
(1 - 2) C Language Elements
H&K Chapter 2

Instructor – Beiyu Lin
CptS 121 (May 7th, 2019)
Washington State University

C. Hundhausen, A. O’Fallon, B. Lin2

Review - Algorithm

l Computer Science?
l Algorithm?

– A well ordered collections
– Unambiguous and effectively computable operations
– Producing a result
– Halts in a finite amount of time

l Use in daily life?
– count the number of people in a room

3

Review – High Level Language

Linker/Loader

C. Hundhausen, A. O’Fallon, B. Lin

4

Introducing C… (1)

l Developed in 1972 by Dennis Ritchie (b.
1941 – 2011) at AT&T Bell Labs

l Considered an imperative procedural
programming language versus an object-
oriented language (like Java, C++, C#)

l Originally designed as language in which to
program UNIX operating system

C. Hundhausen, A. O’Fallon, B. Lin

5

Introducing C… (2)

l Originally geared toward operating systems
programming

l A very popular language from which many
other languages are derived

l Has evolved into a general-purpose
programming language

l Has a reputation for being on the low end of
the "high-level" programming language
spectrum

C. Hundhausen, A. O’Fallon, B. Lin

6

Introducing C… (3)

l Most computer architectures support a C
compiler

l Designed to support cross-platform
programming

l Available on platforms ranging from
embedded systems to supercomputers

l Great for manipulating low level memory
constructs

C. Hundhausen, A. O’Fallon, B. Lin

7

C Language Elements (1)

l Implementation (in C)
#include <stdio.h> /* Needed for printf (), scanf () */
#define PI 3.14159 /* Constant macro */

int main (void)
{

int height = 0, radius = 0;
double volume = 0.0;

printf ("Enter height of cone as integer: "); /* Displays prompt message */
scanf ("%d", &height); /* Gets the value from the user/keyboard */
printf ("Enter radius of base of cone as integer: ");
scanf ("%d", &radius);

/* Compute the volume of the given cone */
volume = ((double) 1 / 3) * PI * radius * radius * height ;

/* Display the resultant volume of the given cone */
printf ("Volume of cone with radius %d and height %d is %lf.\n", radius, height, volume);

return 0;
}

Comment

Preprocessor Directive

Standard Identifier /
Library Function

Variable Declaration

Punctuation

Reserved
Word

Special Symbol /
Operator

C. Hundhausen, A. O’Fallon, B. Lin

8

C Language Elements (2)
l Preprocessor Directives

– Begin with "#“
– Do NOT end with a semicolon “;”
– Tell the preprocessor to modify the program before compilation

l A preprocessor is a system program that modifies a C program before
compilation

l ANSI (American National Standards Institute) C defines several
standard libraries

– To use a library, you must include its header file in your code using
#include

– A library is a collection of functions and symbols needed to perform
specific tasks or operations

l #define can be used to instruct preprocess to replace each
occurrence of a textual constants (e.g., PI) with a value (e.g.,
3.14159)

– Convention: constants are in all caps

C. Hundhausen, A. O’Fallon, B. Lin

9

C Language Elements (3)

l Function main
– All C programs must define a main function
– It is the place where program execution begins
– Contains a series of declarations and executable

statements separated by punctuation to help compiler
translate the statements

– “Drives” the rest of the program

l Reserved words
– Always in lowercase
– Have special meaning (e.g., int, double)
– Show up in blue within MS Visual Studio

C. Hundhausen, A. O’Fallon, B. Lin

10

C Language Elements (4)

l Standard Identifiers
– Have special meaning in C
– Represent names of operations (i.e. printf and
scanf)

– Can be redefined, but not recommended
– If redefined, can’t be used for original purpose

C. Hundhausen, A. O’Fallon, B. Lin

11

C Language Elements (5)

l User-Defined Identifiers
– Name memory cells used for computations

("variables")
– Name our own custom algorithms (functions)
– Must consist only of letters, numbers, and

underscores
– Must not begin with digits
– Must not conflict with reserved words
– Should not redefine standard C library identifiers

