CptS 121 - Program Design and Development

Programming Assignment 3: Statistical Analysis of Student Records

Assigned: Friday, May 17th, 2019
Due: Friday, May 22nd, 2019 midnight

I. Learner Objectives:

At the conclusion of this programming assignment, participants should be able to:

* Open and close files
* Read, write to, and update files
* Manipulate file handles
* Apply standard library functions: fopen (), fclose (), fscanf (), and fprintf ()
* Compose decision statements ("if" conditional statements)
© Create and utilize compound conditions

II. Prerequisites:

Before starting this programming assignment, participants should be able to:

- Analyze a basic set of requirements and apply top-down design principles for a problem
- Customize and define C functions
- Apply the 3 file format: 1 header file and 2 source files
- Document and comment a modular C program according to class standards
- Implement guard code in a header file
- Summarize topics from Hanly \& Koffman Chapter 4 including:

What is a selection or conditional statement?
What is a compound condition?
What is a Boolean expression?
What is a flowchart?

III. Overview \& Requirements:

Write a program that processes numbers, corresponding to student records read in from a file, and writes the required results to an output file (see main ()). Your program should define the following functions:
(5 pts) double read_double (FILE *infile) - Reads one double precision number from the input file. Note: You may assume that the file only contains real numbers.
R(5 pts) int read_integer (FILE *infile) - Reads one integer number from the input file.
? (5 pts) double calculate_sum (double number1, double number2, double number3, double number4, double number5) - Finds the sum of number1, number2, number3, number4, and number5 and returns the result.
 number and returns the result. You need to check to make sure that number is not 0 . If it is 0 the function returns -1.0 (we will assume that we are calculating the mean of positive numbers), otherwise it returns the
mean.
(5 pts) double calculate_deviation (double number, double mean) - Determines the deviation of number from the mean and returns the result. The deviation may be calculated as number - mean.
? (10 pts) double calculate_variance (double deviation1, double deviation2, double deviation3, double deviation4, double deviation5, int number) - Determines the variance through the calculation:
((deviation1)^2 + (deviation2)^2 + (deviation3)^2 + (deviation4)^2 + (deviation5) $)^{\wedge}$) / number and returns the result. Hint: you may call your calculate_mean () function to determine the result!
? ${ }^{2}(5 \mathrm{pts})$ double calculate_standard_deviation (double variance) - Calculates the standard deviation as sqrt (variance) and returns the result. Recall that you may use the sqrt () function that is found in math.h.
(10 pts) double find_max (double number1, double number2, double number3, double number4, double number5) - Determines the maximum number out of the five input parameters passed into the function, returning the max.
(10 pts) double find_min (double number1, double number2, double number3, double number4, double number5) - Determines the minimum number out of the five input parameters passed into the function, returning the min.
(5 pts) void print_double (FILE *outfile, double number) - Prints a double precision number (to the hundredths place) to an output file.
(20 pts) A main () function that does the following (this is what the program does!!!): Opens an input file "input.dat" for reading;
Opens an output file "output.dat" for writing;
Reads five records from the input file (input.dat); You will need to use a combination of read_double () and read_integer () function calls here!

Calculates the sum of the GPAs;
Calculates the sum of the class standings;
Calculates the sum of the ages;
Calculates the mean of the GPAs, writing the result to the output file (output.dat);
Calculates the mean of the class standings, writing the result to the output file (output.dat);
Calculates the mean of the ages, writing the result to the output file (output.dat);
Calculates the deviation of each GPA from the mean (Hint: need to call calculate_deviation () 5 times)
Calculates the variance of the GPAs
Calculates the standard deviation of the GPAs, writing the result to the output file (output.dat);
Determines the min of the GPAs, writing the result to the output file (output.dat);
Determines the max of the GPAs, writing the result to the output file (output.dat);
Closes the input and output files (i.e. input.dat and output.dat)

Expected Input File Format (real numbers only):

For this assignment you will be required to read five records from the "input.dat" file. Each record will have the following form:

Student ID\# (an 8 digit integer number)
GPA (a floating-point value to the hundredths place)
Class Standing ($1-4$, where 1 is a freshmen, 2 is a sophomore, 3 is a junior, and 4 is a senior --> all integers)
Age (a floating-point value)

Example data for 1 student record in the file could be as follows:
12345678
3.78

3
20.5

IV. Expected Results:

The following sample session demonstrates how your program should work.
Assuming input.dat stores the following records:
12345678
3.78

3
20.5

87654321
2.65

2
19.25

08651234
3.10

1
18.0

11112222
3.95

4
22.5

22223234
2.45

3
19.3333

Your program should write the following to output.dat: NOTE: you only need to output the numbers, the text is for demonstration purposes only.
3.19 -- GPA Mean
2.60 -- Class Standing Mean
19.92 -- Age Mean
0.60 -- GPA Standard Deviation
2.45 -- GPA Min
3.95 -- GPA Max

VI. Grading Guidelines:

This assignment is worth 100 points. Your assignment will be evaluated based on a successful compilation and adherence to the program requirements. We will grade according to the following criteria:

* 85 pts for adherence to function definitions described above. Please see the individual points, for each function, above.
* 15 pts for adherence to proper programming style established for the class and comments

