
 1

CS464/564 Project 1 
Assigned: Monday Sep. 18, 2000 
Due: Wednesday Sep 27, 2000 

Overview 
In this project you will create two simple servers and two simple clients.  You will submit 
the source code in a manner to be described in forthcoming email, and will also give a 
short demonstration of your running program to the TA at a time to be set later. 
Problem setting:  
Design and implement a simple CORBA system, based on Visibroker for Java/C++ 4.0. 
Suppose we have 4 kinds of objects in our system: Teacher, Student, Grader and 
Security.  

• The Security object receives requests from Grader. It maintains a list of valid 
Teacher ID (tid) and password (pwd), a list of valid Student ID(sid) and 
password (pwd). It checks if the pwd is correct. 

• The Grader object receive request from Teacher and Student. It will ask 
Security to check the pwd. The Grader maintains a simple float variable: 
grade. If the pwd for Teacher is correct, it will update grade. If the pwd for 
Student is correct, it will retrieve grade to the Student. 

• The Teacher object send request to Grader. 
• The Student object send request to Grader. 

 
The IDL interface Grade.idl is given like: 

// Grade.idl 
 

module Grade { 
    interface Grader { 
       boolean add_grade(in string tid, in string pwd, in float grade); 
   float show_grade(in string sid, in string pwd); 
    }; 
    interface Security { 
       boolean check_teacher_pwd(in string tid, in string pwd); 
   boolean check_student_pwd(in string sid, in string pwd); 
    }; 

}; 
where: tid denotes teacher ID #, and sid denotes Student ID #. 
 
Note: we will not use user defined exceptions (i.e., ones defined in IDL).   
However, you should catch all CORBA system exceptions any time you do a 

CORBA call – see the online VisiBroker examples and the CORBA-1 lecture for details. 
 



 2

The structure of the system is like: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Background Information: 
PLEASE DON’T LOG IN NIF-S2.EECS.WSU.EDU. 
Visibroker for Java 4.0 is installed in  
nif-s2.eecs.wsu.edu:/local/dist_systems/cs564/vbj4_0. 
Visibroker for C++ 4.0 is installed in 
nif-s2.eecs.wsu.edu:/local/dist_systems/cs564/vbcpp4_0. 
 

For Java: 

1) If you want to use Visibroker for Java 4.0, follow the steps: 
1. login any machine in ETRL301, using your own EECS account and pwd. 
2. type “env | grep SHELL” to check what kind of shell you are using. 
3. if you are using C-SHELL (“SHELL=/bin/csh” will be displayed), type “source 

/local/dist_systems/cs564/startjava.csh” to setup necessary environments. 
4. if you are using BASH-SHELL (“SHELL=/bin/bash”) or K_SHELL 

(“SHELL=/bin/ksh”), type “source /local/dist_systems/cs564/startjava.sh”. 
5. Now, you can program!…. 
6. Most likely, this project involves 7 files: 

Grade.idl, Student.java, Teacher.java, Security.java, SecurityImpl.java, 
Grader.java, GraderImpl.java 

7. Build your Java SRC. (Details see How to build my Java SRC? ) 
8. Type “ps –aux | grep osagent” to see if there is any OSAGENT already running. 
9. If no, type “osagent &” to fire an OSAGENT. 
10. Using “vbj XXXX” to interpret your class file. 

 

2) How to build my Java SRC? 
1. Create a Makefile.java file under your SRC directory, say 
~user/cs564/project1/java 

show_grade(sid,pwd) 

add_grade(tid,pwd,grade) 

Teacher 

Student 

Security Grader 

check_teacher_pwd(tid,pwd) 

check_student_pwd(sid,pwd) 



 3

Makefile.java: 
 
.SUFFIXES: .java .class .idl .module 
.java.class: 
 vbjc $< 
.idl.module: 
 idl2java $< 
 touch $@ 
default: all 
clean:  
 rm -rf Grade 
 rm -f *.class *.tmp *.module *~ 
IDLS = \ 
 Grade.idl 
MODULES = $(IDLS:.idl=.module)  
SRCS = \ 
 Student.java \ 
 Teacher.java \ 
 Grader.java \ 
 Security.java  
CLASSES = $(SRCS:.java=.class)  
all: $(MODULES) $(CLASSES) 
2. Type “make –f Makefile.cpp” to build all executable file. 
3. Your class files are “Security.class” “Grader.class” “Student.class” and 
“Teacher.class” 
 
 
For C++: 
1) If you want to use Visibroker for C++ 4.0, follow the steps: 
login any machine in ETRL301, using your own EECS account and pwd. 
type “env |grep SHELL” to check what kind of shell you are using. 
if you are using C-SHELL (“SHELL=/bin/csh” will be displayed), type “source 
/local/dist_systems/cs564/startcpp.csh” to setup necessary environments. 
if you are using BASH-SHELL (“SHELL=/bin/bash”) or K_SHELL 
(“SHELL=/bin/ksh”), type “source /local/dist_systems/cs564/startcpp.sh”. 
Now, you can program!…. 
Most likely, this project involves 6 files: 
Grade.idl, Student.C, Teacher.C, GradeImpl.h Grade.C Security.C 
Build your C++ SRC (Details see How to build my C++ SRC? ).  
Type “ps –aux | grep osagent” to see if there is any OSAGENT already running. 
If no, type “osagent &” to fire an OSAGENT. 
Using “server” to fire a server. 
Using “client” to fire a client.  
 
2) How to build my C++ SRC? 



 4

1. Create a Makefile.cpp file under your SRC directory, say 
~user/cs564/project1/cpp 
 
Makefile.cpp: 
 
include /local/dist_systems/cs564/vbcpp4_0/example/stdmk 
EXE = Teacher  Student  Grader  Security 
all: $(EXE) 
clean:  
-rm -f core *.o *.hh *.cc $(EXE)  
-rm -rf SunWS_cache 
 
# 
# "Grade" specific make rules 
# 
Grade_c.cc: Grade.idl 
 $(ORBCC) Grade.idl 
Grade_s.cc: Grade.idl 
 $(ORBCC) Grade.idl 
Teacher: Grade_c.o Teacher.o  
 $(CC) -o Teacher Teacher.o Grade_c.o \ 
  $(LIBPATH) $(LIBORB) $(STDCC_LIBS) 
Student: Grade_c.o Student.o  
 $(CC) -o Student Student.o Grade_c.o \ 
  $(LIBPATH) $(LIBORB) $(STDCC_LIBS) 
Grader: Grade_s.o Grade_c.o Grader.o 
 $(CC) -o Grader Grader.o Grade_s.o Grade_c.o \ 
  $(LIBPATH) $(LIBORB) $(STDCC_LIBS) 
Security: Grade_s.o Grade_c.o Security.o 
 $(CC) -o Security Security.o Grade_s.o Grade_c.o \ 
  $(LIBPATH) $(LIBORB) $(STDCC_LIBS) 
2. Type “make –f Makefile.cpp” to build all executable file. 
3. Your executable files are “Security” “Grader” “Student” and “Teacher” 
 
 


