CptS 121 - Program Design and Development

Programming Assignment 1: Equation Evaluator

Assigned: Thursday, May 9th, 2018
Due: Tuesday, May 14th, 2019, 2018 by midnight

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:

* Analyze a basic set of requirements for a problem and derive logical solutions to them
\% Declare variables
* Apply C data types and associated mathematical operators
* Comment a program according to class standards
* Logically order sequential C statements to solve small problems
* Compose a small C language program
\% Compile a C program using Microsoft Visual Studio 2015
* Execute a program
\% Create basic test cases for a program

II. Prerequisites:

Before starting this programming assignment, participants should be able to:
\% Access Microsoft Visual Studio 2015 Integrated Development Environment (IDE)

* Summarize topics from Hanly \& Koffman Chapters 1-2 including:
- The steps of the software development method
- C language elements (preprocessor directives, reserved words, and standard identifiers)
- The standard C data types
- The general form of a high-level program

III. Overview \& Requirements:

Write a C program that evaluates the equations provided below. The program must prompt the user for inputs to the equations and evaluate them based on the inputs. All variables on the right hand sides of the equations must be inputted by the user. All variables, except for the plaintext_character, encoded_character, variable a, shift, R1, R2, and $R 3$ are floating-point values. The plaintext_character and encoded_character variables are characters, and the a, shift, $R 1, R 2$, and $R 3$ variables are integers. The constant PI must be defined as a constant macro (\#defined constants). Error checking is not required for your program. You do not need to check for faulty user input or dividing by zero. However, please consider inputs that could cause your program to work incorrectly.

1. Newton's Second Law of Motion: force = mass * acceleration
2. Volume of a cylinder: volume_cylinder $=\mathrm{PI}^{*}$ radius ${ }^{2}$ * height
3. Character encoding: encoded_character = (plaintext_character - 'A') + 'a' - shift; shift is an integer (note: what happens if plaintext_character is uppercase? What happens with various shift keys?)
4. Distance between two points: distance $=$ square root of $\left(\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right)$ (note: you will need to use sqrt () out of <math.h>)
5. Tangent: tan_theta $=\sin$ (theta) $/ \cos$ (theta) (recall: find the appropriate functions in <math.h>)
6. Equivalent parallel resistance: parallel_resistance $=1 /(1 / R 1+1 / R 2+1 / R 3)$, for 3 resistors. R1, R2, and R3 are integers.
7. General equation: $y=(2 / 3)-y+z^{*} x /(a \% 2)+P I$ (recall: a is an integer; the 2 and 3 constants in the equation should be left as integers initially, but explicitly type-casted as floating-point values)

IV. Expected Results:

The following console window illustrates inputs and outputs that are appropriate for your program. Your program must display the results in a similar form as shown in the window. The window shows possible results, for the given input tests, for the first two equations only.

Note: you will need to display the results for all of the equations!

VI. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a successful compilation and adherence to the program requirements. We will grade according to the following criteria:

[^0]
[^0]: \% 5 pts for correct declaration of constant macros

 * 35 pts for proper prompts and handling of input ($5 \mathrm{pts} /$ equation)
 \% 49 pts for correct calculation of results based on given inputs ($7 \mathrm{pts} /$ equation)
 * 11 pts for adherence to proper programming style established for the class and comments

