(1 - 2) C Language Elements
H&K Chapter 2

Instructor — Beiyu Lin
CptS 121 (May 7t, 2019)
Washington State University

WASHINGTON STATE
@ [UNIVERSITY
g

Review - Algorithm
-

e Computer Science?

e Algorithm?
- A well ordered collections
- Unambiguous and effectively computable operations
- Producing a result
- Halts in a finite amount of time
e Use in dalily life?
- count the number of people in a room

2 C. Hundhausen, A. O’Fallon, B. Lin ‘

Review — High Level Language

v

») Ny
~ -
— | Compiler [— vy : _,Q:

Source code Running code
Library .
modules » Linker/Loader

C. Hundhausen, A. O’Fallon, B. Lin

Introducing C... (1)
S

e Developed in 1972 by Dennis Ritchie (b.
1941 — 2011) at AT&T Bell Labs

e C(Considered an imperative procedural
programming language versus an object-
oriented language (like Java, C++, C#)

e Originally designed as language in which to
program UNIX operating system

4 C. Hundhausen, A. O’Fallon, B. Lin ‘

5

Introducing C... (2)
S

Originally geared toward operating systems
programming

A very popular language from which many
other languages are derived

-Has evolved into a general-purpose
programming language

-as a reputation for being on the low end of
the "high-level” programming language
spectrum

C. Hundhausen, A. O’Fallon, B. Lin ‘

Introducing C... (3)

6

e Most computer architectures support a C
compiler

e Designed to support cross-platform
programming

e Available on platforms ranging from
embedded systems to supercomputers

e Great for manipulating low level memory
constructs

C. Hundhausen, A. O’Fallon, B. Lin

C Language Elements (1)
-

e Implementation (in C)
#include <stdio.h> /* Needed for printf (), scanf () */ <mm—

#define Pl 3.14159 /* Constant macro */

inM
{ Preprocessor Directive

int height = 0, radius =

ouble volume = 0.0; \
| Var'iable Declaration

ter height of cone as integer: "); /* Displays prompt message */
Standard Identifier /
Library Function

Reserved | scanf ("%d", &height); 4%
Word printf ("Enter radius of base of cone as integer: ");
scanf ("%d", &radius);

/* Compute the volume of the given cone */

volume = ((double) 1/ 3) * Pl * radius * radius * hgight ;
| | Special Symbol /
/* Display the resultant volume of the given cone */ O
printf ("Volume of cone with radius %d and height %d is %lf.\n", radius, height, volume); per'a'l'or'
return O;

}

7 C. Hundhausen, A. O’Fallon, B. Lin ‘

C Language Elements (2)
-

e Preprocessor Directives
- Begin with "#*
— Do NOT end with a semicolon %"

- Tell the preprocessor to modify the program before compilation

e A preprocessor is a system program that modifies a C program before
compilation

e ANSI (American National Standards Institute) C defines several
standard libraries

- To use a library, you must include its header file in your code using
#include

— Alibrary is a collection of functions and symbols needed to perform
specific tasks or operations

e #define can be used to instruct preprocess to replace each

occurrence of a textual constants (e.g., P1) with a value (e.g.,
3.14159)

- Convention: constants are in all caps

8 C. Hundhausen, A. O’Fallon, B. Lin

C Language Elements (3)
-

e Function main

All C programs must define a main function
It is the place where program execution begins

Contains a series of declarations and executable
statements separated by punctuation to help compiler
translate the statements

“Drives” the rest of the program

e Reserved words
- Always in lowercase

Have special meaning (e.g., int, double)
Show up in blue within MS Visual Studio

9 C. Hundhausen, A. O’Fallon, B. Lin

C Language Elements (4)
-

e Standard ldentifiers

- Have special meaning in C

- Represent names of operations (i.e. printf and
scanft)

- Can be redefined, but not recommended
- If redefined, can’t be used for original purpose

1 0 C. Hundhausen, A. O’Fallon, B. Lin ‘

C Language Elements (5)
-

e User-Defined Identifiers

- Name memory cells used for computations
("variables")

- Name our own custom algorithms (functions)

- Must consist only of letters, numbers, and
underscores

— Must not begin with digits
— Must not conflict with reserved words
— Should not redefine standard C library identifiers

