
 1

CS464/564 Project2 
Given: Monday October 2, 2000 
Due: Monday October 9, 2000, at the beginning of class (Not October 11!) 
 
Overview: 
In this project you will gain some simple experience with CORBA user exceptions and 
with programming the DII.  You may start from the solution code provided by the TA if 
you prefer, or you may start from your own Project1 code. 
 
Instructions on how to turn it in, and where you can copy theTA’s Project1 from, will be 
forthcoming via email from the TA. 
 
Problem Setting: 
Project 2 is based on Project1. In this project, you need to: 

• Modify the Student to use the Dynamic Invocation Interface (DII) 
• Implement two user defined exceptions, InvalidTeacher and InvalidStudent, 

which are given in the Grade.idl file below. Grader raises InvalidTeacher when 
Security returns false on check_teacher_pwd() and InvalidStudent when Security 
returns false on check_student_pwd() 

•  ( For graduate student only ) Graduate Students will have to do this project in 
two languages, but in the other language from last time for Student, Teacher, and 
Grader. If somehow this doesn’t include both languages (say the Security is the 
only one in Java), they should do one in the other language so that both language 
are covered. 

 



 2

Grade.idl for Project2: 
 
// Grade.idl 
module Grade {    
     interface Grader { 
          exception InvalidTeacher{ 
  string reason; 
          }; 
          exception InvalidStudent{ 
  string reason; 
          }; 
          void add_grade(in string tid, in string pwd, in float grade)  

raises (InvalidTeacher); 
          float show_grade(in string sid, in string pwd)  

raises (InvalidStudent); 
     }; 
     interface Security { 
          boolean check_teacher_pwd(in string tid, in string pwd); 
          boolean check_student_pwd(in string sid, in string pwd); 
     }; 
}; 
 
 
System Structure:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

InvalidStudent 

check_student_pwd(sid,pwd) 

check_teacher_pwd(tid,pwd) 

InvalidTeacher 

show_grade(sid,pwd) 

add_grade(tid,pwd,grade) 

Teacher 

Student 

Security Grader 



 3

Notes: 
• You can directly use the code in project1 for Security because this project doesn’t 

involve any works on that part. 
• You may copy anyone’s Makefile for any purpose in this class, or any shell 

scripts it may use (probably must don’t).  Um, unless the shell script generated 
your CORBA program…. 

• When using the DII, please note that you can not catch any specific user-
defined exception.  You can only catch UnknownUserException, which is not 
a problem.  For more information, see Chapter 22 of VBJ PROG. 

• If you do the whole project in Java and there are 6 files in total, named 
respectively as Student.java, Teacher.java, Grader.java, GraderImpl.java, 
Security.java and SecurityImpl.java, you can directly use the Makefile.java for 
project1 to build your project2. If you like to organize the files in your own way 
(say change the file names), it’s fine but you might not be able to use the 
Makefile.java.  

• If you do the whole project in C and there are 6 files in total, named respectively 
as Student.C, Teacher.C, Grader.C, GradeImpl.h, Security.C. You can directly 
use the Makefile.cpp for project1 to build your project2. If you like to organize 
the files in your own way (say change the file names), it’s fine but you might not 
be able to use the Makefile.cpp. 

• Please use “osfind –a” to check if there is any osagent already running in our lab. 
If yes, please DONOT fire another osagent on your local machine again. Please 
note that “ps –aux|grep osagent” won’t tell whether there is already an 
osagent running on other machines. You will find that in most of the cases, 
there will be at least one osagent running on nif-s2, fired by its root. It should be 
enough for you to finish your project2. 

• Please KILL all your processes before your logout, especially when you use “&” 
to fire your Server. 

• Please DONOT lock any of the machines in SNIF lab. Otherwise you should be 
responsible for any possible loss of your files. 

 



 4

Suggestions: 
• Study the DII programming from example: bank_dynamic, under 

/local/dist_systems/cs564/vbj4_0/examples/basic/bank_dynamic/ and 
/local/dist_systems/cs564/vbcpp4_0/examples/basic/bank_dynamic/. To start your 
programming, you can directly copy and modify from its Client program. Please 
note that the Server part of this examples is using DSI, which is not required 
in Project2. 

• You will also find the following materials are helpful:  
o Visibroker for Java 4.0: Programmer’s Guide and Visibroker for C++ 

4.0: Programmer’s Guide: 
Ch5 Handling Exceptions 
Ch22 Using the Dynamic Invocation Interface. 

o Visibroker for Java 4.0: Reference Manual and Visibroker for C++ 
4.0: Reference Manual 

These materials are available at: 
o ETRL301 (Books) 
o Locally Online (PDF): /local/dist_systems/cs564/documents/vbcpp4_0/ 

and /local/dist_systems/cs564/documents/vbj4_0/ 
Also, downloadable at our course webpage: 
http://www.eecs.wsu.edu/~bakken/464-564-Web.htm 

o Remotely Online (HTML and PDF): 
http://www.inprise.com/techpubs/visibroker/visibroker4/vbcpp40-
index.html and 
http://www.inprise.com/techpubs/visibroker/visibroker4/vbj40-index.html 