C. Hundhausen, A. O’Fallon, B. Lin

12

C Language Elements (6)

l Notes
– C is case sensitive (pay attention to upper and

lower case)
– Choose identifier names wisely

l They should be meaningful, indicating the role of the
variables they are naming

– E.g., average, not a
l Make them descriptive but not excessively long
l Make sure that identifier names are sufficiently

different, so that you don't accidentally mix them up
l Use underscores (_) or camel caps/case to distinguish

between words, i.e. average_score or averageScore

C. Hundhausen, A. O’Fallon, B. Lin

13

Variable Declarations

l Declaring a variable reserves memory space for a
value

l It also associates a name with a memory cell
– These names are user-defined identifiers

l Variable data type precedes variable name:
– double miles; /* will store # of miles */
– int count; /* will store # of zeros found */
– char initial; /* will store first initial */

l Every variable must be declared!
l All variables in C must be declared before any

executable statements!!! i.e. before statements like
printf (), scanf (), etc.

C. Hundhausen, A. O’Fallon, B. Lin

14

Data Types (1)

l Data type = set of values + set of operations
on those values

l Can be associated with variables
(changeable) or constants (non-changeable)

l C defines several standard data types
– int

l Models the integers (at least -32767 to 32767 (16-bit),
but most machines define 32-bit integers)

l Several operations are defined, including +, -, *, /, and
% (mod), and comparisons (>, <, <=, >=, ==, !=)

C. Hundhausen, A. O’Fallon, B. Lin

C. Hundhausen, A. O’Fallon15

Data Types (2)

l C defines several standard data types (cont.)
– double

l models real numbers (must include a decimal point)
l not all real numbers can be modeled because of space

limitations (64 bits)
l Several operations are defined, including +, -, *, and /, and

comparisons (>, <, <=, >=, ==, !=)
l Scientific notation can be used to write double values (e.g.,

15.0e-3, 314e-01)
– char

l Models individual ASCII characters (8 bits)
l Can compare characters (>, <, <=, >=, ==, !=)
l When defining char variables in a program, use single

quotes: 'c',' ','"', etc.

16

Executable Statements (1)

l Follow variable and constant declarations
l Do the work of the algorithm by transforming

inputs into outputs

60
score1

70
score2

80
score3

???
average

Machine
language
encoding

of
compute
average
program

60
score1

70
score2

80
score3

70.0
average

Machine
language
encoding

of
compute
average
program

C. Hundhausen, A. O’Fallon, B. Lin

17

Executable Statements (2)

l Assignment statements
– Store a computational result into a variable
– The = operator does the assignment
– The *, -, +, /, operators perform the computation
– Example:

volume = (1/3) * PI * radius * radius * height; /* always 0 because of 1 / 3 */

– Note: above will yield an int for 1 / 3 instead of a
double, so we need to perform a cast:
volume = ((double) 1 / 3) * PI * radius * radius * height;

C. Hundhausen, A. O’Fallon, B. Lin

18

Executable Statements (3)

l Assignment Statements (cont.)
– We can also assign the value of one variable to

another:
y = x; /* assigns y to the value of x */

y = -x; /* computes the negation of x,
assigning

it to y */

l Input/Output Statements
– It is extremely useful to obtain input data

interactively from the user, and to display output
results to the user

– How can this be done in C?
C. Hundhausen, A. O’Fallon, B. Lin

19

Executable Statements (4)

l Input/Output Statements (cont.)
– The C input/output library defined in <stdio.h>

(which you must #include if you want to use it)
includes several functions that perform input and
output

– <Digression: Functions>
l A function is a set of statements that perform a task.
l A function performs the task, hiding from you the

details of how it performs the task (they're irrelevant)
l We’ll study functions in depth!
<End Digression>

C. Hundhausen, A. O’Fallon, B. Lin

C. Hundhausen, A. O’Fallon20

Executable Statements (5)

l Input/Output Statements (cont.)
– The printf function can be used to output results to the

user's display
– Example

printf("The student's average is %f.",average);

– Notes
l %f is a placeholder for double (%lf in scanf); %d is a

placeholder for int; and %c is a placeholder for char
l Multiple placeholders can exist within a single format string

(see next example)

Function
name

Function
arguments Print list

Placeholder

C. Hundhausen, A. O’Fallon21

Executable Statements (6)

l Input/Output Statements (cont.)
– Another example:

printf("Wow, %c%c%c%c %d sure is
cool!\n",letter_1, letter_2, letter_3,
letter_4, course_num);

would display
Wow, CptS 121 sure is cool!