11 C. Hundhausen, A. O’Fallon, B. Lin ‘

C Language Elements (6)
-

e Notes

- C is case sensitive (pay attention to upper and
lower case)

— Choose identifier names wisely

e They should be meaningful, indicating the role of the
variables they are naming

- E.g., average, not a
e Make them descriptive but not excessively long

e Make sure that identifier names are sufficiently
different, so that you don't accidentally mix them up

e Use underscores (_) or camel caps/case to distinguish
between words, i.e. average_score or averageScore

12 C. Hundhausen, A. O’Fallon, B. Lin

Variable Declarations
7

e Declaring a variable reserves memory space for a
value

e |t also associates a name with a memory cell
- These names are user-defined identifiers

e \Variable data type precedes variable name:

- double miles; /* will store # of miles */
- int count; /* will store # of zeros found */
- char initial; /* will store first initial */

e Every variable must be declared!

e All variables in C must be declared before any
executable statements!!! i.e. before statements like

printf (), scanf (), etc.

1 3 C. Hundhausen, A. O’Fallon, B. Lin ‘

Data Types (1)
S

e Data type = set of values + set of operations
on those values

e (Can be associated with variables
(changeable) or constants (non-changeable)

e C(defines several standard data types
- 1nt
e Models the integers (at least -32767 to 32767 (16-bit),
but most machines define 32-bit integers)

e Several operations are defined, including +, -, *, /, and
% (mod), and comparisons (>, <, <=, >=, ==, |=)

14 C. Hundhausen, A. O’Fallon, B. Lin ‘

Data Types (2)
S

e C defines several standard data types (cont.)
- double

e models real numbers (must include a decimal point)

e not all real numbers can be modeled because of space
limitations (64 bits)

e Several operations are defined, including +, -, *, and /, and
comparisons (>, <, <=, >= == =)

e Scientific notation can be used to write double values (e.g.,
15.0e-3, 314e-01)

- char
e Models individual ASCII characters (8 bits)
e Can compare characters (>, <, <=, >=, ==, |=)

e When defining char variables in a program, use single

quotes: 'c', ' ', '"', efc. :
1 5 C. Hundhausen, A. O’Fallon

Executable Statements (1)

e Follow variable and constant declarations
e Do the work of the algorithm by transforming

Inputs into outputs

scorel

score2
70

score3

average
22?

1 6 C. Hundhausen, A. O’Fallon, B. Lin

Machine
language
encoding

of
compute
average
program

scorel

score2

70

score3

average

Machine
language
encoding
of
compute
average
program

17

Executable Statements (2)
-

e Assignment statements

C. Hundhausen, A. O’Fallon, B. Lin

Store a computational result into a variable
The = operator does the assignment

The *, -, +, /, operators perform the computation

ExamP
volume = (1/3) * PI * radius * radius * height; /* always 0 because of 1/ 3 */

Note: above will yield an int for 1/ 3 instead of a
double, so we need to perform a cast:

volume = ((double) 1/ 3) * PI * radius * radius * height;

Executable Statements (3)
S

e Assignment Statements (cont.)

- We can also assign the value of one variable to
another:

y = X; /* assigns y to the value of x */

y = -x; /* computes the negation of x,
assigning
it to y */

e I|nput/Output Statements

— ltis extremely useful to obtain input data
interactively from the user, and to display output
results to the user

-~ How can this be done in C? _&

1 8 C. Hundhausen, A. O’Fallon, B. Lin

Executable Statements (4)
]

e |nput/Output Statements (cont.)

- The C input/output library defined in <stdio.h>
(which you must #include if you want to use it)
includes several functions that perform input and
output

— <Digression: Functions>
e A function is a set of statements that perform a task.

e A function performs the task, hiding from you the
details of how it performs the task (they're irrelevant)

e We'll study functions in depth!
<End Digression>

19 C. Hundhausen, A. O’Fallon, B. Lin ‘

Executable Statements (5)
S

e |[nput/Output Statements (cont.)

- The printf function can be used to output results to the
user's display

- Example
printf ("The student's average 1s %f.",average);

unc‘non Funchon
name ar'gumen'rs
— Notes

e 3£ is a placeholder for double (%1f in scanf); ¥dis a
placeholder for int; and %c is a placeholder for char

e Multiple placeholders can exist within a single format string
(see next example)

20 C. Hundhausen, A. O’Fallon ‘

Placeholder

Executable Statements (6)

|
e |[nput/Output Statements (cont.)

