
• Overview of voting and collation
• Voting Virtual Machine (VVM) architecture

– Voting Virtual Machine
– Voting Description Language

• Voting Status Service
• Security of voting algorithms
• Ongoing research
• Related work

– VDL Expressiveness
• Conclusions

3030

Limitations of Byte-by-Byte Voting
• CORBA provides interoperability across

– CPU architecture
– Operating system
– Programming language
– ORB implementation

• CORBA’s CDR uses IEEE 754 encoding for floating point values’
transmission, but with different architectures (and other 3 variables
same) can have different internal precisions and roundoff differences, …

• Have to look at the IDL to be able to handle
– variable-length header information (e.g., system context) which an ORB

implementation may fill in or leave out (else alignment off and undetected
padding bytes)

– CORBA spec states value of padding bytes is undefined, anyway!
• Byte-by-byte voting in practice:

– Developers have no problems in lab or single LAN, because very
homogenous (CPU, OS, language, ORB)

– When fielded or released, mysterious bugs start to show up because much
more heterogeneous

– This is true for all middleware, not just CORBA!

3131

Related Work
• Synchronization Voting

– First by Thomas of BBN (1979)
– Weighted Voting (Gifford, 1979)
– Generalizations: multidimensional, etc.
– Mostly (except NMR) for databases

• Collation voting (all byte-by-byte)
– N-Version programming

• no votes on replies, parameters
• very limited quorums

– NMR systems
– Recent CORBA replication: AQuA, Orbix+Isis, Eternal, Electra

• no vote on replies, parameters
• very limited quorum, etc.

– Immune (UCSB, 1999)
• Does allow voting on client requests and reply parameters
• Says for a majority “being identical in value” (I.e., byte-by-byte)

3232

VDL Expressiveness
• Voting Description Language (VDL) allows the expression of all sixteen

classes of voting algorithms in most recent voting algorithms survey
– B. Parhami, “Voting algorithms”, IEEE Transactions on Reliability, Dec. 1994.

• Voting algorithm has:
– N input data objects
– Each object has weight
– Producing single output object

Exact/
Inexact

Consensus/
Compromise

Preset/
Adaptive

Threshold/
Plurality

Input Output
D
a
t
a

V
o
t
e

3333

VDL Expressiveness (cont.)

• Input Data: what the input object copies are like, compared to
each other, assuming no failures

• Exact
– Values from the replicas are inflexible

• The value 3.5 does not equal 3.6
– Default for VDL, no special operations needed

• Inexact
– Values from the replicas can be considered approximately equal

• The value 3.5 and 3.6 are close enough to be equal.
– Supported by VDL with the two exclusion operations, distance-

neighbor and distance-cluster

3434

VDL Expressiveness (cont.)
• Output data: ways to collate from input objects

• Consensus
– The most common value returned by the replicas
– VDL supports consensus with the mode collation operation

• Compromise
– Calculating an average answer
– Support for compromise in VDL is with the use of mean and median, and

mean-neighbor collation operations

3535

VDL Expressiveness (cont.)
• Input vote: How flexible the weights are

• Preset vote
– The weights of the ballots are set at design time
– Weighting is supported by VVM thus preset is supported

• Adaptive vote
– The weights of the ballots can be changed at runtime.
– The VVM supports adaptive votes by allowing the weights of replicas to

change at runtime.

3636

VDL Expressiveness
• Output vote: how m any input objects to wait for

• Threshold
– Vote needs the support of specified number of replicas in order for the voted

answer to be considered correct
– VDL supports threshold voting with collation state exceptions

• Finer granularity with confidence values
– Threshold types include: majority, Byzantine, and unanimous

• Plurality
– Like threshold but relaxes the need for more than half of votes needed.

3737

Conclusions
• VVM can be embedded in any kind of middleware we are aware of
• VVM performs voting on actual application-level data parameters, not

marshaled parameter buffer in a byte-by-byte fashion
• VDL allows specification of voting algorithms which are

– flexible
– portable
– reusable

• VSS provides status service on different voting conditions, for
performance management, security management, etc.

• The voter’s mechanism is provides tolerance of faulty values and
protects the policy from being learned