Assuming that letter_1 is 'C', letter_2 contains
'p', letter_3 contains 't', letter_4 contains 'S',
and course_num contains 121.

Note that '\n' prints a newline (return), causing the
cursor to advance to the next line.

C. Hundhausen, A. O’Fallon22

Executable Statements (7)

l Input/Output Statements (cont.)
– The scanf function reads an input value from the

keyboard
– Its format is similar to that of printf
– Example:

scanf("%d",&score1);
forces the program to pause until the user enters a value
from the keyboard and hits the return key.

– Notes
l scanf interprets the input as an int (%d is a placeholder for

an int).
l The int value is then stored into the variable score1. The &

("address of") operator tells scanf where to store the
inputted value.

l If the & were omitted, scanf would only know the value of
score1, not where in memory it is located

C. Hundhausen, A. O’Fallon23

Executable Statements (8)

l Input/Output Statements (cont.)
– scanf should always be used in conjunction with a printf

statement that displays a prompt, so that the user knows that an
input value is expected

– Example:
printf ("Enter radius of base of cone as integer: ");
scanf ("%d", &radius);

– Notes
l User may separate values with either spaces or returns
l If more values are entered than are specified in a scanf,

they are saved ("buffered") for the next call to scanf

C. Hundhausen, A. O’Fallon24

Executable Statements (9)

l return statement
– In C, most functions, including main, return a

value (just like a mathematical function)
– The return statement specifies the value to be

returned
– The type of the return value must match the

declared return value of the function
l int main(void) { … } indicates that an int is to

be returned; hence, main must return an int
– In the main function, return(0) (a return value

of 0) tells the operating system that the program
executed without error

C. Hundhausen, A. O’Fallon25

General Form of a C Program (1)

l General template of a C program is as
follows:

comment block

preprocessor directives
main function heading
{

declarations
executable statements

}

C. Hundhausen, A. O’Fallon26

General Form of a C Program (2)

l Statements may extend over a single line
(return is treated as a space)
– Exception: Do not break up a a statement in the

middle of a reserved word, constant, or quoted
format string

l More than one statement can go on a single
line

l The programs you write should adhere to
good C style

– Makes them more readable, but does not affect
compilation

C. Hundhausen, A. O’Fallon27

General Form of a C Program (3)

l What is good C style?
– When you write C programs for this class, refer

to the "Recommended C Style and Coding
Standards" found here

– Insert blank space before and after commas and
operators such as +, =, /, *

Coding_Standard_Guide_CptS121.pdf

28

General Form of a C Program (4)

l What is good C style?
– Liberally comment your programs

l Document the purpose of each variable where it is
declared:

l Begin programs with a header section that indicates
– Programmer's name
– Date of current version
– Brief description of what program does
– The course ("CptS 121")
– Assignment number (e.g., "Programming Assignment

#1")

C. Hundhausen, A. O’Fallon, B. Lin

29

General Form of a C Program (5)

l What is good C style? (cont.)
– Liberally comment your programs (cont.)

/*

* Programmer:

* Class: CptS 121, Spring 2018

* Programming Assignment #0

* Date:

*

* Description: This program computes the

* volume of a cylinder.

*/

C. Hundhausen, A. O’Fallon, B. Lin

30

Next Lecture…

l More C language elements: Arithmetic
expressions, number formatting, file input
and output

C. Hundhausen, A. O’Fallon, B. Lin

31

References

l J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8th Ed.), Addison-
Wesley, 2016

C. Hundhausen, A. O’Fallon, B. Lin

C. Hundhausen, A. O’Fallon32

Collaborators

l Chris Hundhausen
l Andrew O’Fallon

http://eecs.wsu.edu/~hundhaus/