-~ Another example:

printf ("Wow, %c%c%c%c %d sure 1s
cool!\n",letter 1, letter 2, letter 3,
letter 4, course num);

would display
Wow, CptS 121 sure is cool!
Assuming that letter 1is 'C', letter 2 contains

'o', letter 3 contains 't', letter 4 contains 's’,
and course num contains 121.

Note that '\n"' prints a newline (return), causing the
cursor to advance to the next line.

21 C. Hundhausen, A. O’Fallon ‘

Executable Statements (7)
-

e |[nput/Output Statements (cont.)

-~ The scanf function reads an input value from the
keyboard

— lIts format is similar to that of printf

- Example:
scanft ("sd", &scorel) ;

forces the program to pause until the user enters a value
from the keyboard and hits the return key.

— Notes

e scanf interprets the input as an int (%d is a placeholder for
an int).

e The int value is then stored into the variable scorel. The &
("address of") operator tells scanft where to store the
inputted value.

e |f the & were omitted, scanf would only know the value of
scorel, not where in memory it is located

22 C. Hundhausen, A. O’Fallon ‘

Executable Statements (8)
S

e Input/Output Statements (cont.)

- scanf should always be used in conjunction with a printf
statement that displays a prompt, so that the user knows that an
input value is expected

- Example:
printf ("Enter radius of base of cone as integer: ");

scanf ("%d", &radius);

— Notes
e User may separate values with either spaces or returns

e |f more values are entered than are specified in a scanf,
they are saved ("buffered") for the next call to scanft

23 C. Hundhausen, A. O’Fallon ‘

Executable Statements (9)
S

® return statement

- In C, most functions, including main, return a
value (just like a mathematical function)

- The return statement specifies the value to be
returned

- The type of the return value must match the

declared return value of the function

e int main (void) { .. } indicates thatan int isto
be returned; hence, main must return an int

— Inthe main function, return (0) (a return value
of 0) tells the operating system that the program
24 executed without error g

C. Hundhausen, A. O’Fallon

General Form of a C Program (1)
-

e General template of a C program is as
follows:

comment block

preprocessor directives
main function heading
{
declarations
executable statements

25 C. Hundhausen, A. O’Fallon ‘

General Form of a C Program (2)

e Statements may extend over a single line
(return is treated as a space)

— Exception: Do not break up a a statement in the
middle of a reserved word, constant, or quoted

format string
e More than one statement can go on a single
line
e [he programs you write should adhere to
good C style

— Makes them more readable, but does not affect

26 compilation _;t

C. Hundhausen, A. O’Fallon

General Form of a C Program (3)
-

e \What is good C style?

-~ When you write C programs for this class, refer

to the "Recommended C Style and Coding
Standards" found here

- Insert blank space before and after commas and
operators suchas +, =, /, *

27 C. Hundhausen, A. O’Fallon ‘

Coding_Standard_Guide_CptS121.pdf

General Form of a C Program (4)

e \What is good C style?

— Liberally comment your programs

e Document the purpose of each variable where it is
declared:
e Begin programs with a header section that indicates
— Programmer's name
— Date of current version
— Brief description of what program does
— The course ("CptS 121")

— Assignment number (e.g., "Programming Assignment
#1")

28 C. Hundhausen, A. O’Fallon, B. Lin ‘

General Form of a C Program (5)
-

e What is good C style? (cont.)

— Liberally comment your programs (cont.)
/%
* Programmer:
* Class: CptS 121, Spring 2018
* Programming Assignment #0

* Date:

* Description: This program computes the

* volume of a cylinder.

29 C. Hundhausen, A. O’Fallon, B. Lin ‘

Next Lecture...
« /7]

e More C language elements: Arithmetic
expressions, number formatting, file input
and output

30 C. Hundhausen, A. O’Fallon, B. Lin

References
7

e J.R. Hanly & E.B. Koffman, Problem Solving
and Program Design in C (8" Ed.), Addison-
Wesley, 2016

31 C. Hundhausen, A. O’Fallon, B. Lin ‘

Collaborators
]

e Chris Hundhausen
e Andrew O’Fallon

32 C. Hundhausen, A. O’Fallon

http://eecs.wsu.edu/~hundhaus/

